@article{HausmannBrandtKoecheletal.2015, author = {Hausmann, Stefan and Brandt, Evelyn and K{\"o}chel, Carolin and Einsele, Hermann and Bargou, Ralf C. and Seggewiss-Bernhardt, Ruth and St{\"u}hmer, Thorsten}, title = {Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0122689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148708}, pages = {e0122689}, year = {2015}, abstract = {Multiple myeloma (MM) is a generally fatal plasma cell cancer that often shows activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Targeted pharmacologic therapies, however, have not yet progressed beyond the clinical trial stage, and given the complexity of the PI3K/Akt signalling system (e.g. multiple protein isoforms, diverse feedback regulation mechanisms, strong variability between patients) it is mandatory to characterise its ramifications in order to better guide informed decisions about the best therapeutic approaches. Here we explore whether serum and glucocorticoid-regulated kinase 3 (SGK3), a potential downstream effector of PI3K, plays a role in oncogenic signalling in MM cells-either in concert with or independent of Akt. SGK3 was expressed in all MM cell lines and in all primary MM samples tested. Four MM cell lines representing a broad range of intrinsic Akt activation (very strong: MM. 1s, moderate: L 363 and JJN-3, absent: AMO-1) were chosen to test the effects of transient SGK3 knockdown alone and in combination with pharmacological inhibition of Akt, PI3K-p110\(\alpha\), or in the context of serum starvation. Although the electroporation protocol led to strong SGK3 depletion for at least 5 days its absence had no substantial effect on the activation status of potential downstream substrates, or on the survival, viability or proliferation of MM cells in all experimental contexts tested. We conclude that it is unlikely that SGK3 plays a significant role for oncogenic signalling in multiple myeloma.}, language = {en} } @article{SagivMichaeliAssietal.2015, author = {Sagiv, Jitka Y. and Michaeli, Janna and Assi, Simaan and Mishalian, Inbal and Kisos, Hen and Levy, Liran and Damti, Pazzit and Lumbroso, Delphine and Polyansky, Lola and Sionov, Ronit V. and Ariel, Amiram and Hovav, Avi-Hai and Henke, Erik and Fridlender, Zvi G. and Granot, Zvi}, title = {Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer}, series = {Cell Reports}, volume = {10}, journal = {Cell Reports}, number = {4}, doi = {10.1016/j.celrep.2014.12.039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144102}, pages = {562-573}, year = {2015}, abstract = {Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro-and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs). LDNs consist of both immature myeloid-derived suppressor cells (MDSCs) and mature cells that are derived from HDNs in a TGF-beta-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.}, language = {en} } @article{ReinholdBattiBilbaoetal.2015, author = {Reinhold, A. K. and Batti, L. and Bilbao, D. and Buness, A. and Rittner, H. L. and Heppenstall, P. A.}, title = {Differential Transcriptional Profiling of Damaged and Intact Adjacent Dorsal Root Ganglia Neurons in Neuropathic Pain}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0123342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143290}, pages = {e0123342}, year = {2015}, abstract = {Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG) using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS). Two fluorescent tracers, Fluoroemerald (FE) and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI), were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropinreleasing hormone (CRH), providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and "bystanders," thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG.}, language = {en} } @phdthesis{Schmidt2015, author = {Schmidt, Thomas Christian}, title = {Theoretical Investigations on the Interactions of Small Compounds with their Molecular Environments}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im ersten Teil dieser Arbeit wird eine Kombination theoretischer Methoden f{\"u}r die strukturbasierte Entwicklung neuer Wirkstoffe pr{\"a}sentiert. Ausgehend von der Kristallstruktur eines kovalenten Komplexes einer Modellverbindung mit dem Zielprotein wurde mit Hilfe von quantenmechanischen und QM/MM Rechnungen die genaue Geometrie des vorausgehenden nicht-kovalenten Komplexes betimmt. Letztere ist der bestimmende Faktor f{\"u}r die Reaktivit{\"a}t des Inhibitors gegen{\"u}ber der katalytisch aktiven Aminos{\"a}ure und damit f{\"u}r die Ausbildung einer kovalenten Bindung. Aus diesem Grund wurde diese Geometrie auch f{\"u}r die Optimierung der Substitutionsmusters des Ihnibitors verwendet, um dessen Affinit{\"a}t zum Zielenzyme zu verbessern ohne dass dieser seine F{\"a}higkeit kovalent an das aktive Zentrum zu binden verliert. Die Optimierung des Substitutionsmuster wurde doch Methode des Molekularen Dockings unterst{\"u}tzt, das diese optimal dazu geeignet sind, Bindungsaffinit{\"a}ten vorherzusagen, die durch eine Modifikation der chemischen Struktur entstehen. Eine Auswahl der besten Strukturen wurde anschließend verwendet, um zu {\"u}berpr{\"u}fen, ob die ver{\"a}nderten Molek{\"u}le noch gen{\"u}gen Reaktivit{\"a}t gegen{\"u}ber dem Zielprotein aufweisen. Molek{\"u}ldynamik Simulationen der neuen Verbindungen haben jedoch gezeigt, dass die ver{\"a}nderten Verbindungen nur so and das Protein binden, dass die Bilung eine kovalenten Bindung zum Enzym nicht mehr m{\"o}glich ist. Daher wurden in einem weiteren Schritt die Modellverbindungen weiter modifiziert. Neben {\"A}nderungen im Substitutionsmuster wurde auch die chemische Struktur im Kern ver{\"a}ndert. Die Bindungsaffinit{\"a}ten wurde wieder mittels Docking {\"u}berpr{\"u}ft. F{\"u}r die besten Bindungsposen wurden wieder Simulationen zur Molek{\"u}ldynamik durchgef{\"u}hrt, wobei diesmal die Ausbildung einer kovalenten Bindung zum Enzyme m{\"o}glich erscheint. In einer abschließenden Serie von QM/MM Rechnungen unter Ber{\"u}cksichtigung verschiedener Protonierungszust{\"a}nde des Inhibitors und des Proteins konnten Reaktionspfade und zugeh{\"o}rige Reaktionsenergien bestimmt werden. Die Ergebnisse lassen darauf schließen, dass eines der neu entwickelten Molek{\"u}le sowohl eine stark verbesserte Bindungsaffinit{\"a}t wie auch die M{\"o}glichkeit der kovalenten Bindung an Enzyme aufweist. Der zweite Teil der Arbeit konzentriert sich auf die Umgebungseinfl{\"u}sse auf die Elektronenverteilung eines Inhibitormodells. Als Grundlage dient ein vinylsulfon-basiertes Moek{\"u}l, f{\"u}r das eine experimentell bestimmte Kristallstruktur sowie ein theoretisch berechneter Protein Komplex verf{\"u}gbar sind. Ein Referendatensatz f{\"u}r diese Systeme wurde erstellt, indem der Konformationsraum des Inhibitors nach m{\"o}glichen Minimumsstrukturen abgesucht wurde, welche sp{\"a}ter mit den Geometrien des Molek{\"u}ls im Kristall und im Protein verglichen werden konnten. The Geometrie in der Kristallumgebung konnte direkt aus den experimentellen Daten {\"u}bernommen werden. Rechnungen zum nicht-kovalenten Protein Komplex hingegen haben gezeigt, dass f{\"u}r das Modellsystem mehrere Geometrien des Inhibiors sowie zwei Protonierungszust{\"a}nde f{\"u}r die katalytisch aktiven Aminos{\"a}uren m{\"o}glich sind. F{\"u}r die Analyse wurden daher alle m{\"o}glichen Proteinkomplexe mit der Kristallstruktur verglichen. Ebenso wurden Vergleiche mit der Geometrie des isolierten Molek{\"u}ls im Vakuum sowie der Geometrie in w{\"a}ssriger L{\"o}sung angestellt. F{\"u}r die Geometrie des Molek{\"u}ls an sich ergab sich eine gute {\"U}bereinstimmung f{\"u}r alle Modellsysteme, f{\"u}r die Wechselwirkungen mit der Umgebung jedoch nicht. Die Ausbildung von Dimeren in der Kristallumgebung hat einen stark stablisierenden Effekt und ist einer der Gr{\"u}nde, warum dieser Kristall so gut wie keine Fehlordungen aufweist. In den Proteinkomplexen hingegen ergibt sich eine Abstoßung zwischen dem Inhibitor und einer der katalytisch aktiven Aminos{\"a}uren. Als Ursache f{\"u}r diese Abstoßung konnte die Einf{\"u}hrung der Methylaminfunktion ausgemacht werden. Vermutlicherweise f{\"u}hrt diese strukturelle {\"A}nderung auch dazu, dass der Modellinhibitor nicht in der Lage ist, so wie die Leitstruktur K11777 an das aktive Zentrum des Enzyms zu binden.}, subject = {Theoretische Chemie}, language = {en} }