@article{ChinaBurrowsWangetal.2018, author = {China, Swarup and Burrows, Susannah M. and Wang, Bingbing and Harder, Tristan H. and Weis, Johannes and Tanarhte, Meryem and Rizzo, Luciana V. and Brito, Joel and Cirino, Glauber G. and Ma, Po-Lun and Cliff, John and Artaxo, Paulo and Gilles, Mary K. and Laskin, Alexander}, title = {Fungal spores as a source of sodium salt particles in the Amazon basin}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07066-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222492}, year = {2018}, abstract = {In the Amazon basin, particles containing mixed sodium salts are routinely observed and are attributed to marine aerosols transported from the Atlantic Ocean. Using chemical imaging analysis, we show that, during the wet season, fungal spores emitted by the forest biosphere contribute at least 30\% (by number) to sodium salt particles in the central Amazon basin. Hydration experiments indicate that sodium content in fungal spores governs their growth factors. Modeling results suggest that fungal spores account for ~69\% (31-95\%) of the total sodium mass during the wet season and that their fractional contribution increases during nighttime. Contrary to common assumptions that sodium-containing aerosols originate primarily from marine sources, our results suggest that locally-emitted fungal spores contribute substantially to the number and mass of coarse particles containing sodium. Hence, their role in cloud formation and contribution to salt cycles and the terrestrial ecosystem in the Amazon basin warrant further consideration.}, language = {en} } @article{KernHaagsEggeretal.2023, author = {Kern, Christian S. and Haags, Anja and Egger, Larissa and Yang, Xiaosheng and Kirschner, Hans and Wolff, Susanne and Seyller, Thomas and Gottwald, Alexander and Richter, Mathias and de Giovannini, Umberto and Rubio, Angel and Ramsey, Michael G. and Bocquet, Fran{\c{c}}ois C. and Soubatch, Serguei and Tautz, F. Stefan and Puschnig, Peter and Moser, Simon}, title = {Simple extension of the plane-wave final state in photoemission: bringing understanding to the photon-energy dependence of two-dimensional materials}, series = {Physical Review Research}, volume = {5}, journal = {Physical Review Research}, number = {3}, doi = {10.1103/PhysRevResearch.5.033075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350330}, year = {2023}, abstract = {Angle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and band structure contrast through the momentum distribution of photoelectrons. Its simplest interpretation is obtained in the plane-wave approximation, according to which photoelectrons propagate freely to the detector. The photoelectron momentum distribution is then essentially given by the Fourier transform of the real-space orbital. While the plane-wave approximation is remarkably successful in describing the momentum distributions of aromatic compounds, it generally fails to capture kinetic-energy-dependent final-state interference and dichroism effects. Focusing our present study on quasi-freestanding monolayer graphene as the archetypical two-dimensional (2D) material, we observe an exemplary E\(_{kin}\)-dependent modulation of, and a redistribution of spectral weight within, its characteristic horseshoe signature around the \(\bar {K}\) and \(\bar {K´}\) points: both effects indeed cannot be rationalized by the plane-wave final state. Our data are, however, in remarkable agreement with ab initio time-dependent density functional simulations of a freestanding graphene layer and can be explained by a simple extension of the plane-wave final state, permitting the two dipole-allowed partial waves emitted from the C 2p\(_z\) orbitals to scatter in the potential of their immediate surroundings. Exploiting the absolute photon flux calibration of the Metrology Light Source, this scattered-wave approximation allows us to extract E\(_{kin}\)-dependent amplitudes and phases of both partial waves directly from photoemission data. The scattered-wave approximation thus represents a powerful yet intuitive refinement of the plane-wave final state in photoemission of 2D materials and beyond.}, language = {en} } @article{OPUS4-36018, title = {Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube}, series = {The Astrophysical Journal}, volume = {870}, journal = {The Astrophysical Journal}, number = {2}, publisher = {The American Astronomical Society}, organization = {The LIGO Scientific Collaboration and the Virgo Collaboration}, doi = {10.3847/1538-4357/aaf21d}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360189}, pages = {1-16}, year = {2019}, abstract = {Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.}, language = {en} } @article{SchadeBaderHuberetal.2023, author = {Schade, A. and Bader, A. and Huber, T. and Kuhn, S. and Czyszanowski, T. and Pfenning, A. and Rygała, M. and Smołka, T. and Motyka, M. and Sęk, G. and Hartmann, F. and H{\"o}fling, S.}, title = {Monolithic high contrast grating on GaSb/AlAsSb based epitaxial structures for mid-infrared wavelength applications}, series = {Optics Express}, volume = {31}, journal = {Optics Express}, number = {10}, doi = {10.1364/OE.487119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350346}, pages = {16025-16034}, year = {2023}, abstract = {We demonstrate monolithic high contrast gratings (MHCG) based on GaSb/AlAs0.08Sb0.92 epitaxial structures with sub-wavelength gratings enabling high reflection of unpolarized mid-infrared radiation at the wavelength range from 2.5 to 5 µm. We study the reflectivity wavelength dependence of MHCGs with ridge widths ranging from 220 to 984 nm and fixed 2.6 µm grating period and demonstrate that peak reflectivity of above 0.7 can be shifted from 3.0 to 4.3 µm for ridge widths from 220 to 984 nm, respectively. Maximum reflectivity of up to 0.9 at 4 µm can be achieved. The experiments are in good agreement with numerical simulations, confirming high process flexibility in terms of peak reflectivity and wavelength selection. MHCGs have hitherto been regarded as mirrors enabling high reflection of selected light polarization. With this work, we show that thoughtfully designed MHCG yields high reflectivity for both orthogonal polarizations simultaneously. Our experiment demonstrates that MHCGs are promising candidates to replace conventional mirrors like distributed Bragg reflectors to realize resonator based optical and optoelectronic devices such as resonant cavity enhanced light emitting diodes and resonant cavity enhanced photodetectors in the mid-infrared spectral region, for which epitaxial growth of distributed Bragg reflectors is challenging.}, language = {en} } @article{StebaniBlaimerZableretal.2023, author = {Stebani, Jannik and Blaimer, Martin and Zabler, Simon and Neun, Tilmann and Pelt, Dani{\"e}l M. and Rak, Kristen}, title = {Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-45466-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357411}, year = {2023}, abstract = {Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmark detection of helicotrema, oval and round window. A fully automated pipeline with a single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually labeled in-house datasets from cadaveric specimen (N = 43) and clinical practice (N = 9). The model robustness was further evaluated on three independent open-source datasets (N = 23 + 7 + 17 scans) consisting of cadaveric specimen scans. For the in-house datasets, Dice scores of 0.97 and 0.94, intersection-over-union scores of 0.94 and 0.89 and average Hausdorf distances of 0.065 and 0.14 voxel units were achieved. The landmark localization task was performed automatically with an average localization error of 3.3 and 5.2 voxel units. A robust, albeit reduced performance could be attained for the catalogue of three open-source datasets. Results of the ablation studies with 43 mono-parametric variations of the basal architecture and training protocol provided task-optimal parameters for both categories. Ablation studies against single-task variants of the basal architecture showed a clear performance beneft of coupling landmark localization with segmentation and a dataset-dependent performance impact on segmentation ability.}, language = {en} } @article{VogelRueckertGreineretal.2023, author = {Vogel, P. and R{\"u}ckert, M. A. and Greiner, C. and G{\"u}nther, J. and Reichl, T. and Kampf, T. and Bley, T. A. and Behr, V. C. and Herz, S.}, title = {iMPI: portable human-sized magnetic particle imaging scanner for real-time endovascular interventions}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-37351-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357794}, year = {2023}, abstract = {Minimally invasive endovascular interventions have become an important tool for the treatment of cardiovascular diseases such as ischemic heart disease, peripheral artery disease, and stroke. X-ray fluoroscopy and digital subtraction angiography are used to precisely guide these procedures, but they are associated with radiation exposure for patients and clinical staff. Magnetic Particle Imaging (MPI) is an emerging imaging technology using time-varying magnetic fields combined with magnetic nanoparticle tracers for fast and highly sensitive imaging. In recent years, basic experiments have shown that MPI has great potential for cardiovascular applications. However, commercially available MPI scanners were too large and expensive and had a small field of view (FOV) designed for rodents, which limited further translational research. The first human-sized MPI scanner designed specifically for brain imaging showed promising results but had limitations in gradient strength, acquisition time and portability. Here, we present a portable interventional MPI (iMPI) system dedicated for real-time endovascular interventions free of ionizing radiation. It uses a novel field generator approach with a very large FOV and an application-oriented open design enabling hybrid approaches with conventional X-ray-based angiography. The feasibility of a real-time iMPI-guided percutaneous transluminal angioplasty (PTA) is shown in a realistic dynamic human-sized leg model.}, language = {en} } @article{RudnoRudzińskiSyperekAndrezejewskietal.2017, author = {Rudno-Rudziński, W. and Syperek, M. and Andrezejewski, J. and Maryński, A. and Misiewicz, J. and Somers, A. and H{\"o}fling, S. and Reithmaier, J. P. and Sęk, G.}, title = {Carrier delocalization in InAs/InGaAlAs/InP quantum-dash-based tunnel injection system for 1.55 μm emission}, series = {AIP Advances}, volume = {7}, journal = {AIP Advances}, number = {1}, doi = {10.1063/1.4975634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181787}, year = {2017}, abstract = {We have investigated optical properties of hybrid two-dimensional-zero-dimensional (2D-0D) tunnel structures containing strongly elongated InAs/InP(001) quantum dots (called quantum dashes), emitting at 1.55 μm. These quantum dashes (QDashes) are separated by a 2.3 nm-width barrier from an InGaAs quantum well (QW), lattice matched to InP. We have tailored quantum-mechanical coupling between the states confined in QDashes and a QW by changing the QW thickness. By combining modulation spectroscopy and photoluminescence excitation, we have determined the energies of all relevant optical transitions in the system and proven the carrier transfer from the QW to the QDashes, which is the fundamental requirement for the tunnel injection scheme. A transformation between 0D and mixed-type 2D-0D character of an electron and a hole confinement in the ground state of the hybrid system have been probed by time-resolved photoluminescence that revealed considerable changes in PL decay time with the QW width changes. The experimental discoveries have been explained by band structure calculations in the framework of the eight-band k·p model showing that they are driven by delocalization of the lowest energy hole state. The hole delocalization process from the 0D QDash confinement is unfavorable for optical devices based on such tunnel injection structures.}, language = {en} } @article{RyczkoMisiewiczHoflingetal.2017, author = {Ryczko, K. and Misiewicz, J. and Hofling, S. and Kamp, M. and Sęk, G.}, title = {Optimizing the active region of interband cascade lasers for passive mode-locking}, series = {AIP Advances}, volume = {7}, journal = {AIP Advances}, number = {1}, doi = {10.1063/1.4973937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181790}, year = {2017}, abstract = {The work proposes possible designs of active regions for a mode-locked interband cascade laser emitting in the mid infrared. For that purpose we investigated the electronic structure properties of respectively modified GaSb-based type II W-shaped quantum wells, including the effect of external bias in order to simultaneously fulfil the requirements for both the absorber as well as the gain sections of a device. The results show that introducing multiple InAs layers in type II InAs/GaInSb quantum wells or introducing a tensely-strained GaAsSb layer into "W-shaped" type II QWs offers significant difference in optical transitions' oscillator strengths (characteristic lifetimes) of the two oppositely polarized parts of such a laser, being promising for utilization in mode-locked devices.}, language = {en} } @phdthesis{Miller2024, author = {Miller, Kirill}, title = {Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) f{\"u}r Anwendungen in nicht von-Neumann-Rechnerarchitekturen}, doi = {10.25972/OPUS-35472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die Dissertation besch{\"a}ftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfl{\"a}che beider {\"U}bergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine F{\"u}lle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfl{\"a}che prozessiert wurde und eine bemerkenswerte Trialit{\"a}t aufweist. Dieses Bauelement kann unter anderem als ein herk{\"o}mmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zus{\"a}tzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall h{\"a}ngt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts l{\"a}sst sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen ver{\"a}ndern. Dar{\"u}ber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine erg{\"a}nzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsstr{\"o}men innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt.}, subject = {Memristor}, language = {de} } @article{OPUS4-22774, title = {Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope}, series = {Journal of Instrumentation}, volume = {13}, journal = {Journal of Instrumentation}, organization = {The KM3NeT collaboration}, doi = {10.1088/1748-0221/13/05/P05035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227744}, pages = {1-14}, year = {2018}, abstract = {The Hamamatsu R12199-023-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley ratio have also been measured for a sub-sample in order to determine parameter values needed as input to numerical simulations of the detector.}, language = {en} } @phdthesis{Bayer2024, author = {Bayer, Florian}, title = {Investigating electromagnetic properties of topological surface states in mercury telluride}, doi = {10.25972/OPUS-35212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352127}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This doctoral thesis investigates magneto-optical properties of mercury telluride layers grown tensile strained on cadmium telluride substrates. Here, layer thicknesses start above the usual quantum well thickness of about 20 nm and have a upper boundary around 100 nm due to lattice relaxation effects. This kind of layer system has been attributed to the material class of three-dimensional topological insulators in numerous publications. This class stands out due to intrinsic boundary states which cross the energetic band gap of the layer's bulk. In order to investigate the band structure properties in a narrow region around the Fermi edge, including possible boundary states, the method of highly precise time-domain Terahertz polarimetry is used. In the beginning, the state of the art of Teraherz technology at the start of this project is discussed, moving on to a detailed description and characterization of the self-built measurement setup. Typical standard deviation of a polarization rotation or ellipticity measurement are on the order of 10 to 100 millidegrees, according to the transmission strength through investigated samples. A range of polarization spectra, depending on external magnetic fields up to 10 Tesla, can be extracted from the time-domain signal via Fourier transformation. The identification of the actual band structure is done by modeling possible band structures by means of the envelope function approximation within the framework of the k·p method. First the bands are calculated based on well-established model parameters and from them the possible optical transitions and expected ellipticity spectra, all depending on external magnetic fields and the layer's charge carrier concentration. By comparing expected with measured spectra, the validity of k·p models with varying depths of detail is analyzed throughout this thesis. The rich information encoded in the ellipitcity spectra delivers key information for the attribution of single optical transitions, which are not part of pure absorption spectroscopy. For example, the sign of the ellipticity signals is linked to the mix of Landau levels which contribute to an optical transition, which shows direct evidence for bulk inversion asymmetry effects in the measured spectra. Throughout the thesis, the results are compared repeatedly with existing publications on the topic. It is shown that the models used there are often insufficient or, in worst case, plainly incorrect. Wherever meaningful and possible without greater detours, the differences to the conclusions that can be drawn from the k·p model are discussed. The analysis ends with a detailed look on remaining differences between model and measurement. It contains the quality of model parameters as well as different approaches to integrate electrostatic potentials that exist in the structures into the model. An outlook on possible future developments of the mercury cadmium telluride layer systems, as well as the application of the methods shown here onto further research questions concludes the thesis.}, subject = {Quecksilbertellurid}, language = {en} } @article{LiShanRupprechtetal.2022, author = {Li, Donghai and Shan, Hangyong and Rupprecht, Christoph and Knopf, Heiko and Watanabe, Kenji and Taniguchi, Takashi and Qin, Ying and Tongay, Sefaattin and Nuß, Matthias and Schr{\"o}der, Sven and Eilenberger, Falk and H{\"o}fling, Sven and Schneider, Christian and Brixner, Tobias}, title = {Hybridized exciton-photon-phonon states in a transition-metal-dichalcogenide van-der-Waals heterostructure microcavity}, series = {Physical Review Letters}, journal = {Physical Review Letters}, edition = {accepted version}, issn = {1079-7114}, doi = {10.1103/PhysRevLett.128.087401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351303}, year = {2022}, abstract = {Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe\(_2\) van-der-Waals heterostructure at room temperature. Our approach reveals a rich multi-branch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs.}, language = {en} } @article{OPUS4-22694, title = {FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2}, series = {European Physical Journal - Special Topics}, volume = {228}, journal = {European Physical Journal - Special Topics}, number = {2}, organization = {The FCC Collaboration}, doi = {10.1140/epjst/e2019-900045-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226947}, pages = {261-623}, year = {2019}, abstract = {In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today's technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.}, language = {en} } @article{OPUS4-22693, title = {FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1}, series = {European Physical Journal C}, volume = {79}, journal = {European Physical Journal C}, number = {474}, organization = {The FCC Collaboration}, doi = {10.1140/epjc/s10052-019-6904-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226938}, pages = {1-161}, year = {2019}, abstract = {We review the physics opportunities of the Future Circular Collider, covering its e(+)e(-), pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.}, language = {en} } @article{OPUS4-22692, title = {HE-LHC: The High-Energy Large Hadron Collider : Future Circular Collider Conceptual Design Report Volume 4}, series = {European Physical Journal - Special Topics}, volume = {228}, journal = {European Physical Journal - Special Topics}, number = {5}, organization = {The FCC Collaboration}, doi = {10.1140/epjst/e2019-900088-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226928}, pages = {1109-1382}, year = {2019}, abstract = {In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.}, language = {en} } @article{OPUS4-22691, title = {FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3}, series = {European Physical Journal - Special Topics}, volume = {228}, journal = {European Physical Journal - Special Topics}, organization = {The FCC Collaboration}, doi = {10.1140/epjst/e2019-900087-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226917}, pages = {755-1107}, year = {2019}, abstract = {In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.}, language = {en} } @article{OPUS4-22690, title = {Search for diboson resonances in hadronic final states in 139 fb\(^{-1}\) of \(pp\) collisions at √\(s\)=13 TeV with the ATLAS detector}, series = {Journal of High Energy Physics}, volume = {09}, journal = {Journal of High Energy Physics}, number = {91}, organization = {The ATLAS Collaboration}, doi = {10.1007/JHEP09(2019)091}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226905}, pages = {1-42}, year = {2019}, abstract = {Narrow resonances decaying into WW, WZ or ZZ boson pairs are searched for in 139 fb(-1) of proton-proton collision data at a centre-of-mass energy of root s = 13TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted W or Z boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95\% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons.}, language = {en} } @phdthesis{Pres2024, author = {Pres, Sebastian}, title = {Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy}, doi = {10.25972/OPUS-34824}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348242}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Plasmonic nanostructures are considered promising candidates for essential components of integrated quantum technologies because of their ability to efficiently localize broad-band electromagnetic fields on the nanoscale. The resulting local near field can be understood as a spatial superposition of spectrally different plasmon-polariton modes due to the spectrally broad optical excitation, and thus can be described as a classical wave packet. Since plasmon polaritons, in turn, can transmit and receive non-classical light states, the exciting question arises to what extent they have to be described as quantum mechanical wave packets, i.e. as a superposition of different quantum states. But how to probe, characterize and eventually manipulate the quantum state of such plasmon polaritons? Up to now, probing at room temperatures relied completely on analyzing quantum optical properties of the corresponding in-going and out-going far-field photon modes. However, these methods so far only allow a rather indirect investigation of the plasmon-polariton quantum state by means of transfer into photons. Moreover, these indirect methods lack spatial resolution and therefore do not provide on-site access to the plasmon-polariton quantum state. However, since the spectroscopic method of coherent two-dimensional (2D) nanoscopy offers the capability to follow the plasmon- polariton quantum state both in Hilbert space and in space and time domain a complete characterization of the plasmon polariton is possible. In this thesis a versatile coherent 2D nanoscopy setup is presented combining spectral tunability and femtosecond time resolution with spatial resolution on the nanometer scale due to the detection of optically excited nonlinear emitted electrons via photoemission electron microscopy (PEEM). Optical excitation by amplitude- and phase-shaped, systematically-modified and interferometric-stable multipulse sequences is realized, and characterized via Fourier-transform spectral interferometry (FTSI). This linear technique enables efficient data acquisition in parallel to a simultaneously performed experiment. The full electric-field reconstruction of every generated multipulse sequence is used to analyze the effect of non-ideal pulse sequences on the two-dimensional spectral data of population-based multidimensional spectroscopy methods like, e.g., the coherent 2D nanoscopy applied in this thesis. Investigation of the spatially-resolved nonlinear electron emission yield from plasmonic gold nanoresonators by coherent 2D nanoscopy requires a quasi-particle treatment of the addressed plasmon-polariton mode and development of a quantum model to adequately describe the plasmon-assisted multi-quantum electron emission from nanostructures. Good agreement between simulated and experimental data enables to connect certain spectral features to superpositions of non-adjacent plasmon-polariton quantum states, i.e, non-adjacent occupation-number states of the underlying quantized, harmonic oscillator, thus direct probing of the plasmon-polariton quantum wave packet at the location of the nanostructure. This is a necessary step to locally control and manipulate the plasmon-polariton quantum state and thus of general interest for the realization of nanoscale quantum optical devices.}, subject = {Coherent Multidimensional Spectroscopy}, language = {en} } @article{OPUS4-22681, title = {Identification of boosted Higgs bosons decaying into \(b\)-quark pairs with the ATLAS detector at 13 TeV}, series = {European Physical Journal C}, volume = {79}, journal = {European Physical Journal C}, number = {836}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-019-7335-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226812}, pages = {1-38}, year = {2019}, abstract = {This paper describes a study of techniques for identifying Higgs bosons at high transverse momenta decaying into bottom-quark pairs, H -> b (b) over bar, for proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy root s = 13 TeV. These decays are reconstructed from calorimeter jets found with the anti-k(t) R = 1.0 jet algorithm. To tag Higgs bosons, a combination of requirements is used: b-tagging of R = 0.2 track-jets matched to the large-R calorimeter jet, and requirements on the jet mass and other jet substructure variables. The Higgs boson tagging efficiency and corresponding multijet and hadronic top-quark background rejections are evaluated using Monte Carlo simulation. Several benchmark tagging selections are defined for different signal efficiency targets. The modelling of the relevant input distributions used to tag Higgs bosons is studied in 36 fb(-1) of data collected in 2015 and 2016 using g -> b (b) over bar and Z(-> b (b) over bar)gamma event selections in data. Both processes are found to be well modelled within the statistical and systematic uncertainties.}, language = {en} } @article{OPUS4-22682, title = {Measurement of the inclusive cross-section for the production of jets in association with a \(Z\) boson in proton-proton collisions at 8 TeV using the ATLAS detector}, series = {European Physical Journal C}, volume = {79}, journal = {European Physical Journal C}, number = {847}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-019-7321-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226821}, pages = {1-47}, year = {2019}, abstract = {The inclusive cross-section for jet production in association with a Z boson decaying into an electronpositron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb(-1) of root s = 8 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations.}, language = {en} } @article{OPUS4-22685, title = {Measurement of the cross-section and charge asymmetry of W bosons produced in proton-proton collisions at √\(s\)=8 TeV with the ATLAS detector}, series = {European Physical Journal C}, volume = {79}, journal = {European Physical Journal C}, number = {760}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-019-7199-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226850}, pages = {1-25}, year = {2019}, abstract = {This paper presents measurements of the W+->mu+nu and W-->mu-nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2fb(-1). The precision of the cross-section measurements varies between 0.8 and 1.5\% as a function of the pseudorapidity, excluding the 1.9\% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.}, language = {en} } @article{OPUS4-22688, title = {Measurement of distributions sensitive to the underlying event in inclusive Z boson production in \(pp\) collisions at √\(s\)=13 TeV with the ATLAS detector}, series = {European Physical Journal C}, volume = {79}, journal = {European Physical Journal C}, number = {666}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-019-7162-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226883}, pages = {1-31}, year = {2019}, abstract = {This paper presents measurements of charged-particle distributions sensitive to the properties of the underlying event in events containing a Z boson decaying into a muon pair. The data were obtained using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 13 TeV with an integrated luminosity of 3.2 fb(-1). Distributions of the charged-particle multiplicity and of the charged-particle transverse momentum are measured in regions of the azimuth defined relative to the Z boson direction. The measured distributions are compared with the predictions of various Monte Carlo generators which implement different underyling event models. The Monte Carlo model predictions qualitatively describe the data well, but with some significant discrepancies.}, language = {en} } @article{OPUS4-22689, title = {Observation of Light-by-Light Scattering in Ultraperipheral Pb + Pb Collisions with the ATLAS Detector}, series = {Physical Review Letters}, volume = {123}, journal = {Physical Review Letters}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevLett.123.052001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226892}, pages = {1-21}, year = {2019}, abstract = {This Letter describes the observation of the light-by-light scattering process, gamma gamma -> gamma gamma, in Pb + Pb collisions at root S-NN = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb(-1), collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy E-T(gamma) > 3 GeV and pseudorapidity vertical bar eta(gamma)vertical bar < 2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 +/- 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 +/- 13(stat) +/- 7(syst) +/- 3(lumi) nb.}, language = {en} } @article{OPUS4-22683, title = {Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from \(pp\) collisions at √\(s\)=13 TeV with the ATLAS detector}, series = {Physical Review D}, volume = {100}, journal = {Physical Review D}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevD.100.052013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226835}, pages = {1-29}, year = {2019}, abstract = {A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb(-1) of proton-proton collisions at root s = 13 TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for pp -> W'-> lv are extracted (l = e or mu). These vary between 1.3 pb and 0.05 tb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95\% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model W boson. Cross-section limits are also provided for resonances with several fixed Gamma/m values in the range between 1\% and 15\%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) ph and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.}, language = {en} } @phdthesis{Andelovic2024, author = {Andelovic, Kristina}, title = {Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models}, doi = {10.25972/OPUS-30360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly - at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models - two parameters highly influencing plaque development and progression - there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research.}, subject = {H{\"a}modynamik}, language = {en} } @article{OPUS4-22687, title = {Search for electroweak diboson production in association with a high-mass dijet system in semileptonic final states in \(pp\) collisions at √\(s\) =13 TeV with the ATLAS detector}, series = {Physical Review D}, volume = {100}, journal = {Physical Review D}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevD.100.032007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226877}, pages = {36}, year = {2019}, abstract = {This paper reports on a search for electroweak diboson (WW/WZ/ZZ) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of N root s = 13 TeV. The data, corresponding to an integrated luminosity of 35.5 fb(-1), were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying W/Z boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of WW/WZ/ZZ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be 45.1 +/- 8.6(stat.)(-14.6)(+15.9)(syst.) fb.}, language = {en} } @article{OPUS4-22686, title = {Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2}, series = {Journal of Instrumentation}, volume = {14}, journal = {Journal of Instrumentation}, organization = {The ATLAS Collaboration}, doi = {10.1088/1748-0221/14/09/P09011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226869}, pages = {1-34}, year = {2019}, abstract = {The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas facility. The algorithm output consists of a pair of correction constants per chamber which are applied to baseline calibrations, and determined to be valid for the entire ATLAS Run 2. The final single-hit spatial resolution, averaged over 1172 monitored drift tube chambers, is 81.7 +/- 2.2 mu m.}, language = {en} } @article{OPUS4-22684, title = {Search for high-mass dilepton resonances using 139 fb\(^{-1}\) of \(pp\) collision data collected at root \(s\)=13 TeV with the ATLAS detector}, series = {Physics Letters B}, volume = {796}, journal = {Physics Letters B}, organization = {The ATLAS Collaboration}, doi = {10.1016/j.physletb.2019.07.016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226844}, pages = {68-87}, year = {2019}, abstract = {A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-ofmass energy of root s = 13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb(-1). A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95\% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E-6-motivated Z(psi)' boson. Also presented are limits on Heavy Vector Triplet model couplings. (C) 2019 The Author. Published by Elsevier B.V.}, language = {en} } @article{OPUS4-34784, title = {Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in \(pp\) collisions at √\(s\) = 8 TeV using the ATLAS detector}, series = {Physics Letters B}, volume = {776}, journal = {Physics Letters B}, organization = {The ATLAS Collaboration}, doi = {10.1016/j.physletb.2017.11.054}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347841}, pages = {295-317}, year = {2018}, abstract = {This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb-1 . The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: |η γ | < 1.37 and 1.56 < |η γ | < 2.37. The measurement covers photon transverse energies 25 < Eγ T < 400 GeV and 25 < Eγ T < 350 GeV respectively for the two |η γ | regions. For each jet flavour, the ratio of the cross sections in the two |η γ | regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next- to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13\% and 66\%, while the central γ + b measurement exhibits the smallest uncertainty, ranging from 13\% to 27\%, which is comparable to the precision of the theoretical predictions.}, language = {en} } @article{OPUS4-22680, title = {Direct top-quark decay width measurement in the t(t)over-bar lepton+jets channel at root \(s\)=8 TeV with the ATLAS experiment}, series = {European Physical Journal C}, volume = {78}, journal = {European Physical Journal C}, number = {129}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-018-5595-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226805}, pages = {1-30}, year = {2018}, abstract = {This paper presents a direct measurement of the decay width of the top quark using t (t) over bar events in the lepton+jets final state. The data sample was collected by the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 8 TeV and corresponds to an integrated luminosity of 20.2 fb(-1). The decay width of the top quark is measured using a template fit to distributions of kinematic observables associated with the hadronically and semileptonically decaying top quarks. The result, Gamma(t) = 1.76 +/- 0.33 (stat.) (+0.79)(-0.68) (syst.) GeV for a top-quark mass of 172.5 GeV, is consistent with the prediction of the Standard Model.}, language = {en} } @article{OPUS4-22679, title = {Measurement of τ polarisation in \(Z/\)γ* -> τ τ decays in proton-proton collisions at root \(s\)=8 TeV with the ATLAS detector}, series = {European Physical Journal C}, volume = {78}, journal = {European Physical Journal C}, number = {163}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-018-5619-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226794}, pages = {1-30}, year = {2018}, abstract = {This paper presents a measurement of the polarisation of tau leptons produced in Z/gamma* -> tau tau decays which is performed with a dataset of proton-proton collisions at root s = 8 TeV, corresponding to an integrated luminosity of 20.2 fb(-1) recorded with the ATLAS detector at the LHC in 2012. The Z/gamma* -> tau tau decays are reconstructed from a hadronically decaying tau lepton with a single charged particle in the final state, accompanied by a tau lepton that decays leptonically. The tau polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic tau decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The tau polarisation extracted over the full phase space within the Z/gamma* mass range of 66 < mZ/gamma* < 116GeVis found to be P-tau = -0.14 +/- 0.02(stat)+/- 0.04(syst). It is in agreement with the Standard Model prediction of Pt = -0.1517 +/- 0.0019, which is obtained from the ALP-GEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA tau decay library.}, language = {en} } @article{OPUS4-34679, title = {Constraints on off-shell Higgs boson production and the Higgs boson total width in \(ZZ\) → 4l and \(ZZ\) → 2l2ν final states with the ATLAS detector}, series = {Physics Letters B}, volume = {786}, journal = {Physics Letters B}, organization = {The ATLAS Collaboration}, doi = {10.1016/j.physletb.2018.09.048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346791}, pages = {223-244}, year = {2018}, abstract = {A measurement of off-shell Higgs boson production in the ZZ -> 4l and ZZ -> 2l2v decay channels, where stands for either an electron or a muon, is performed using data from proton-proton collisions at a centre-of-mass energy of root s = 13 TeV. The data were collected by the ATLAS experiment in 2015 and 2016 at the Large Hadron Collider, and they correspond to an integrated luminosity of 36.1 fb(-1). An observed (expected) upper limit on the off-shell Higgs signal strength, defined as the event yield normalised to the Standard Model prediction, of 3.8 (3.4) is obtained at 95\% confidence level (CL). Assuming the ratio of the Higgs boson couplings to the Standard Model predictions is independent of the momentum transfer of the Higgs production mechanism considered in the analysis, a combination with the on-shell signal-strength measurements yields an observed (expected) 95\% CL upper limit on the Higgs boson total width of 14.4 (15.2) MeV.}, language = {en} } @article{OPUS4-22678, title = {Search for \({WW/WZ}\) resonance production in \(lvqq\) final states in \(pp\) collisions at root \(s\)=13 TeV with the ATLAS detector}, series = {Journal of High Energy Physics}, volume = {42}, journal = {Journal of High Energy Physics}, organization = {The ATLAS Collaboration}, doi = {10.1007/JHEP03(2018)042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226787}, pages = {1-44}, year = {2018}, abstract = {A search is conducted for new resonances decaying into a WW or WZ boson pair, where one W boson decays leptonically and the other W or Z boson decays hadronically. It is based on proton-proton collision data with an integrated luminosity of 36.1 fb(-1) collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of root s = 13 TeV in 2015 and 2016. The search is sensitive to diboson resonance production via vector-boson fusion as well as quark-antiquark annihilation and gluon-gluon fusion mechanisms. No significant excess of events is observed with respect to the Standard Model backgrounds. Several benchmark models are used to interpret the results. Limits on the production cross section are set for a new narrow scalar resonance, a new heavy vector-boson and a spin-2 Kaluza-Klein graviton.}, language = {en} } @article{OPUS4-22673, title = {Measurements of Higgs boson properties in the diphoton decay channel with 36 fb\(^{-1}\) of \(pp\) collision data at root \(s\)=13 TeV with the ATLAS detector}, series = {Physical Review D}, volume = {98}, journal = {Physical Review D}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevD.98.052005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226733}, pages = {1-87}, year = {2018}, abstract = {Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb(-1) of proton-proton collision data recorded at root s = 13 TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vector-boson fusion, and in association with a vector boson or a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of 0.99 +/- 0.14 improves on the precision of the ATLAS measurement at root s = 7 and 8 TeV by a factor of two. Measurements of gluon-gluon fusion and vector-boson fusion productions yield signal strengths compatible with the Standard Model prediction. Measurements of simplified template cross sections, designed to quantify the different Higgs boson production processes in specific regions of phase space, are reported. The cross section for the production of the Higgs boson decaying to two isolated photons in a fiducial region closely matching the experimental selection of the photons is measured to be 55 +/- 10 fb, which is in good agreement with the Standard Model prediction of 64 +/- 2 fb. Furthermore, cross sections in fiducial regions enriched in Higgs boson production in vector-boson fusion or in association with large missing transverse momentum, leptons or top-quark pairs are reported. Differential and double-differential measurements are performed for several variables related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with a Higgs boson. These differential cross sections are sensitive to higher order QCD corrections and properties of the Higgs boson, such as its spin and CP quantum numbers. No significant deviations from a wide array of Standard Model predictions are observed. Finally, the strength and tensor structure of the Higgs boson interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions. No significant new physics contributions are observed.}, language = {en} } @article{OPUS4-22677, title = {Measurements of t(t)over-bar differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in \(pp\) collisions at root \(s\)=13 Te V using the ATLAS detector}, series = {Physical Review D}, volume = {98}, journal = {Physical Review D}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevD.98.012003}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226771}, pages = {39}, year = {2018}, abstract = {Measurements are made of differential cross-sections of highly boosted pair-produced top quarks as a function of top-quark and t (t) over bar system kinematic observables using proton-proton collisions at a center-of-mass energy of root s = 13 TeV. The data set corresponds to an integrated luminosity of 36.1 fb(-1), recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Events with two large-radius jets in the final state, one with transverse momentum p(T) > 500 GeV and a second with p(T) > 350 GeV, are used for the measurement. The top-quark candidates are separated from the multijet background using jet substructure information and association with a b-tagged jet. The measured spectra are corrected for detector effects to a particle-level fiducial phase space and a parton-level limited phase space, and are compared to several Monte Carlo simulations by means of calculated chi(2) values. The cross-section for t (t) over bar production in the fiducial phase-space region is 292 +/- 7(stat) +/- 71(syst) tb, to be compared to the theoretical prediction of 384 +/- 36 fb.}, language = {en} } @article{OPUS4-22675, title = {Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV \(pp\) collisions with the ATLAS detector}, series = {Journal of High Energy Physics}, volume = {09}, journal = {Journal of High Energy Physics}, organization = {The ATLAS Collaboration}, doi = {10.1007/JHEP09(2018)050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226752}, pages = {1-43}, year = {2018}, abstract = {A search for supersymmetric partners of top quarks decaying as (t) over tilde (1) -> c (chi) over tilde (0)(1)and supersymmetric partners of charm quarks decaying as (c) over tilde (1) -> c (chi) over tilde (0)(1) where (chi) over tilde (0)(1) is the lightest neutralino, is presented. The search uses 36.1 fb(-1) pp collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100\% branching ratio to c (chi) over tilde (0)(1), top and charm squarks with masses up to 850 GeV are excluded at 95\% confidence level for a massless lightest neutralino. For m (t) over tilde (1,(c) over tilde1) - m((chi) over tilde 10)< 100 GeV, top and charm squark masses up to 500 GeV are excluded.}, language = {en} } @article{OPUS4-22672, title = {Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in \(pp\) Collisions at root \(s\)=13 TeV}, series = {Physical Review Letters}, volume = {121}, journal = {Physical Review Letters}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevLett.121.081801}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226725}, pages = {1-20}, year = {2018}, abstract = {Searches for dijet resonances with sub-TeV masses using the ATLAS detector at the Large Hadron Collider can be statistically limited by the bandwidth available to inclusive single-jet triggers, whose data-collection rates at low transverse momentum are much lower than the rate from standard model multijet production. This Letter describes a new search for dijet resonances where this limitation is overcome by recording only the event information calculated by the jet trigger algorithms, thereby allowing much higher event rates with reduced storage needs. The search targets low-mass dijet resonances in the range 450-1800 GeV. The analyzed data set has an integrated luminosity of up to 29.3 fb(-1) and was recorded at a center-of-mass energy of 13 TeV. No excesses are found; limits are set on Gaussian-shaped contributions to the dijet mass distribution from new particles and on a model of dark-matter particles with axial-vector couplings to quarks.}, language = {en} } @article{OPUS4-22603, title = {Measurement of colour flow using jet-pull observables in t(t)over-bar events with the ATLAS experiment at root \(s\)=13TeV}, series = {European Physical Journal C}, volume = {78}, journal = {European Physical Journal C}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-018-6290-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226039}, pages = {1-31}, year = {2018}, abstract = {Previous studies have shown that weighted angular moments derived from jet constituents encode the colour connections between partons that seed the jets. This paper presents measurements of two such distributions, the jet-pull angle and jet-pull magnitude, both of which are derived from the jet-pull angular moment. The measurement is performed in delivered by the Large Hadron Collider. The observables are measured for two dijet systems, corresponding to the colour-connected daughters of the Wboson and the two b-jets from the top-quark decays, which are not expected to be colour connected. To allow the comparison of the measured distributions to colour model predictions, the measured distributions are unfolded to particle level, after correcting for experimental effects introduced by the detector. While good agreement can be found for some combinations of predictions and observables, none of the predictions describes the data well across all observables.}, language = {en} } @article{OPUS4-22605, title = {Prompt and non-prompt \(J\)/\(ψ\) and \(ψ\)(2S) suppression at high transverse momentum in 5.02 TeV Pb+Pb collisions with the ATLAS experiment}, series = {European Physical Journal C}, volume = {78}, journal = {European Physical Journal C}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-018-6219-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226056}, pages = {1-28}, year = {2018}, abstract = {A measurement of J/psi and psi(2S) production is presented. It is based on a data sample from Pb+Pb collisions at root s(NN) = 5.02 TeV and pp collisions at root s = 5.02 TeV recorded by the ATLAS detector at the LHC in 2015, corresponding to an integrated luminosity of 0.42 nb(-1) and 25 pb(-1) in Pb+Pb and pp, respectively. The measurements of per-event yields, nuclear modification factors, and non-prompt fractions are performed in the dimuon decay channel for 9 < p(T)(mu mu) < 40 GeV in dimuon transverse momentum, and -2 < y(mu mu) < 2 in rapidity. Strong suppression is found in Pb+Pb collisions for both prompt and non-prompt J/psi, increasing with event centrality. The suppression of prompt psi(2S) is observed to be stronger than that of J/psi, while the suppression of non-prompt psi(2S) is equal to that of the non-prompt J/psi within uncertainties, consistent with the expectation that both arise from b-quarks propagating through the medium. Despite prompt and non-prompt J/psi arising from different mechanisms, the dependence of their nuclear modification factors on centrality is found to be quite similar.}, language = {en} } @article{OPUS4-22610, title = {Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in root \(s\)=13 TeV \(pp\) collisions with the ATLAS detector}, series = {European Physical Journal C}, volume = {78}, journal = {European Physical Journal C}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-018-6081-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226109}, pages = {1-38}, year = {2018}, abstract = {A search for new phenomena in final states containing an e(+)e(-) or m(+)m(-) pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton-proton collision data with an integrated luminosity of 36.1 fb(-1), collected during 2015 and 2016 at a centre of-mass energy Os = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an e(+)e(-) or m(+)m(-) pair and the lightest neutralino ((c) over tilde (0)(1)) via one of two next-to-lightest neutralino ((c) over tilde (0)(2)) decay mechanisms: (c) over tilde (0)(2) Z (c) over tilde (0)(1), where the Z boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the Z boson mass; and (c) over tilde (0)(2) l(+)1(-) (c) over tilde (0)(1) with no intermediate l(+)l(-) resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 and 1.3 TeV at 95\% confidence level, respectively.}, language = {en} } @article{OPUS4-22671, title = {Measurement of differential cross-sections of a single top quark produced in association with a \(W\) boson at root \(s\)=13TeV with ATLAS}, series = {European Physical Journal C}, volume = {78}, journal = {European Physical Journal C}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-018-5649-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226718}, pages = {1-29}, year = {2018}, abstract = {The differential cross-section for the production of a W boson in association with a top quark is measured for several particle-level observables. The measurements are performed using 36.1 fb(-1) of pp collision data collected with the ATLAS detector at the LHC in 2015 and 2016. Differential cross-sections are measured in a fiducial phase space defined by the presence of two charged leptons and exactly one jet matched to a b-hadron, and are normalised with the fiducial cross-section. Results are found to be in good agreement with predictions from several Monte Carlo event generators.}, language = {en} } @article{OPUS4-22652, title = {Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment}, series = {Physical Review Letters}, volume = {120}, journal = {Physical Review Letters}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevLett.120.211802}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226523}, pages = {1-20}, year = {2018}, abstract = {A direct search for the standard model Higgs boson decaying to a pair of charm quarks is presented. Associated production of the Higgs and Z bosons, in the decay mode ZH -> l(+)l(-) cc is studied. A data set with an integrated luminosity of 36.1 fb(-1) of pp collisions at root s = 13TeV recorded by the ATLAS experiment at the LHC is used. The H -> cc signature is identified using charm-tagging algorithms. The observed (expected) upper limit on sigma(pp -> ZH) x B(H -> cc) is 2.7 (3.9(-2.1)(+2.1) ) pb at the 95\% confidence level for a Higgs boson mass of 125 GeV, while the standard model value is 26 fb.}, language = {en} } @article{OPUS4-22653, title = {Search for a Structure in the B-s(0) π\(^{±}\) Invariant Mass Spectrum with the ATLAS Experiment}, series = {Physical Review Letters}, volume = {120}, journal = {Physical Review Letters}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevLett.120.202007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226539}, pages = {1-19}, year = {2018}, abstract = {A search for the narrow structure, X(5568), reported by the DO Collaboration in the decay sequence X -> B-s(0) pi +/-, B-s(0) -> J/psi phi, is presented. The analysis is based on a data sample recorded with the ATLAS detector at the LHC corresponding to 4.9 fb(-1) of pp collisions at 7 TeV and 19.5 fb(-1)at 8 TeV. No significant signal was found. Upper limits on the number of signal events, with properties corresponding to those reported by DO, and on the A production rate relative to B-s(0) mesons, rho x, were determined at 95\% confidence level. The results are N(X) < 382 and rho x <0.015 for B-s(0) mesons with transverse momenta above 10 GeV and N(X) < 356 and rho(x) < 0.016 for transverse momenta above 15 GeV. Limits are also set for potential B-s(0) pi(+) resonances in the mass range 5550 to 5700 MeV.}, language = {en} } @article{OPUS4-22655, title = {Search for High-Mass Resonances Decaying to τν in \(pp\) Collisions at root \(s\)=13 TeV with the ATLAS Detector}, series = {Physical Review Letters}, volume = {120}, journal = {Physical Review Letters}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevLett.120.161802}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226556}, pages = {1-20}, year = {2018}, abstract = {A search for high-mass resonances decaying to tau nu using proton-proton collisions at root s = 13 TeV produced by the Large Hadron Collider is presented. Only tau-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb(-1). No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible tau nu production cross section. Heavy W' bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2-3.8 TeV depending on the coupling in the nonuniversal Go(221) model are excluded at the 95\% credibility level.}, language = {en} } @phdthesis{Baumgaertner2023, author = {Baumg{\"a}rtner, Kiana Jasmin}, title = {Spectroscopic Investigation of the Transient Interplay at Hybrid Molecule-Substrate Interfaces after Photoexcitation: Ultrafast Electronic and Atomic Rearrangements}, doi = {10.25972/OPUS-33053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis is aimed at establishing modalities of time-resolved photoelectron spectroscopy (tr-PES) conducted at a free-electron laser (FEL) source and at a high harmonic generation (HHG) source for imaging the motion of atoms, charge and energy at photoexcited hybrid organic/inorganic interfaces. Transfer of charge and energy across interfaces lies at the heart of surface science and device physics and involves a complex interplay between the motion of electrons and atoms. At hybrid organic/inorganic interfaces involving planar molecules, such as pentacene and copper(II)-phthalocyanine (CuPc), atomic motions in out-of-plane direction are particularly apparent. Such hybrid interfaces are of importance to, e.g., next-generation functional devices, smart catalytic surfaces and molecular machines. In this work, two hybrid interfaces - pentacene atop Ag(110) and copper(II)-phthalocyanine (CuPc) atop titanium disulfide (1T-TiSe2) - are characterized by means of modalities of tr-PES. The experiments were conducted at a HHG source and at the FEL source FLASH at Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany). Both sources provide photon pulses with temporal widths of ∼ 100 fs and thus allow for resolving the non-equilibrium dynamics at hybrid interfaces involving both electronic and atomic motion on their intrinsic time scales. While the photon energy at this HHG source is limited to the UV-range, photon energies can be tuned from the UV-range to the soft x-ray-range at FLASH. With this increased energy range, not only macroscopic electronic information can be accessed from the sample's valence and conduction states, but also site-specific structural and chemical information encoded in the core-level signatures becomes accessible. Here, the combined information from the valence band and core-level dynamics is obtained by performing time- and angle-resolved photoelectron spectroscopy (tr-ARPES) in the UV-range and subsequently performing time-resolved x-ray photoelectron spectroscopy (tr-XPS) and time-resolved photoelectron diffraction (tr-XPD) in the soft x-ray regime in the same experimental setup. The sample's bandstructure in energy-momentum space and time is captured by a time-of-flight momentum microscope with femtosecond temporal and sub-{\AA}ngstr{\"o}m spatial resolutions. In the investigated systems, out-of-equilibrium dynamics are traced that are connected to the transfer of charge and energy across the hybrid interfaces. While energetic shifts and complementary population dynamics are observed for molecular and substrate states, the shapes of involved molecular orbitals change in energy-momentum space on a subpicosecond time scale. In combination with theory support, these changes are attributed to iiiatomic reorganizations at the interface and transient molecular structures are reconstructed with sub-{\AA}ngstr{\"o}m precision. Unique to the material combination of CuPc/TiSe2, a structural rearrangement on the macroscopic scale is traced simultaneously: ∼ 60 \% of the molecules undergo a concerted, unidirectional in-plane rotation. This surprising observation and its origin are detailed in this thesis and connected to a particularly efficient charge transfer across the CuPc/TiSe2 interface, resulting in a charging of ∼ 45 \% of CuPc molecules.}, subject = {ARPES}, language = {en} } @article{OPUS4-22601, title = {Search for pair production of Higgsinos in final states with at least three \(b\)-tagged jets in root \(s\)=13 TeV \(pp\) collisions using the ATLAS detector}, series = {Physical Review D}, volume = {98}, journal = {Physical Review D}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevD.98.092002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226010}, pages = {1-34}, year = {2018}, abstract = {A search for pair production of the supersymmetric partners of the Higgs boson (higgsinos (H) over tilde) in gaugemediated scenarios is reported. Each higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed to maximize sensitivity. The two analyses utilize LHC pp collision data at a center-of-mass energy root s = 13 TeV, the former with an integrated luminosity of 36.1 fb(-1) and the latter with 24.3 fb(-1), collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing missing transverse momentum and several energetic jets, at least three of which must be identified as b-quark jets. No significant excess is found above the predicted background. Limits on the cross section are set as a function of the mass of the <(Hover tilde> in simplified models assuming production via mass-degenerate higgsinos decaying to a Higgs boson and a gravitino. Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95\% confidence level. Interpretations of the limits in terms of the branching ratio of the higgsino to a Z boson or a Higgs boson are also presented, and a 45\% branching ratio to a Higgs boson is excluded for m(<(Hover tilde>) approximate to 400 GeV.}, language = {en} } @article{OPUS4-22607, title = {Search for heavy resonances decaying to a photon and a hadronically decaying \({Z/W/H}\) boson in \(pp\) collisions at root \(s\)=13 TeV with the ATLAS detector}, series = {Physical Review D}, volume = {98}, journal = {Physical Review D}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevD.98.032015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226079}, pages = {1-29}, year = {2018}, abstract = {Many extensions of the Standard Model predict new resonances decaying to a Z, W, or Higgs boson and a photon. This paper presents a search for such resonances produced in pp collisions at root s = 13 TeV using a data set with an integrated luminosity of 36.1 fb(-1) collected by the ATLAS detector at the LHC. The Z/W/H bosons are identified through their decays to hadrons. The data are found to be consistent with the Standard Model expectation in the entire investigated mass range. Upper limits are set on the production cross section times branching fraction for resonance decays to Z.W + gamma in the mass range from 1.0 to 6.8 TeV and for the first time into H + gamma in the mass range from 1.0 to 3.0 TeV.}, language = {en} } @article{OPUS4-22608, title = {Search for top squarks decaying to tau sleptons in \(pp\) collisions at root \(s\)=13 TeV with the ATLAS detector}, series = {Physical Review D}, volume = {98}, journal = {Physical Review D}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevD.98.032008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226080}, pages = {1-33}, year = {2018}, abstract = {A search for direct pair production of top squarks in final states with two tau leptons, b-jets, and missing transverse momentum is presented. The analysis is based on proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1) recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. Two exclusive channels with either two hadronically decaying tau leptons or one hadronically and one leptonically decaying tau lepton are considered. No significant deviation from the Standard Model predictions is observed in the data. The analysis results are interpreted in terms of model-independent limits and used to derive exclusion limits on the masses of the top squark (t) over tilde (1) and the tau slepton (tau) over tilde (1) in a simplified model of supersymmetry with a nearly massless gravitino. In this model, masses up to m((t) over tilde (1)) = 1.16 TeV and m ((tau) over tilde (1)) = 1.00 TeV are excluded at 95\% confidence level.}, language = {en} } @article{OPUS4-22651, title = {Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV \(pp\) collisions with the ATLAS detector}, series = {Physical Review D}, volume = {97}, journal = {Physical Review D}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevD.97.092006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226510}, pages = {1-32}, year = {2018}, abstract = {A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1) recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95\% confidence-level upper limits of between 0.083 and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs.}, language = {en} } @article{OPUS4-22654, title = {Search for the standard model Higgs boson produced in association with top quarks and decaying into a b(b)overbar pair in \(pp\) collisions at root \(s\)=13 TeV with the ATLAS detector}, series = {Physical Review D}, volume = {97}, journal = {Physical Review D}, number = {7}, organization = {The ATLAS Collaboration}, doi = {10.1103/PhysRevD.97.072016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226545}, pages = {1-44}, year = {2018}, abstract = {A search for the standard model Higgs boson produced in association with a top-quark pair, t(t)overbarH, is presented. The analysis uses 36.1 fb(-1) of pp collision data at root s = 13 TeV collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search targets the H -> b(b)overbar decay mode. The selected events contain either one or two electrons or muons from the top-quark decays, and are then categorized according to the number of jets and how likely these are to contain b-hadrons. Multivariate techniques are used to discriminate between signal and background events, the latter being dominated by ft + jets production. For a Higgs boson mass of 125 GeV, the ratio of the measured t(t)overbarH signal cross-section to the standard model expectation is found to be mu = 0.84(-0.61)(+0.64). A value of mu greater than 2.0 is excluded at 95\% confidence level (C.L.) while the expected upper limit is mu < 1.2 in the absence of a t(t)overbarH signal.}, language = {en} }