@article{YangRajeeveRudeletal.2019, author = {Yang, Manli and Rajeeve, Karthika and Rudel, Thomas and Dandekar, Thomas}, title = {Comprehensive Flux Modeling of Chlamydia trachomatis Proteome and qRT-PCR Data Indicate Biphasic Metabolic Differences Between Elementary Bodies and Reticulate Bodies During Infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {2350}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.02350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189434}, year = {2019}, abstract = {Metabolic adaptation to the host cell is important for obligate intracellular pathogens such as Chlamydia trachomatis (Ct). Here we infer the flux differences for Ct from proteome and qRT-PCR data by comprehensive pathway modeling. We compare the comparatively inert infectious elementary body (EB) and the active replicative reticulate body (RB) systematically using a genome-scale metabolic model with 321 metabolites and 277 reactions. This did yield 84 extreme pathways based on a published proteomics dataset at three different time points of infection. Validation of predictions was done by quantitative RT-PCR of enzyme mRNA expression at three time points. Ct's major active pathways are glycolysis, gluconeogenesis, glycerol-phospholipid (GPL) biosynthesis (support from host acetyl-CoA) and pentose phosphate pathway (PPP), while its incomplete TCA and fatty acid biosynthesis are less active. The modeled metabolic pathways are much more active in RB than in EB. Our in silico model suggests that EB and RB utilize folate to generate NAD(P)H using independent pathways. The only low metabolic flux inferred for EB involves mainly carbohydrate metabolism. RB utilizes energy -rich compounds to generate ATP in nucleic acid metabolism. Validation data for the modeling include proteomics experiments (model basis) as well as qRT-PCR confirmation of selected metabolic enzyme mRNA expression differences. The metabolic modeling is made fully available here. Its detailed insights and models on Ct metabolic adaptations during infection are a useful modeling basis for future studies.}, language = {en} } @article{WolfKuonenDandekaretal.2015, author = {Wolf, Beat and Kuonen, Pierre and Dandekar, Thomas and Atlan, David}, title = {DNAseq workflow in a diagnostic context and an example of a user friendly implementation}, series = {BioMed Research International}, journal = {BioMed Research International}, number = {403497}, doi = {10.1155/2015/403497}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144527}, year = {2015}, abstract = {Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing.}, language = {en} } @article{WirthGlushakovaScheuermayeretal.2014, author = {Wirth, Christine C. and Glushakova, Svetlana and Scheuermayer, Matthias and Repnik, Urska and Garg, Swatl and Schaack, Dominik and Kachman, Marika M. and Weißbach, Tim and Zimmerberg, Joshua and Dandekar, Thomas and Griffiths, Gareth and Chitnis, Chetan E. and Singh, Shallja and Fischer, Rainer and Pradel, Gabriele}, title = {Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes}, series = {Cellular Microbiology}, volume = {16}, journal = {Cellular Microbiology}, number = {5}, doi = {10.1111/cmi.12288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120895}, pages = {709-33}, year = {2014}, abstract = {Egress of malaria parasites from the host cell requires the concerted rupture of its enveloping membranes. Hence, we investigated the role of the plasmodial perforin-like protein PPLP2 in the egress of Plasmodium falciparum from erythrocytes. PPLP2 is expressed in blood stage schizonts and mature gametocytes. The protein localizes in vesicular structures, which in activated gametocytes discharge PPLP2 in a calcium-dependent manner. PPLP2 comprises a MACPF domain and recombinant PPLP2 has haemolytic activities towards erythrocytes. PPLP2-deficient [PPLP2(-)] merozoites show normal egress dynamics during the erythrocytic replication cycle, but activated PPLP2(-) gametocytes were unable to leave erythrocytes and stayed trapped within these cells. While the parasitophorous vacuole membrane ruptured normally, the activated PPLP2(-) gametocytes were unable to permeabilize the erythrocyte membrane and to release the erythrocyte cytoplasm. In consequence, transmission of PPLP2(-) parasites to the Anopheles vector was reduced. Pore-forming equinatoxin II rescued both PPLP2(-) gametocyte exflagellation and parasite transmission. The pore sealant Tetronic 90R4, on the other hand, caused trapping of activated wild-type gametocytes within the enveloping erythrocytes, thus mimicking the PPLP2(-) loss-of-function phenotype. We propose that the haemolytic activity of PPLP2 is essential for gametocyte egress due to permeabilization of the erythrocyte membrane and depletion of the erythrocyte cytoplasm.}, language = {en} } @article{WhisnantJuergesHennigetal.2020, author = {Whisnant, Adam W. and J{\"u}rges, Christopher S. and Hennig, Thomas and Wyler, Emanuel and Prusty, Bhupesh and Rutkowski, Andrzej J. and L'hernault, Anne and Djakovic, Lara and G{\"o}bel, Margarete and D{\"o}ring, Kristina and Menegatti, Jennifer and Antrobus, Robin and Matheson, Nicholas J. and K{\"u}nzig, Florian W. H. and Mastrobuoni, Guido and Bielow, Chris and Kempa, Stefan and Liang, Chunguang and Dandekar, Thomas and Zimmer, Ralf and Landthaler, Markus and Gr{\"a}sser, Friedrich and Lehner, Paul J. and Friedel, Caroline C. and Erhard, Florian and D{\"o}lken, Lars}, title = {Integrative functional genomics decodes herpes simplex virus 1}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-15992-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229884}, year = {2020}, abstract = {The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution. Here, using computational integration of multi-omics data, the authors provide a detailed transcriptome and translatome of herpes simplex virus 1 (HSV-1), including previously unidentified ORFs and N-terminal extensions. The study also provides a HSV-1 genome browser and should be a valuable resource for further research.}, language = {en} } @article{WangorschButtMarketal.2011, author = {Wangorsch, Gaby and Butt, Elke and Mark, Regina and Hubertus, Katharina and Geiger, J{\"o}rg and Dandekar, Thomas and Dittrich, Marcus}, title = {Time-resolved in silico modeling of fine-tuned cAMP signaling in platelets: feedback loops, titrated phosphorylations and pharmacological modulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69145}, year = {2011}, abstract = {Background: Hemostasis is a critical and active function of the blood mediated by platelets. Therefore, the prevention of pathological platelet aggregation is of great importance as well as of pharmaceutical and medical interest. Endogenous platelet inhibition is predominantly based on cyclic nucleotides (cAMP, cGMP) elevation and subsequent cyclic nucleotide-dependent protein kinase (PKA, PKG) activation. In turn, platelet phosphodiesterases (PDEs) and protein phosphatases counterbalance their activity. This main inhibitory pathway in human platelets is crucial for countervailing unwanted platelet activation. Consequently, the regulators of cyclic nucleotide signaling are of particular interest to pharmacology and therapeutics of atherothrombosis. Modeling of pharmacodynamics allows understanding this intricate signaling and supports the precise description of these pivotal targets for pharmacological modulation. Results: We modeled dynamically concentration-dependent responses of pathway effectors (inhibitors, activators, drug combinations) to cyclic nucleotide signaling as well as to downstream signaling events and verified resulting model predictions by experimental data. Experiments with various cAMP affecting compounds including antiplatelet drugs and their combinations revealed a high fidelity, fine-tuned cAMP signaling in platelets without crosstalk to the cGMP pathway. The model and the data provide evidence for two independent feedback loops: PKA, which is activated by elevated cAMP levels in the platelet, subsequently inhibits adenylyl cyclase (AC) but as well activates PDE3. By multi-experiment fitting, we established a comprehensive dynamic model with one predictive, optimized and validated set of parameters. Different pharmacological conditions (inhibition, activation, drug combinations, permanent and transient perturbations) are successfully tested and simulated, including statistical validation and sensitivity analysis. Downstream cyclic nucleotide signaling events target different phosphorylation sites for cAMP- and cGMP-dependent protein kinases (PKA, PKG) in the vasodilator-stimulated phosphoprotein (VASP). VASP phosphorylation as well as cAMP levels resulting from different drug strengths and combined stimulants were quantitatively modeled. These predictions were again experimentally validated. High sensitivity of the signaling pathway at low concentrations is involved in a fine-tuned balance as well as stable activation of this inhibitory cyclic nucleotide pathway. Conclusions: On the basis of experimental data, literature mining and database screening we established a dynamic in silico model of cyclic nucleotide signaling and probed its signaling sensitivity. Thoroughly validated, it successfully predicts drug combination effects on platelet function, including synergism, antagonism and regulatory loops.}, subject = {Vasodilatator-stimuliertes Phosphoprotein}, language = {en} } @article{VainshteinSanchezBrazmaetal.2010, author = {Vainshtein, Yevhen and Sanchez, Mayka and Brazma, Alvis and Hentze, Matthias W. and Dandekar, Thomas and Muckenthaler, Martina U.}, title = {The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67869}, year = {2010}, abstract = {Background: Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Results: The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls. Conclusions: ICEP is a stand-alone Windows application to obtain optimal data quality from custom-designed microarrays and is freely available here (see "Additional Files" section) and at: http://www.alice-dsl.net/evgeniy. vainshtein/ICEP/}, subject = {Microarray}, language = {en} } @article{TemmeFriebeSchmidtetal.2017, author = {Temme, Sebastian and Friebe, Daniela and Schmidt, Timo and Poschmann, Gereon and Hesse, Julia and Steckel, Bodo and St{\"u}hler, Kai and Kunz, Meik and Dandekar, Thomas and Ding, Zhaoping and Akhyari, Payam and Lichtenberg, Artur and Schrader, J{\"u}rgen}, title = {Genetic profiling and surface proteome analysis of human atrial stromal cells and rat ventricular epicardium-derived cells reveals novel insights into their cardiogenic potential}, series = {Stem Cell Research}, volume = {25}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2017.11.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172716}, pages = {183-190}, year = {2017}, abstract = {Epicardium-derived cells (EPDC) and atrial stromal cells (ASC) display cardio-regenerative potential, but the molecular details are still unexplored. Signals which induce activation, migration and differentiation of these cells are largely unknown. Here we have isolated rat ventricular EPDC and rat/human ASC and performed genetic and proteomic profiling. EPDC and ASC expressed epicardial/mesenchymal markers (WT-1, Tbx18, CD73,CD90, CD44, CD105), cardiac markers (Gata4, Tbx5, troponin T) and also contained phosphocreatine. We used cell surface biotinylation to isolate plasma membrane proteins of rEPDC and hASC, Nano-liquid chromatography with subsequent mass spectrometry and bioinformatics analysis identified 396 rat and 239 human plasma membrane proteins with 149 overlapping proteins. Functional GO-term analysis revealed several significantly enriched categories related to extracellular matrix (ECM), cell migration/differentiation, immunology or angiogenesis. We identified receptors for ephrin and growth factors (IGF, PDGF, EGF, anthrax toxin) known to be involved in cardiac repair and regeneration. Functional category enrichment identified clusters around integrins, PI3K/Akt-signaling and various cardiomyopathies. Our study indicates that EPDC and ASC have a similar molecular phenotype related to cardiac healing/regeneration. The cell surface proteome repository will help to further unravel the molecular details of their cardio-regenerative potential and their role in cardiac diseases.}, language = {en} } @article{StelznerWinklerLiangetal.2020, author = {Stelzner, Kathrin and Winkler, Ann-Cathrin and Liang, Chunguang and Boyny, Aziza and Ade, Carsten P. and Dandekar, Thomas and Fraunholz, Martin J. and Rudel, Thomas}, title = {Intracellular Staphylococcus aureus Perturbs the Host Cell Ca\(^{2+}\) Homeostasis To Promote Cell Death}, series = {mBio}, volume = {11}, journal = {mBio}, doi = {10.1128/mBio.02250-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231448}, year = {2020}, abstract = {The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca\(^{2+}\) increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca\(^{2+}\) concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca\(^{2+}\) rise led to an increase in mitochondrial Ca\(^{2+}\) concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca\(^{2+}\) homeostasis and induces cytoplasmic Ca\(^{2+}\) overload, which results in both apoptotic and necrotic cell death in parallel or succession. IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca\(^{2+}\) overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca\(^{2+}\) homeostasis."}, language = {en} } @article{SrivastavaBencurovaGuptaetal.2019, author = {Srivastava, Mugdha and Bencurova, Elena and Gupta, Shishir K. and Weiss, Esther and L{\"o}ffler, J{\"u}rgen and Dandekar, Thomas}, title = {Aspergillus fumigatus challenged by human dendritic cells: metabolic and regulatory pathway responses testify a tight battle}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {9}, journal = {Frontiers in Cellular and Infection Microbiology}, doi = {10.3389/fcimb.2019.00168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201368}, pages = {168}, year = {2019}, abstract = {Dendritic cells (DCs) are antigen presenting cells which serve as a passage between the innate and the acquired immunity. Aspergillosis is a major lethal condition in immunocompromised patients caused by the adaptable saprophytic fungus Aspergillus fumigatus. The healthy human immune system is capable to ward off A. fumigatus infections however immune-deficient patients are highly vulnerable to invasive aspergillosis. A. fumigatus can persist during infection due to its ability to survive the immune response of human DCs. Therefore, the study of the metabolism specific to the context of infection may allow us to gain insight into the adaptation strategies of both the pathogen and the immune cells. We established a metabolic model of A. fumigatus central metabolism during infection of DCs and calculated the metabolic pathway (elementary modes; EMs). Transcriptome data were used to identify pathways activated when A. fumigatus is challenged with DCs. In particular, amino acid metabolic pathways, alternative carbon metabolic pathways and stress regulating enzymes were found to be active. Metabolic flux modeling identified further active enzymes such as alcohol dehydrogenase, inositol oxygenase and GTP cyclohydrolase participating in different stress responses in A. fumigatus. These were further validated by qRT-PCR from RNA extracted under these different conditions. For DCs, we outlined the activation of metabolic pathways in response to the confrontation with A. fumigatus. We found the fatty acid metabolism plays a crucial role, along with other metabolic changes. The gene expression data and their analysis illuminate additional regulatory pathways activated in the DCs apart from interleukin regulation. In particular, Toll-like receptor signaling, NOD-like receptor signaling and RIG-I-like receptor signaling were active pathways. Moreover, we identified subnetworks and several novel key regulators such as UBC, EGFR, and CUL3 of DCs to be activated in response to A. fumigatus. In conclusion, we analyze the metabolic and regulatory responses of A. fumigatus and DCs when confronted with each other.}, language = {en} } @article{ShityakovSkorbFoersteretal.2021, author = {Shityakov, Sergey and Skorb, Ekaterina V. and F{\"o}rster, Carola Y. and Dandekar, Thomas}, title = {Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer's Disease}, series = {Frontiers in Chemistry}, volume = {9}, journal = {Frontiers in Chemistry}, issn = {2296-2646}, doi = {10.3389/fchem.2021.736509}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248703}, year = {2021}, abstract = {Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial.}, language = {en} } @article{ShityakovFoersterRethwilmetal.2014, author = {Shityakov, Sergey and F{\"o}rster, Carola and Rethwilm, Axel and Dandekar, Thomas}, title = {Evaluation and Prediction of the HIV-1 Central Polypurine Tract Influence on Foamy Viral Vectors to Transduce Dividing and Growth-Arrested Cells}, doi = {10.1155/2014/487969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112763}, year = {2014}, abstract = {Retroviral vectors are potent tools for gene delivery and various biomedical applications. To accomplish a gene transfer task successfully, retroviral vectors must effectively transduce diverse cell cultures at different phases of a cell cycle. However, very promising retroviral vectors based on the foamy viral (FV) backbone lack the capacity to efficiently transduce quiescent cells. It is hypothesized that this phenomenon might be explained as the inability of foamy viruses to form a pre-integration complex (PIC) with nuclear import activity in growth-arrested cells, which is the characteristic for lentiviruses (HIV-1). In this process, the HIV-1 central polypurine tract (cPPT) serves as a primer for plus-strand synthesis to produce a "flap" element and is believed to be crucial for the subsequent double-stranded cDNA formation of all retroviral RNA genomes. In this study, the effects of the lentiviral cPPT element on the FV transduction potential in dividing and growth-arrested (G1/S phase) adenocarcinomic human alveolar basal epithelial (A549) cells are investigated by experimental and theoretical methods. The results indicated that the HIV-1 cPPT element in a foamy viral vector background will lead to a significant reduction of the FV transduction and viral titre in growth-arrested cells due to the absence of PICs with nuclear import activity.}, subject = {Evaluation}, language = {en} } @article{ShityakovDandekarFoerster2015, author = {Shityakov, Sergey and Dandekar, Thomas and F{\"o}rster, Carola}, title = {Gene expression profiles and protein-protein interaction network analysis in AIDS patients with HIV-associated encephalitis and dementia}, series = {HIV/AIDS: Research and Palliative Care}, volume = {7}, journal = {HIV/AIDS: Research and Palliative Care}, doi = {10.2147/HIV.S88438}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149494}, pages = {265-276}, year = {2015}, abstract = {Central nervous system dysfunction is an important cause of morbidity and mortality in patients with human immunodeficiency virus type 1 (HIV-1) infection and acquired immunodeficiency virus syndrome (AIDS). Patients with AIDS are usually affected by HIV-associated encephalitis (HIVE) with viral replication limited to cells of monocyte origin. To examine the molecular mechanisms underlying HIVE-induced dementia, the GSE4755 Affymetrix data were obtained from the Gene Expression Omnibus database and the differentially expressed genes (DEGs) between the samples from AIDS patients with and without apparent features of HIVE-induced dementia were identified. In addition, protein-protein interaction networks were constructed by mapping DEGs into protein-protein interaction data to identify the pathways that these DEGs are involved in. The results revealed that the expression of 1,528 DEGs is mainly involved in the immune response, regulation of cell proliferation, cellular response to inflammation, signal transduction, and viral replication cycle. Heat-shock protein alpha, class A member 1 (HSP90AA1), and fibronectin 1 were detected as hub nodes with degree values >130. In conclusion, the results indicate that HSP90A and fibronectin 1 play important roles in HIVE pathogenesis.}, language = {en} } @article{ShityakovDandekar2010, author = {Shityakov, Sergey and Dandekar, Thomas}, title = {Lead expansion and virtual screening of Indinavir derivate HIV-1 protease inhibitors using pharmacophoric - shape similarity scoring function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67824}, year = {2010}, abstract = {Indinavir (Crivaxan®) is a potent inhibitor of the HIV (human immunodeficiency virus) protease. This enzyme has an important role in viral replication and is considered to be very attractive target for new antiretroviral drugs. However, it becomes less effective due to highly resistant new viral strains of HIV, which have multiple mutations in their proteases. For this reason, we used a lead expansion method to create a new set of compounds with a new mode of action to protease binding site. 1300 compounds chemically diverse from the initial hit were generated and screened to determine their ability to interact with protease and establish their QSAR properties. Further computational analyses revealed one unique compound with different protease binding ability from the initial hit and its role for possible new class of protease inhibitors is discussed in this report.}, subject = {Proteasen}, language = {en} } @article{ShityakovBencurovaFoersteretal.2020, author = {Shityakov, Sergey and Bencurova, Elena and F{\"o}rster, Carola and Dandekar, Thomas}, title = {Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches}, series = {BMC Bioinformatics}, volume = {2020}, journal = {BMC Bioinformatics}, doi = {10.1186/s12859-020-3461-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229169}, year = {2020}, abstract = {Background Processing and analysis of DNA sequences obtained from next-generation sequencing (NGS) face some difficulties in terms of the correct prediction of DNA sequencing outcomes without the implementation of bioinformatics approaches. However, algorithms based on NGS perform inefficiently due to the generation of long DNA fragments, the difficulty of assembling them and the complexity of the used genomes. On the other hand, the Sanger DNA sequencing method is still considered to be the most reliable; it is a reliable choice for virtual modeling to build all possible consensus sequences from smaller DNA fragments. Results In silico and in vitro experiments were conducted: (1) to implement and test our novel sequencing algorithm, using the standard cloning vectors of different length and (2) to validate experimentally virtual shotgun sequencing using the PCR technique with the number of cycles from 1 to 9 for each reaction. Conclusions We applied a novel algorithm based on Sanger methodology to correctly predict and emphasize the performance of DNA sequencing techniques as well as in de novo DNA sequencing and its further application in synthetic biology. We demonstrate the statistical significance of our results.}, language = {en} } @article{SchulzeTillichDandekaretal.2013, author = {Schulze, Katja and Tillich, Ulrich M. and Dandekar, Thomas and Frohme, Marcus}, title = {PlanktoVision - an automated analysis system for the identification of phytoplankton}, series = {BMC Bioinformatics}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2105-14-115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96395}, year = {2013}, abstract = {Background Phytoplankton communities are often used as a marker for the determination of fresh water quality. The routine analysis, however, is very time consuming and expensive as it is carried out manually by trained personnel. The goal of this work is to develop a system for an automated analysis. Results A novel open source system for the automated recognition of phytoplankton by the use of microscopy and image analysis was developed. It integrates the segmentation of the organisms from the background, the calculation of a large range of features, and a neural network for the classification of imaged organisms into different groups of plankton taxa. The analysis of samples containing 10 different taxa showed an average recognition rate of 94.7\% and an average error rate of 5.5\%. The presented system has a flexible framework which easily allows expanding it to include additional taxa in the future. Conclusions The implemented automated microscopy and the new open source image analysis system - PlanktoVision - showed classification results that were comparable or better than existing systems and the exclusion of non-plankton particles could be greatly improved. The software package is published as free software and is available to anyone to help make the analysis of water quality more reproducible and cost effective.}, language = {en} } @article{SchultzMetznerDandekaretal.1986, author = {Schultz, R{\"u}diger and Metzner, Katharina and Dandekar, Thomas and Gramsch, Christian}, title = {Opiates induce long-term increases in prodynorphin derived peptide levels in the guinea-pig myenteric plexus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29809}, year = {1986}, abstract = {No abstract available}, language = {en} } @article{SchokraieWarnkenHotzWagenblattetal.2012, author = {Schokraie, Elham and Warnken, Uwe and Hotz-Wagenblatt, Agnes and Grohme, Markus A. and Hengherr, Steffen and F{\"o}rster, Frank and Schill, Ralph O. and Frohme, Marcus and Dandekar, Thomas and Schn{\"o}lzer, Martina}, title = {Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0045682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134447}, pages = {e45682}, year = {2012}, abstract = {Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.}, language = {en} } @article{SchererFleishmanJonesetal.2021, author = {Scherer, Marc and Fleishman, Sarel J. and Jones, Patrik R. and Dandekar, Thomas and Bencurova, Elena}, title = {Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.673005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240598}, year = {2021}, abstract = {To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.}, language = {en} } @article{SbieraKunzWeigandetal.2019, author = {Sbiera, Silviu and Kunz, Meik and Weigand, Isabel and Deutschbein, Timo and Dandekar, Thomas and Fassnacht, Martin}, title = {The new genetic landscape of Cushing's disease: deubiquitinases in the spotlight}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers11111761}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193194}, pages = {1761}, year = {2019}, abstract = {Cushing's disease (CD) is a rare condition caused by adrenocorticotropic hormone (ACTH)-producing adenomas of the pituitary, which lead to hypercortisolism that is associated with high morbidity and mortality. Treatment options in case of persistent or recurrent disease are limited, but new insights into the pathogenesis of CD are raising hope for new therapeutic avenues. Here, we have performed a meta-analysis of the available sequencing data in CD to create a comprehensive picture of CD's genetics. Our analyses clearly indicate that somatic mutations in the deubiquitinases are the key drivers in CD, namely USP8 (36.5\%) and USP48 (13.3\%). While in USP48 only Met415 is affected by mutations, in USP8 there are 26 different mutations described. However, these different mutations are clustering in the same hotspot region (affecting in 94.5\% of cases Ser718 and Pro720). In contrast, pathogenic variants classically associated with tumorigenesis in genes like TP53 and BRAF are also present in CD but with low incidence (12.5\% and 7\%). Importantly, several of these mutations might have therapeutic potential as there are drugs already investigated in preclinical and clinical setting for other diseases. Furthermore, network and pathway analyses of all somatic mutations in CD suggest a rather unified picture hinting towards converging oncogenic pathways.}, language = {en} } @article{SarukhanyanShityakovDandekar2020, author = {Sarukhanyan, Edita and Shityakov, Sergey and Dandekar, Thomas}, title = {Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer}, series = {Frontiers in Chemistry}, volume = {7}, journal = {Frontiers in Chemistry}, number = {920}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199505}, year = {2020}, abstract = {The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors.}, language = {en} } @article{SarukhanyanShityakovDandekar2018, author = {Sarukhanyan, Edita and Shityakov, Sergey and Dandekar, Thomas}, title = {In silico designed Axl receptor blocking drug candidates against Zika virus infection}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {5}, doi = {10.1021/acsomega.8b00223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176739}, pages = {5281-5290}, year = {2018}, abstract = {After a large outbreak in Brazil, novel drugs against Zika virus became extremely necessary. Evaluation of virus-based pharmacological strategies concerning essential host factors brought us to the idea that targeting the Axl receptor by blocking its dimerization function could be critical for virus entry. Starting from experimentally validated compounds, such as RU-301, RU-302, warfarin, and R428, we identified a novel compound 2′ (R428 derivative) to be the most potent for this task amongst a number of alternative compounds and leads. The improved affinity of compound 2′ was confirmed by molecular docking as well as molecular dynamics simulation techniques using implicit solvation models. The current study summarizes a new possibility for inhibition of the Axl function as a potential target for future antiviral therapies.}, language = {en} } @article{SarukhanyanShanmugamDandekar2022, author = {Sarukhanyan, Edita and Shanmugam, Tipack Ayothyapattanam and Dandekar, Thomas}, title = {In silico studies reveal Peramivir and Zanamivir as an optimal drug treatment even if H7N9 avian type influenza virus acquires further resistance}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {18}, issn = {1420-3049}, doi = {10.3390/molecules27185920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288240}, year = {2022}, abstract = {An epidemic of avian type H7N9 influenza virus, which took place in China in 2013, was enhanced by a naturally occurring R294K mutation resistant against Oseltamivir at the catalytic site of the neuraminidase. To cope with such drug-resistant neuraminidase mutations, we applied the molecular docking technique to evaluate the fitness of the available drugs such as Oseltamivir, Zanamivir, Peramivir, Laninamivir, L-Arginine and Benserazide hydrochloride concerning the N9 enzyme with single (R294K, R119K, R372K), double (R119_294K, R119_372K, R294_372K) and triple (R119_294_372K) mutations in the pocket. We found that the drugs Peramivir and Zanamivir score best amongst the studied compounds, demonstrating their high binding potential towards the pockets with the considered mutations. Despite the fact that mutations changed the shape of the pocket and reduced the binding strength for all drugs, Peramivir was the only drug that formed interactions with the key residues at positions 119, 294 and 372 in the pocket of the triple N9 mutant, while Zanamivir demonstrated the lowest RMSD value (0.7 {\AA}) with respect to the reference structure.}, language = {en} } @article{SalihogluSrivastavaLiangetal.2023, author = {Salihoglu, Rana and Srivastava, Mugdha and Liang, Chunguang and Schilling, Klaus and Szalay, Aladar and Bencurova, Elena and Dandekar, Thomas}, title = {PRO-Simat: Protein network simulation and design tool}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.04.023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350034}, pages = {2767-2779}, year = {2023}, abstract = {PRO-Simat is a simulation tool for analysing protein interaction networks, their dynamic change and pathway engineering. It provides GO enrichment, KEGG pathway analyses, and network visualisation from an integrated database of more than 8 million protein-protein interactions across 32 model organisms and the human proteome. We integrated dynamical network simulation using the Jimena framework, which quickly and efficiently simulates Boolean genetic regulatory networks. It enables simulation outputs with in-depth analysis of the type, strength, duration and pathway of the protein interactions on the website. Furthermore, the user can efficiently edit and analyse the effect of network modifications and engineering experiments. In case studies, applications of PRO-Simat are demonstrated: (i) understanding mutually exclusive differentiation pathways in Bacillus subtilis, (ii) making Vaccinia virus oncolytic by switching on its viral replication mainly in cancer cells and triggering cancer cell apoptosis and (iii) optogenetic control of nucleotide processing protein networks to operate DNA storage. Multilevel communication between components is critical for efficient network switching, as demonstrated by a general census on prokaryotic and eukaryotic networks and comparing design with synthetic networks using PRO-Simat. The tool is available at https://prosimat.heinzelab.de/ as a web-based query server.}, language = {en} } @article{RemmeleLutherBalkenholetal.2015, author = {Remmele, Christian W. and Luther, Christian H. and Balkenhol, Johannes and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus T.}, title = {Integrated inference and evaluation of host-fungi interaction networks}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {764}, doi = {10.3389/fmicb.2015.00764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148278}, year = {2015}, abstract = {Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi human and fungi mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host fungi transcriptome and proteome data.}, language = {en} } @article{RatzkaFoersterLiangetal.2012, author = {Ratzka, Carolin and F{\"o}rster, Frank and Liang, Chunguang and Kupper, Maria and Dandekar, Thomas and Feldhaar, Heike and Gross, Roy}, title = {Molecular characterization of antimicrobial peptide genes of the carpenter ant Camponotus floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75985}, year = {2012}, abstract = {The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity.}, subject = {Biologie}, language = {en} } @article{RackeveiBorgesEngstleretal.2022, author = {Rackevei, Antonia S. and Borges, Alyssa and Engstler, Markus and Dandekar, Thomas and Wolf, Matthias}, title = {About the analysis of 18S rDNA sequence data from trypanosomes in barcoding and phylogenetics: tracing a continuation error occurring in the literature}, series = {Biology}, volume = {11}, journal = {Biology}, number = {11}, issn = {2079-7737}, doi = {10.3390/biology11111612}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297562}, year = {2022}, abstract = {The variable regions (V1-V9) of the 18S rDNA are routinely used in barcoding and phylogenetics. In handling these data for trypanosomes, we have noticed a misunderstanding that has apparently taken a life of its own in the literature over the years. In particular, in recent years, when studying the phylogenetic relationship of trypanosomes, the use of V7/V8 was systematically established. However, considering the current numbering system for all other organisms (including other Euglenozoa), V7/V8 was never used. In Maia da Silva et al. [Parasitology 2004, 129, 549-561], V7/V8 was promoted for the first time for trypanosome phylogenetics, and since then, more than 70 publications have replicated this nomenclature and even discussed the benefits of the use of this region in comparison to V4. However, the primers used to amplify the variable region of trypanosomes have actually amplified V4 (concerning the current 18S rDNA numbering system).}, language = {en} } @article{PradaMaagSiegmundetal.2022, author = {Prada, Juan Pablo and Maag, Luca Estelle and Siegmund, Laura and Bencurova, Elena and Liang, Chunguang and Koutsilieri, Eleni and Dandekar, Thomas and Scheller, Carsten}, title = {Estimation of R0 for the spread of SARS-CoV-2 in Germany from excess mortality}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-22101-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301415}, year = {2022}, abstract = {For SARS-CoV-2, R0 calculations in the range of 2-3 dominate the literature, but much higher estimates have also been published. Because capacity for RT-PCR testing increased greatly in the early phase of the Covid-19 pandemic, R0 determinations based on these incidence values are subject to strong bias. We propose to use Covid-19-induced excess mortality to determine R0 regardless of RT-PCR testing capacity. We used data from the Robert Koch Institute (RKI) on the incidence of Covid cases, Covid-related deaths, number of RT-PCR tests performed, and excess mortality calculated from data from the Federal Statistical Office in Germany. We determined R0 using exponential growth estimates with a serial interval of 4.7 days. We used only datasets that were not yet under the influence of policy measures (e.g., lockdowns or school closures). The uncorrected R0 value for the spread of SARS-CoV-2 based on RT-PCR incidence data was 2.56 (95\% CI 2.52-2.60) for Covid-19 cases and 2.03 (95\% CI 1.96-2.10) for Covid-19-related deaths. However, because the number of RT-PCR tests increased by a growth factor of 1.381 during the same period, these R0 values must be corrected accordingly (R0corrected = R0uncorrected/1.381), yielding 1.86 for Covid-19 cases and 1.47 for Covid-19 deaths. The R0 value based on excess deaths was calculated to be 1.34 (95\% CI 1.32-1.37). A sine-function-based adjustment for seasonal effects of 40\% corresponds to a maximum value of R0January = 1.68 and a minimum value of R0July = 1.01. Our calculations show an R0 that is much lower than previously thought. This relatively low range of R0 fits very well with the observed seasonal pattern of infection across Europe in 2020 and 2021, including the emergence of more contagious escape variants such as delta or omicron. In general, our study shows that excess mortality can be used as a reliable surrogate to determine the R0 in pandemic situations.}, language = {en} } @article{PeindlGoettlichCrouchetal.2022, author = {Peindl, Matthias and G{\"o}ttlich, Claudia and Crouch, Samantha and Hoff, Niklas and L{\"u}ttgens, Tamara and Schmitt, Franziska and Pereira, Jes{\´u}s Guillermo Nieves and May, Celina and Schliermann, Anna and Kronenthaler, Corinna and Cheufou, Danjouma and Reu-Hofer, Simone and Rosenwald, Andreas and Weigl, Elena and Walles, Thorsten and Sch{\"u}ler, Julia and Dandekar, Thomas and Nietzer, Sarah and Dandekar, Gudrun}, title = {EMT, stemness, and drug resistance in biological context: a 3D tumor tissue/in silico platform for analysis of combinatorial treatment in NSCLC with aggressive KRAS-biomarker signatures}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers14092176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270744}, year = {2022}, abstract = {Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRAS\(^{G12C}\) or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRAS\(^{G12C}\) inhibitor in KRAS\(^{G12C}\) mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures.}, language = {en} } @article{PachelMathesBayeretal.2013, author = {Pachel, Christina and Mathes, Denise and Bayer, Barbara and Dienesch, Charlotte and Wangorsch, Gaby and Heitzmann, Wolfram and Lang, Isabell and Ardehali, Hossein and Ertl, Georg and Dandekar, Thomas and Wajant, Harald and Frantz, Stefan}, title = {Exogenous Administration of a Recombinant Variant of TWEAK Impairs Healing after Myocardial Infarction by Aggravation of Inflammation}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0078938}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129889}, pages = {e78938}, year = {2013}, abstract = {Background: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factorinducible 14 (Fn14) are upregulated after myocardial infarction (MI) in both humans and mice. They modulate inflammation and the extracellular matrix, and could therefore be important for healing and remodeling after MI. However, the function of TWEAK after MI remains poorly defined. Methods and results: Following ligation of the left coronary artery, mice were injected twice per week with a recombinant human serum albumin conjugated variant of TWEAK (HSA-Flag-TWEAK), mimicking the activity of soluble TWEAK. Treatment with HSA-Flag-TWEAK resulted in significantly increased mortality in comparison to the placebo group due to myocardial rupture. Infarct size, extracellular matrix remodeling, and apoptosis rates were not different after MI. However, HSA-Flag-TWEAK treatment increased infiltration of proinflammatory cells into the myocardium. Accordingly, depletion of neutrophils prevented cardiac ruptures without modulating all-cause mortality. Conclusion: Treatment of mice with HSA-Flag-TWEAK induces myocardial healing defects after experimental MI. This is mediated by an exaggerated neutrophil infiltration into the myocardium.}, language = {en} } @article{OthmanNaseemAwadetal.2016, author = {Othman, Eman M. and Naseem, Muhammed and Awad, Eman and Dandekar, Thomas and Stopper, Helga}, title = {The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0168386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147983}, pages = {e0168386}, year = {2016}, abstract = {Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing.}, language = {en} } @article{OthmanFathyBekhitetal.2021, author = {Othman, Eman M. and Fathy, Moustafa and Bekhit, Amany Abdlrehim and Abdel-Razik, Abdel-Razik H. and Jamal, Arshad and Nazzal, Yousef and Shams, Shabana and Dandekar, Thomas and Naseem, Muhammad}, title = {Modulatory and toxicological perspectives on the effects of the small molecule kinetin}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {3}, issn = {1420-3049}, doi = {10.3390/molecules26030670}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223064}, year = {2021}, abstract = {Plant hormones are small regulatory molecules that exert pharmacological actions in mammalian cells such as anti-oxidative and pro-metabolic effects. Kinetin belongs to the group of plant hormones cytokinin and has been associated with modulatory functions in mammalian cells. The mammalian adenosine receptor (A2a-R) is known to modulate multiple physiological responses in animal cells. Here, we describe that kinetin binds to the adenosine receptor (A2a-R) through the Asn253 residue in an adenosine dependent manner. To harness the beneficial effects of kinetin for future human use, we assess its acute toxicity by analyzing different biochemical and histological markers in rats. Kinetin at a dose below 1 mg/kg had no adverse effects on the serum level of glucose or on the activity of serum alanine transaminase (ALT) or aspartate aminotransferase (AST) enzymes in the kinetin treated rats. Whereas, creatinine levels increased after a kinetin treatment at a dose of 0.5 mg/kg. Furthermore, 5 mg/kg treated kinetin rats showed normal renal corpuscles, but a mild degeneration was observed in the renal glomeruli and renal tubules, as well as few degenerated hepatocytes were also observed in the liver. Kinetin doses below 5 mg/kg did not show any localized toxicity in the liver and kidney tissues. In addition to unraveling the binding interaction between kinetin and A2a-R, our findings suggest safe dose limits for the future use of kinetin as a therapeutic and modulatory agent against various pathophysiological conditions.}, language = {en} } @article{OthmanBekhitAnanyetal.2021, author = {Othman, Eman M. and Bekhit, Amany A. and Anany, Mohamed A. and Dandekar, Thomas and Ragab, Hanan M. and Wahid, Ahmed}, title = {Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {10}, issn = {1420-3049}, doi = {10.3390/molecules26102961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239734}, year = {2021}, abstract = {The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.}, language = {en} } @article{OsmanogluKhaledAlSeiariAlKhoorietal.2021, author = {Osmanoglu, {\"O}zge and Khaled AlSeiari, Mariam and AlKhoori, Hasa Abduljaleel and Shams, Shabana and Bencurova, Elena and Dandekar, Thomas and Naseem, Muhammad}, title = {Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.708417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249260}, year = {2021}, abstract = {Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta-tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin-Benson-Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide-harvesting potential in plants with an AP3 bypass and CETCH-AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters.}, language = {en} } @article{NaseemSrivastavaDandekar2014, author = {Naseem, Muhammad and Srivastava, Mugdha and Dandekar, Thomas}, title = {Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection}, series = {Frontiers in Plant Science}, volume = {5}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2014.00588}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118247}, pages = {588}, year = {2014}, abstract = {Intricate mechanisms discriminate between friends and foes in plants. Plant organs deploy overlapping and distinct protection strategies. Despite vulnerability to a plethora of pathogens, the growing tips of plants grow bacteria free. The shoot apical meristem (SAM) is among three stem cells niches, a self-renewable reservoir for the future organogenesis of leaf, stem, and flowers. How plants safeguard this high value growth target from infections was not known until now. Recent reports find the stem cell secreted 12-amino acid peptide CLV3p (CLAVATA3 peptide) is perceived by FLS2 (FLAGELLIN SENSING 2) receptor and activates the transcription of immunity and defense marker genes. No infection in the SAM of wild type plants and bacterial infection in clv3 and fls2 mutants illustrate this natural protection against infections. Cytokinins (CKs) are enriched in the SAM and regulate meristem activities by their involvement in stem cell signaling networks. Auxin mediates plant susceptibility to pathogen infections while CKs boost plant immunity. Here, in addition to the stem-cell-triggered immunity we also highlight a potential link between CK signaling and CLV3p mediated immune response in the SAM.}, language = {en} } @article{NaseemOthmanFathyetal.2020, author = {Naseem, Muhammad and Othman, Eman M. and Fathy, Moustafa and Iqbal, Jibran and Howari, Fares M. and AlRemeithi, Fatima A. and Kodandaraman, Geema and Stopper, Helga and Bencurova, Elena and Vlachakis, Dimitrios and Dandekar, Thomas}, title = {Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-70253-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231317}, year = {2020}, abstract = {Metabolism and signaling of cytokinins was first established in plants, followed by cytokinin discoveries in all kingdoms of life. However, understanding of their role in mammalian cells is still scarce. Kinetin is a cytokinin that mitigates the effects of oxidative stress in mammalian cells. The effective concentrations of exogenously applied kinetin in invoking various cellular responses are not well standardized. Likewise, the metabolism of kinetin and its cellular targets within the mammalian cells are still not well studied. Applying vitality tests as well as comet assays under normal and hyper-oxidative states, our analysis suggests that kinetin concentrations of 500 nM and above cause cytotoxicity as well as genotoxicity in various cell types. However, concentrations below 100 nM do not cause any toxicity, rather in this range kinetin counteracts oxidative burst and cytotoxicity. We focus here on these effects. To get insights into the cellular targets of kinetin mediating these pro-survival functions and protective effects we applied structural and computational approaches on two previously testified targets for these effects. Our analysis deciphers vital residues in adenine phosphoribosyltransferase (APRT) and adenosine receptor (A2A-R) that facilitate the binding of kinetin to these two important human cellular proteins. We finally discuss how the therapeutic potential of kinetin against oxidative stress helps in various pathophysiological conditions.}, language = {en} } @article{NaseemOsmanoğluKaltdorfetal.2020, author = {Naseem, Muhammad and Osmanoğlu, {\"O}zge and Kaltdorf, Martin and Alblooshi, Afnan Ali M. A. and Iqbal, Jibran and Howari, Fares M. and Srivastava, Mugdha and Dandekar, Thomas}, title = {Integrated framework of the immune-defense transcriptional signatures in the Arabidopsis shoot apical meristem}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms21165745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285730}, year = {2020}, abstract = {The growing tips of plants grow sterile; therefore, disease-free plants can be generated from them. How plants safeguard growing apices from pathogen infection is still a mystery. The shoot apical meristem (SAM) is one of the three stem cells niches that give rise to the above ground plant organs. This is very well explored; however, how signaling networks orchestrate immune responses against pathogen infections in the SAM remains unclear. To reconstruct a transcriptional framework of the differentially expressed genes (DEGs) pertaining to various SAM cellular populations, we acquired large-scale transcriptome datasets from the public repository Gene Expression Omnibus (GEO). We identify here distinct sets of genes for various SAM cellular populations that are enriched in immune functions, such as immune defense, pathogen infection, biotic stress, and response to salicylic acid and jasmonic acid and their biosynthetic pathways in the SAM. We further linked those immune genes to their respective proteins and identify interactions among them by mapping a transcriptome-guided SAM-interactome. Furthermore, we compared stem-cells regulated transcriptome with innate immune responses in plants showing transcriptional separation among their DEGs in Arabidopsis. Besides unleashing a repertoire of immune-related genes in the SAM, our analysis provides a SAM-interactome that will help the community in designing functional experiments to study the specific defense dynamics of the SAM-cellular populations. Moreover, our study promotes the essence of large-scale omics data re-analysis, allowing a fresh look at the SAM-cellular transcriptome repurposing data-sets for new questions.}, language = {en} } @article{NaseemKunzDandekar2014, author = {Naseem, Muhammad and Kunz, Meik and Dandekar, Thomas}, title = {Probing the unknowns in cytokinin-mediated immune defense in Arabidopsis with systems biology approaches}, series = {Bioinformatics and Biology Insights}, volume = {8}, journal = {Bioinformatics and Biology Insights}, issn = {1177-9322}, doi = {10.4137/bbi.s13462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120199}, pages = {35-44}, year = {2014}, abstract = {Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein-protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants.}, language = {en} } @article{NaseemDandekar2012, author = {Naseem, Muhammad and Dandekar, Thomas}, title = {The Role of Auxin-Cytokinin Antagonism in Plant-Pathogen Interactions}, series = {PLOS Pathogens}, volume = {8}, journal = {PLOS Pathogens}, number = {11}, doi = {10.1371/journal.ppat.1003026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131901}, pages = {e1003026}, year = {2012}, abstract = {No abstract available.}, language = {en} } @article{MergetKoetschanHackletal.2012, author = {Merget, Benjamin and Koetschan, Christian and Hackl, Thomas and F{\"o}rster, Frank and Dandekar, Thomas and M{\"u}ller, Tobias and Schultz, J{\"o}rg and Wolf, Matthias}, title = {The ITS2 Database}, series = {Journal of Visual Expression}, volume = {61}, journal = {Journal of Visual Expression}, number = {e3806}, doi = {10.3791/3806}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124600}, year = {2012}, abstract = {The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation. The ITS2 Database presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank accurately reannotated. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE and ProfDistS for multiple sequence-structure alignment calculation and Neighbor Joining tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.}, language = {en} } @article{LutherBrandtVylkovaetal.2023, author = {Luther, Christian H. and Brandt, Philipp and Vylkova, Slavena and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus}, title = {Integrated analysis of SR-like protein kinases Sky1 and Sky2 links signaling networks with transcriptional regulation in Candida albicans}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {13}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2023.1108235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311771}, year = {2023}, abstract = {Fungal infections are a major global health burden where Candida albicans is among the most common fungal pathogen in humans and is a common cause of invasive candidiasis. Fungal phenotypes, such as those related to morphology, proliferation and virulence are mainly driven by gene expression, which is primarily regulated by kinase signaling cascades. Serine-arginine (SR) protein kinases are highly conserved among eukaryotes and are involved in major transcriptional processes in human and S. cerevisiae. Candida albicans harbors two SR protein kinases, while Sky2 is important for metabolic adaptation, Sky1 has similar functions as in S. cerevisiae. To investigate the role of these SR kinases for the regulation of transcriptional responses in C. albicans, we performed RNA sequencing of sky1Δ and sky2Δ and integrated a comprehensive phosphoproteome dataset of these mutants. Using a Systems Biology approach, we study transcriptional regulation in the context of kinase signaling networks. Transcriptomic enrichment analysis indicates that pathways involved in the regulation of gene expression are downregulated and mitochondrial processes are upregulated in sky1Δ. In sky2Δ, primarily metabolic processes are affected, especially for arginine, and we observed that arginine-induced hyphae formation is impaired in sky2Δ. In addition, our analysis identifies several transcription factors as potential drivers of the transcriptional response. Among these, a core set is shared between both kinase knockouts, but it appears to regulate different subsets of target genes. To elucidate these diverse regulatory patterns, we created network modules by integrating the data of site-specific protein phosphorylation and gene expression with kinase-substrate predictions and protein-protein interactions. These integrated signaling modules reveal shared parts but also highlight specific patterns characteristic for each kinase. Interestingly, the modules contain many proteins involved in fungal morphogenesis and stress response. Accordingly, experimental phenotyping shows a higher resistance to Hygromycin B for sky1Δ. Thus, our study demonstrates that a combination of computational approaches with integration of experimental data can offer a new systems biological perspective on the complex network of signaling and transcription. With that, the investigation of the interface between signaling and transcriptional regulation in C. albicans provides a deeper insight into how cellular mechanisms can shape the phenotype.}, language = {en} } @article{LiangRiosMiguelJaricketal.2021, author = {Liang, Chunguang and Rios-Miguel, Ana B. and Jarick, Marcel and Neurgaonkar, Priya and Girard, Myriam and Fran{\c{c}}ois, Patrice and Schrenzel, Jacques and Ibrahim, Eslam S. and Ohlsen, Knut and Dandekar, Thomas}, title = {Staphylococcus aureus transcriptome data and metabolic modelling investigate the interplay of Ser/Thr kinase PknB, its phosphatase Stp, the glmR/yvcK regulon and the cdaA operon for metabolic adaptation}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248459}, year = {2021}, abstract = {Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB\(^+\)) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB\(^-\)) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.}, language = {en} } @article{LiangBencurovaPsotaetal.2021, author = {Liang, Chunguang and Bencurova, Elena and Psota, Eric and Neurgaonkar, Priya and Prelog, Martina and Scheller, Carsten and Dandekar, Thomas}, title = {Population-predicted MHC class II epitope presentation of SARS-CoV-2 structural proteins correlates to the case fatality rates of COVID-19 in different countries}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms22052630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258936}, year = {2021}, abstract = {We observed substantial differences in predicted Major Histocompatibility Complex II (MHCII) epitope presentation of SARS-CoV-2 proteins for different populations but only minor differences in predicted MHCI epitope presentation. A comparison of this predicted epitope MHC-coverage revealed for the early phase of infection spread (till day 15 after reaching 128 observed infection cases) highly significant negative correlations with the case fatality rate. Specifically, this was observed in different populations for MHC class II presentation of the viral spike protein (p-value: 0.0733 for linear regression), the envelope protein (p-value: 0.023), and the membrane protein (p-value: 0.00053), indicating that the high case fatality rates of COVID-19 observed in some countries seem to be related with poor MHC class II presentation and hence weak adaptive immune response against these viral envelope proteins. Our results highlight the general importance of the SARS-CoV-2 structural proteins in immunological control in early infection spread looking at a global census in various countries and taking case fatality rate into account. Other factors such as health system and control measures become more important after the early spread. Our study should encourage further studies on MHCII alleles as potential risk factors in COVID-19 including assessment of local populations and specific allele distributions.}, language = {en} } @article{LiPradaDaminelietal.2021, author = {Li, Kunkun and Prada, Juan and Damineli, Daniel S. C. and Liese, Anja and Romeis, Tina and Dandekar, Thomas and Feij{\´o}, Jos{\´e} A. and Hedrich, Rainer and Konrad, Kai Robert}, title = {An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca\(^{2+}\) and H\(^{+}\) reveals new insights into ion signaling in plants}, series = {New Phytologist}, volume = {230}, journal = {New Phytologist}, number = {6}, doi = {10.1111/nph.17202}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239847}, pages = {2292 -- 2310}, year = {2021}, abstract = {Whereas the role of calcium ions (Ca\(^{2+}\)) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca\(^{2+}\) and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca\(^{2+}\)- and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca\(^{2+}\)-dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca\(^{2+}\). In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+-increases and cytosolic acidification by c. 2 min, suggesting a Ca\(^{2+}\)/pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca\(^{2+}\)- and pH-responses. We propose close interrelation in Ca\(^{2+}\)- and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.}, language = {en} } @article{KuehnemundtLeifeldSchergetal.2021, author = {K{\"u}hnemundt, Johanna and Leifeld, Heidi and Scherg, Florian and Schmitt, Matthias and Nelke, Lena C. and Schmitt, Tina and Bauer, Florentin and G{\"o}ttlich, Claudia and Fuchs, Maximilian and Kunz, Meik and Peindl, Matthias and Br{\"a}hler, Caroline and Kronenthaler, Corinna and Wischhusen, J{\"o}rg and Prelog, Martina and Walles, Heike and Dandekar, Thomas and Dandekar, Gudrun and Nietzer, Sarah L.}, title = {Modular micro-physiological human tumor/tissue models based on decellularized tissue for improved preclinical testing}, series = {ALTEX}, volume = {38}, journal = {ALTEX}, doi = {10.14573/altex.2008141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231465}, pages = {289-306}, year = {2021}, abstract = {High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments.}, language = {en} } @article{KunzWolfSchulzeetal.2016, author = {Kunz, Meik and Wolf, Beat and Schulze, Harald and Atlan, David and Walles, Thorsten and Walles, Heike and Dandekar, Thomas}, title = {Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools}, series = {Genes}, volume = {8}, journal = {Genes}, number = {1}, doi = {10.3390/genes8010008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147990}, pages = {8}, year = {2016}, abstract = {Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs.}, language = {en} } @article{KunzLiangNillaetal.2016, author = {Kunz, Meik and Liang, Chunguang and Nilla, Santosh and Cecil, Alexander and Dandekar, Thomas}, title = {The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147369}, pages = {baw041}, year = {2016}, abstract = {The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.}, language = {en} } @article{KunzGoettlichWallesetal.2017, author = {Kunz, Meik and G{\"o}ttlich, Claudia and Walles, Thorsten and Nietzer, Sarah and Dandekar, Gudrun and Dandekar, Thomas}, title = {MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact}, series = {Tumor Biology}, volume = {39}, journal = {Tumor Biology}, number = {7}, doi = {10.1177/1010428317706430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158399}, year = {2017}, abstract = {MicroRNAs are well-known strong RNA regulators modulating whole functional units in complex signaling networks. Regarding clinical application, they have potential as biomarkers for prognosis, diagnosis, and therapy. In this review, we focus on two microRNAs centrally involved in lung cancer progression. MicroRNA-21 promotes and microRNA-34 inhibits cancer progression. We elucidate here involved pathways and imbed these antagonistic microRNAs in a network of interactions, stressing their cancer microRNA biology, followed by experimental and bioinformatics analysis of such microRNAs and their targets. This background is then illuminated from a clinical perspective on microRNA-21 and microRNA-34 as general examples for the complex microRNA biology in lung cancer and its diagnostic value. Moreover, we discuss the immense potential that microRNAs such as microRNA-21 and microRNA-34 imply by their broad regulatory effects. These should be explored for novel therapeutic strategies in the clinic.}, language = {en} } @article{KruegerFriedrichFoersteretal.2012, author = {Krueger, Beate and Friedrich, Torben and F{\"o}rster, Frank and Bernhardt, J{\"o}rg and Gross, Roy and Dandekar, Thomas}, title = {Different evolutionary modifications as a guide to rewire two-component systems}, series = {Bioinformatics and Biology Insights}, volume = {6}, journal = {Bioinformatics and Biology Insights}, doi = {10.4137/BBI.S9356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123647}, pages = {97-128}, year = {2012}, abstract = {Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases.}, language = {en} } @article{KernAgarwalHuberetal.2014, author = {Kern, Selina and Agarwal, Shruti and Huber, Kilian and Gehring, Andre P. and Str{\"o}dke, Benjamin and Wirth, Christine C. and Br{\"u}gl, Thomas and Abodo, Liane Onambele and Dandekar, Thomas and Doerig, Christian and Fischer, Rainer and Tobin, Andrew B. and Alam, Mahmood M. and Bracher, Franz and Pradel, Gabriele}, title = {Inhibition of the SR Protein-Phosphorylating CLK Kinases of Plasmodium falciparum Impairs Blood Stage Replication and Malaria Transmission}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {9}, issn = {1932-6203}, doi = {10.1371/journal.pone.0105732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115405}, pages = {e105732}, year = {2014}, abstract = {Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-beta-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs.}, language = {en} } @article{KellerFoersterMuelleretal.2010, author = {Keller, Alexander and Foerster, Frank and Mueller, Tobias and Dandekar, Thomas and Schultz, Joerg and Wolf, Matthias}, title = {Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67832}, year = {2010}, abstract = {Background: In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. Results: This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Conclusions: Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. Reviewers: This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. Open peer review: Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.}, subject = {Phylogenie}, language = {en} }