@phdthesis{SanchezNaya2023, author = {S{\´a}nchez Naya, Roberto}, title = {Synthesis and Characterization of Dye-Containing Covalent Organic Frameworks}, doi = {10.25972/OPUS-28899}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288996}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The present thesis adress the synthesis and characterization of novel COFs that contain dye molecules as integral components of the organic backbone. These chromophore-containing frameworks open new research lines in the field and call for the exploration of applications such as catalysis, sensing, or in optoelectronic devices. Initially, the fabrication of organic-inorganic composites by the growth of DPP TAPP COF around functionalized iron oxide nanoparticles is reported. By varying the ratio between inorganic nanoparticles and organic COFs, optoelectronic properties of the materials are adjusted. The document also reports the synthesis of a novel boron dipyrromethene-containing (BODIPY) COF. Synthesis, full characterization and the scope of potential applications with a focus on environmental remediation are discussed in detail. Last, a novel diketopyrrolopyrrole-containing (DPP) DPP-Py-COF based on the combination of DDP and pyrene building blocks is presented. The very low bandgap of these materials and initial investigations on the photosensitizing properties are discussed.}, subject = {Organische Chemie}, language = {en} } @phdthesis{Mahl2023, author = {Mahl, Magnus}, title = {Polycyclic Aromatic Dicarboximides as NIR Chromophores, Solid-State Emitters and Supramolecular Host Platforms}, doi = {10.25972/OPUS-23462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234623}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The present thesis introduce different synthetic strategies towards a variety of polycyclic aromatic dicarboximides (PADIs) with highly interesting and diverse properties. This included tetrachlorinated, tetraaryloxy- and tetraaryl-substituted dicarboximides, fused acceptor‒donor(‒acceptor) structures as well as sterically shielded rylene and nanographene dicarboximides. The properties and thus the disclosure of structure‒property relationships of the resulting dyes were investigated in detail among others with UV‒vis absorption spectroscopy, fluorescence spectroscopy, cyclic voltammetry and single crystal X-ray analysis. For instance, some of the fused and substituted PADIs offer strong absorption of visible and near infrared (NIR) light, NIR emission and low-lying LUMO levels. On the contrary, intriguing optical features in the solid-state characterize the rylene dicarboximides with their bulky N-substituents, while the devised sterically enwrapped nanographene host offered remarkable complexation capabilities in solution.}, subject = {Organische Chemie}, language = {en} }