@phdthesis{Weih2018, author = {Weih, Robert}, title = {Interbandkaskadenlaser f{\"u}r die Gassensorik im Spektralbereich des mittleren Infrarot}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169247}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Aufgrund der hohen Sensitivit{\"a}t bei der Absorptionsmessung von Gasen im Spektral- bereich des mittleren Infrarot steigt die Nachfrage nach monolithischen, kompakten und energieeffizienten Laserquellen in Wellenl{\"a}ngenfenster zwischen 3 und 6 μm ste- tig. In diesem Bereich liegen zahlreiche Absorptionsbanden von Gasen, welche sowohl in der Industrie als auch in der Medizintechnik von Relevanz sind. Mittels herk{\"o}mm- licher Diodenlaser konnte dieser Bereich bisher nur unzureichend abgedeckt werden, w{\"a}hrend Quantenkaskadenlaser infolge ihrer hohen Schwellenleistungen vor allem f{\"u}r portable Anwendungen nur bedingt geeignet sind. Interbandkaskadenlaser kom- binieren die Vorteile des Interband{\"u}bergangs von konventionellen Diodenlasern mit der M{\"o}glichkeit zur Kaskadierung der Quantenkaskadenlaser und k{\"o}nnen einen sehr breiten Spektralbereich abdecken. Das {\"u}bergeordnete Ziel der Arbeit war die Optimierung von molekularstrahlepitak- tisch hergestellten Interbandkaskadenlasern auf GaSb - Basis im Spektralbereich des mittleren Infrarot f{\"u}r den Einsatz in der Gassensorik. Dies impliziert die Erm{\"o}gli- chung von Dauerstrichbetrieb bei Raumtemperatur, das Erreichen m{\"o}glichst geringer Schwellenleistungen sowie die Entwicklung eines flexiblen Konzepts zur Selektion von nur einer longitudinalen Mode. Da die Qualit{\"a}t der gewachsenen Schichten die Grundvoraussetzung f{\"u}r die Herstel- lung von performanten Bauteilen darstellt, wurde diese im Rahmen verschiedener Wachstumsserien eingehend untersucht. Nachdem das Flussverh{\"a}ltnis zwischen den Gruppe -V Elementen Sb und As ermittelt werden konnte, bei dem die InAs/AlSb - {\"U}bergitter der Mantelschichten verspannungskompensiert hergestellt werden k{\"o}nnen, wurde die optimale Substrattemperatur beim Wachstum dieser zu 450 ◦C bestimmt. Anhand von PL - sowie HRXRD- Messungen an Testproben konnte auch die opti- male Substrattemperatur beim Wachstum der charakteristischen W- Quantenfilme zu 450 ◦C festgelegt werden. Als weiterer kritischer Parameter konnte der As - Fluss beim Wachstum der darin enthaltenen InAs - Schichten identifiziert werden. Die bes- ten Ergebnisse wurden dabei mit einem As - Fluss von (1.2 ± 0.2) × 10-6 torr erzielt. Dar{\"u}ber hinaus konnte in Kooperation mit der Technischen Universit{\"a}t Breslau eine sehr hohe guteWachstumshomogenit{\"a}t auf den verwendeten 2′′ großen GaSb -Wafern nachgewiesen werden. Im Anschluss an die Optimierung des Wachstums verschiedener funktioneller Be- standteile wurden basierend auf einem in der Literatur ver{\"o}ffentlichten Laserschicht- aufbau diverse Variationen mit dem Ziel der Optimierung der Laserkenndaten unter- sucht. Zum Vergleich wurden 2.0 mm lange und 150 μm breite, durch die aktive Zone ge{\"a}tzte Breitstreifenlaser herangezogen. Eine erhebliche Verbesserung der Kenndaten konnte durch die Anwendung des Kon- zepts des Ladungstr{\"a}gerausgleichs in der aktiven Zone erreicht werden. Bei einer Si - Dotierkonzentration von 5.0 × 1018 cm-3 in den inneren vier InAs - Filmen des Elektroneninjektors konnte die niedrigste Schwellenleistungsdichte von 491W/cm2 erreicht werden, was einer Verbesserung von 59\% gegen{\"u}ber des Referenzlasers ent- spricht. Mithilfe l{\"a}ngenabh{\"a}ngiger Messungen konnte gezeigt werden, dass der Grund f{\"u}r die Verbesserung in der deutlichen Reduzierung der internen Verluste auf nur 11.3 cm-1 liegt. Weiterhin wurde die Abh{\"a}ngigkeit der Laserkenngr{\"o}ßen von der Anzahl der verwendeten Kaskaden in den Grenzen von 1 bis 12 untersucht. Wie das Konzept der Kaskadierung von Quantenfilmen erwarten ließ, wurde eine mo- notone Steigerung des Anstiegs der Strom - Lichtleistungskennlinie sowie eine Pro- portionalit{\"a}t zwischen der Einsatzspannung und der Kaskadenzahl nachgewiesen. F{\"u}r ICLs mit einer gegebenen Wellenleiterkonfiguration und einer Wellenl{\"a}nge um 3.6 μm wurde bei einer Temperatur von 20 ◦C mit 326W/cm2 die niedrigste Schwel- lenleistungsdichte bei einem ICL mit vier Kaskaden erreicht. Des Weiteren konnte f{\"u}r einen ICL mit 10 Kaskaden und einer Schwellenstromdichte von unter 100A/cm2 ein Bestwert f{\"u}r Halbleiterlaser in diesem Wellenl{\"a}ngenbereich aufgestellt werden. Eine weitere Reduktion der Schwellenleistungsdichte um 24\% konnte anhand von Lasern mit f{\"u}nf Kaskaden durch die Reduktion der Te - Dotierung von 3 × 1017 cm-3 auf 4 × 1016 cm-3 im inneren Teil der SCLs erreicht werden. Auch hier wurde mit- tels l{\"a}ngenabh{\"a}ngiger Messungen eine deutliche Reduktion der internen Verluste nachgewiesen. In einer weiteren Untersuchung wurde der Einfluss der SCL - Dicke auf die spektralen sowie elektro - optischen Eigenschaften untersucht. Dar{\"u}ber hin- aus konnten ICLs realisiert werden, deren Mantelschichten nicht aus kurzperiodigen InAs/AlSb - {\"U}bergittern sondern aus quatern{\"a}rem Al0.85Ga0.15As0.07Sb0.93 bestehen. F{\"u}r einen derartig hergestellten ICL konnte eine Schwellenstromdichte von 220A/cm2 bei einer Wellenl{\"a}nge von 3.4 μm gezeigt werden. Mithilfe der durch die verschiedenen Optimierungen gewonnenen Erkenntnisse so- wie Entwurfskriterien aus der Literatur wurden im Rahmen diverser internationaler Kooperationsprojekte ICLs bei verschiedenen Wellenl{\"a}ngen zwischen 2.8 und 5.7 μm hergestellt. Der Vergleich der Kenndaten zeigt einen eindeutigen Trend zu einer stei- genden Schwellenstromdichte mit steigender Wellenl{\"a}nge. Die charakteristische Tem- peratur der untersuchten Breitstreifenlaser nimmt von circa 65K bei lambda=3.0 μm mit steigender Wellenl{\"a}nge auf ein Minimum von 35K im Wellenl{\"a}ngenbereich um 4.5 μm ab und steigt mit weiter steigender Wellenl{\"a}nge wieder auf 45K an. Ein m{\"o}glicher Grund f{\"u}r dieses Verhalten konnte mithilfe von Simulationen in der Anordnung der Valenzb{\"a}nder im W-Quantenfilm gefunden werden. Zur Untersuchung der Tauglichkeit der epitaktisch hergestellten Schichten f{\"u}r den in der Anwendung hilfreichen Dauerstrichbetrieb oberhalb von Raumtemperatur wur- den Laser in Stegwellenleitergeometrie mit einer aufgalvanisierten Goldschicht zur verbesserten W{\"a}rmeabfuhr hergestellt. Nach dem Aufbau der Laser auf W{\"a}rmesen- ken wurde der Einfluss der Kavit{\"a}tsl{\"a}nge sowie der Stegbreite auf diverse Kennda- ten untersucht. Des Weiteren wurden eine Gleichung verifiziert, welche es erlaubt die maximal erreichbare Betriebstemperatur im Dauerstrichbetrieb aus der auf die Schwellenleistung bezogenen charakteristischen Temperatur sowie dem thermischen Widerstand des Bauteils zu berechnen. Mithilfe von optimierten Bauteilen konn- ten Betriebstemperaturen von mehr als 90 ◦C und Ausgangsleistungen von mehr als 100mW bei einer Betriebstemperatur von 20 ◦C erreicht werden. Im Hinblick auf die Anwendung der Laser in der Absorptionsspektroskopie wurde ab- schließend ein DFB-Konzept, welches zuvor bereits in konventionellen Diodenlasern zur Anwendung kam, erfolgreich auf das ICL - Material {\"u}bertragen. Dabei kommt ein periodisches Metallgitter zum Einsatz, welches seitlich der ge{\"a}tzten Stege aufge- bracht wird und aufgrund von Verlustkopplung eine longitudinale Mode bevorzugt. Durch den Einsatz von unterschiedlichen Gitterperioden konnten monomodige ICLs basierend auf dem selben Epitaxiematerial in einem spektralen Bereich von mehr als 100nm hergestellt werden. Ein 2.4mm langer DFB- Laser konnte einen Abstimmbe- reich von mehr als 10nm bei Verschiebungsraten von 0.310nm/K und 0.065nm/mA abdecken. Der DFB- ICL zeigte im Dauerstrichbetrieb in einem Temperaturbereich zwischen 10 und 35 ◦C monomodigen Betrieb mit einer Ausgangsleistung von mehre- ren mW. Basierend auf dem in dieser Arbeit gewachsenem Material und dem DFB- Konzept konnte im Rahmen verschiedener Entwicklungsprojekte bereits erfolgreich Absorptionsspektroskopie in einem breiten Spektralbereich des mittleren Infrarot be- trieben werden.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Schielein2018, author = {Schielein, Richard}, title = {Analytische Simulation und Aufnahmeplanung f{\"u}r die industrielle R{\"o}ntgencomputertomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169236}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {R{\"o}ntgencomputertomographie (CT) hat in ihrer industriellen Anwendung ein sehr breites Spektrum m{\"o}glicher Pr{\"u}fobjekte. Ziel einer CT-Messung sind dreidimensionale Abbilder der Verteilung des Schw{\"a}chungskoeffizienten der Objekte mit m{\"o}glichst großer Genauigkeit. Die Parametrierung eines CT-Systems f{\"u}r ein optimales Messergebnis h{\"a}ngt stark vom zu untersuchenden Objekt ab. Eine Vorhersage der optimalen Parameter muss die physikalischen Wechselwirkungen mit R{\"o}ntgenstrahlung des Objektes und des CT-Systems ber{\"u}cksichtigen. Die vorliegende Arbeit befasst sich damit, diese Wechselwirkungen zu modellieren und mit der M{\"o}glichkeit den Prozess zur Parametrierung anhand von G{\"u}temaßen zu automatisieren. Ziel ist eine simulationsgetriebene, automatische Parameteroptimierungsmethode, welche die Objektabh{\"a}ngigkeit ber{\"u}cksichtigt. Hinsichtlich der Genauigkeit und der Effizienz wird die bestehende R{\"o}ntgensimulationsmethodik erweitert. Es wird ein Ansatz verfolgt, der es erm{\"o}glicht, die Simulation eines CT-Systems auf reale Systeme zu kalibrieren. Dar{\"u}ber hinaus wird ein Modell vorgestellt, welches zur Berechnung der zweiten Ordnung der Streustrahlung im Objekt dient. Wegen des analytischen Ansatzes kann dabei auf eine Monte-Carlo Methode verzichtet werden. Es gibt in der Literatur bisher keine eindeutige Definition f{\"u}r die G{\"u}te eines CT-Messergebnisses. Eine solche Definition wird, basierend auf der Informationstheorie von Shannon, entwickelt. Die Verbesserungen der Simulationsmethodik sowie die Anwendung des G{\"u}temaßes zur simulationsgetriebenen Parameteroptimierung werden in Beispielen erfolgreich angewendet beziehungsweise mittels Referenzmethoden validiert.}, subject = {Computertomografie}, language = {de} } @phdthesis{Kreutner2018, author = {Kreutner, Jakob}, title = {Charakterisierung des Knochens und seiner Mikrostruktur mit hochaufl{\"o}sender 3D-MRT}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168858}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Neue Therapieans{\"a}tze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosem{\"o}glichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher r{\"a}umlicher Pr{\"a}zision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ans{\"a}tze f{\"u}r die hochaufl{\"o}sende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer pr{\"a}-klinischen Studie an einem Modell der H{\"u}ftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen r{\"a}umlichen Aufl{\"o}sung, konnten durch eine systematische Auswertung der Signalintensit{\"a}ten von T1- und T2-FS-gewichteten Aufnahmen R{\"u}ckschl{\"u}sse {\"u}ber Ver{\"a}nderungen in der Mikrostruktur gezogen werden, die dar{\"u}ber hinaus in guter {\"U}bereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) erm{\"o}glicht und eine unabh{\"a}ngige Bewertung erreicht. Um die Limitationen der begrenzten Aufl{\"o}sung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ans{\"a}tze f{\"u}r eine hochaufgel{\"o}ste 3D-Aufnahme entwickelt. Hierf{\"u}r wurden Spin-Echo-basierte Sequenzen gew{\"a}hlt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldst{\"a}rke von 1,5 T mit einer hohen r{\"a}umlichen Aufl{\"o}sung innerhalb einer vertretbaren Zeit erzielt werden k{\"o}nnen, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 \% h{\"o}here Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Aufl{\"o}sung von 160 × 160 × 400 µm. F{\"u}r die Bildgebung des H{\"u}ftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um l{\"a}ngere Messzeiten durch ein unn{\"o}tig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdr{\"u}ckt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gel{\"o}st. Technisch bedingt konnte jedoch nicht eine vergleichbare Aufl{\"o}sung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden k{\"o}nnen, konnte jedoch erfolgreich auf den Unterkiefer {\"u}bertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine d{\"u}nne kn{\"o}cherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdr{\"u}ckung von Einfaltungsartefakten eine {\"a}hnlich gute Lokalisierung des Nervenkanals {\"u}ber die gesamte L{\"a}nge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte dar{\"u}ber hinaus die Aufl{\"o}sung im Vergleich zu bisherigen Studien deutlich erh{\"o}ht werden, was insgesamt eine pr{\"a}zisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese f{\"u}r die klinische Anwendung zugelassen werden. Die durchgef{\"u}hrten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengr{\"o}ße und Wandst{\"a}rke. Dar{\"u}ber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter {\"U}bereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverl{\"a}ssige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsm{\"o}glichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldst{\"a}rke in vivo Voxelgr{\"o}ßen im Submillimeterbereich f{\"u}r alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der r{\"a}umlichen Aufl{\"o}sung erh{\"o}hen die Genauigkeit der verschiedenen Anwendungen und erm{\"o}glichen eine bessere Identifikation von kleinen Abweichungen, was eine fr{\"u}here und zuverl{\"a}ssigere Diagnose f{\"u}r Patienten verspricht.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Bendias2018, author = {Bendias, Michel Kalle}, title = {Quantum Spin Hall Effect - A new generation of microstructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168214}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The presented thesis summarizes the results from four and a half years of intense lithography development on (Cd,Hg)Te/HgTe/(Cd,Hg)Te quantum well structures. The effort was motivated by the unique properties of this topological insulator. Previous work from Molenkamp at al.\ has proven that the transport through such a 2D TI is carried by electrons with opposite spin, counter-propagating in 1D channels along the sample edge. However, up to this thesis, the length of quantized spin Hall channels has never been reported to exceed 4 µm. Therefore, the main focus was put on a reproducible and easy-to-handle fabrication process that reveals the intrinsic material parameters. Every single lithography step in macro as well as microscopic sample fabrication has been re-evaluated. In the Development, the process changes have been presented along SEM pictures, microgaphs and, whenever possible, measurement responses. We have proven the conventional ion milling etch method to damage the remaining mesa and result in drastically lower electron mobilities in samples of microscopic size. The novel KI:I2:HBr wet etch method for macro and microstructure mesa fabrication has been shown to leave the crystalline structure intact and result in unprecedented mobilities, as high as in macroscopic characterization Hall bars. Difficulties, such as an irregular etch start and slower etching of the conductive QW have been overcome by concentration, design and etch flow adaptations. In consideration of the diffusive regime, a frame around the EBL write field electrically decouples the structure mesa from the outside wafer. As the smallest structure, the frame is etched first and guarantees a non-different etching of the conductive layer during the redox reaction. A tube-pump method assures reproducible etch results with mesa heights below 300 nm. The PMMA etch mask is easy to strip and leaves a clean mesa with no redeposition. From the very first attempts, to the final etch process, the reader has been provided with the characteristics and design requirements necessary to enable the fabrication of nearly any mesa shape within an EBL write field of 200 µm. Magneto resistance measurement of feed-back samples have been presented along the development chronology of wet etch method and subsequent lithography steps. With increasing feature quality, more and more physics has been revealed enabling detailed evaluation of smallest disturbances. The following lithography improvements have been implemented. They represent a tool-box for high quality macro and microstructure fabrication on (CdHg)Te/HgTe of almost any kind. The optical positive resist ECI 3027 can be used as wet and as dry etch mask for structure sizes larger than 1 µm. It serves to etch mesa structures larger than the EBL write field. The double layer PMMA is used for ohmic contact fabrication within the EBL write field. Its thickness allows to first dry etch the (Cd,Hg)Te cap layer and then evaporate the AuGe contact, in situ and self-aligned. Because of an undercut, up to 300 nm can be metalized without any sidewalls after the lift-off. An edge channel mismatch within the contact leads can be avoided, if the ohmic contacts are designed to reach close to the sample and beneath the later gate electrode. The MIBK cleaning step prior to the gate application removes PMMA residuals and thereby improves gate and potential homogeneity. The novel low HfO2-ALD process enables insulator growth into optical and EBL lift-off masks of any resolvable shape. Directly metalized after the insulator growth, the self-aligned method results in thin and homogeneous gate electrode reproducibly withholding gate voltages to +-10 V. The optical negative resist ARN 4340 exhibits an undercut when developed. Usable as dry etch mask and lift-off resist, it enables an in-situ application of ohmic contacts first etching close to the QW, then metalizing AuGe. Up to 500 nm thickness, the undercut guarantees an a clean lift-off with no sidewalls. The undertaken efforts have led to micro Hall bar measurements with Hall plateaus and SdH-oszillations in up to now unseen levels of detail. The gap resistance of several micro Hall bars with a clear QSH signal have been presented in Quantum Spin Hall. The first to exhibit longitudinal resistances close to the expected h/2e2 since years, they reveal unprecedented details in features and characteristics. It has been shown that their protection against backscattering through time reversal symmetry is not as rigid as previously claimed. Values below and above 12.9 kΩ been explained, introducing backscattering within the Landauer-B{\"u}ttiker formalism of edge channel transport. Possible reasons have been discussed. Kondo, interaction and Rashba-backscattering arising from density inhomogeneities close to the edge are most plausible to explain features on and deviations from a quantized value. Interaction, tunneling and dephasing mechanisms as well as puddle size, density of states and Rashba Fields are gate voltage dependent. Therefore, features in the QSH signal are fingerprints of the characteristic potential landscape. Stable up to 11 K, two distinct but clear power laws have been found in the higher temperature dependence of the QSH in two samples. However, with ΔR = Tα, α = ¼ in one (QC0285) and α = 2 in the other (Q2745), none of the predicted dependencies could be confirmed. Whereas, the gap resistances of QC0285 remains QSH channel dominated up to 3.9 T and thereby confirmed the calculated lifting of the band inversion in magnetic field. The gate-dependent oscillating features in the QSH signal of Q2745 immediately increase in magnetic field. The distinct field dependencies allowed the assumption of two different dominant backscattering mechanisms. Resulting in undisturbed magneto transport and unprecedented QSH measurements The Novel Micro Hall Bar Process has proven to enable the fabrication of a new generation of microstructures.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Sidiropoulou2018, author = {Sidiropoulou, Ourania}, title = {Characterization of the ATLAS-type Micromegas Detectors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167323}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Micromegas are parallel-plate gaseous detectors with micro-pattern readout structures that are able to measure precisely and efficiently at high particle rates. Their difference with respect to other gaseous detectors is that the space in which particles ionise the gas and create electrons is separated from the region in which these electrons are multiplied (or amplified) by a thin metallic mesh. In the ionisation region, typically a few mm thick, a moderate field of a few hundred V/cm is applied. The amplification region with a homogeneous electrical field of 40--50~kV/cm is only 100--150~\$\upmu\$m thick. The latter guarantees that the positive ions produced in the amplification process are rapidly evacuated and the possibility to build up space charge at high rate is reduced. Critical in micromegas detectors are sparks in the thin amplification region in the presence of the high electrical field. This problem was solved in 2011 by introducing a spark protection scheme. It consists of a layer of resistive strips on top of the readout strips, separated from the latter by a thin insulation layer. Micromegas with the spark protection scheme were selected as instrumentation of the first ATLAS forward muon station (NSW) in the upgrade of the ATLAS detector for the operation of the Large Hadron Collider (LHC) at high luminosity (HL-LHC), expected for 2026. The main subjects of this thesis are: the characterisation of the first micromegas quadruplet prototypes for the NSW detectors; the characterisation of the materials used in the spark-protection system; and the study of the influence of the mesh distance holders (pillars) on the detector performance. The thesis starts with a brief introduction into the LHC and ATLAS projects, followed by a chapter that explains the reason for the upgrade of the ATLAS muon system and shows the layout of the NSW. The first of the three main chapters covers the construction and the characterisation of the first two prototypes for the NSW detectors. These detectors comprise four detection layers and have the same mechanical structure as the NSW detectors. The mechanical precision as well as the homogeneity of the detector response are discussed. The latter has been measured using X-rays and cosmic rays. The spatial resolution that can be achieved with these detectors precision has been measured at the MAMI accelerator at Mainz with low-energy electrons. The chapter is completed by a section that describes the successful integration of a data acquisition system (DAQ) into the official ATLAS DAQ system that was required for an initially planned installation of one of the prototypes on the existing Small Wheel. The next chapter presents a study of the influence of temperature and humidity changes on the resistive strips used in the spark protection system. In addition the long-term stability of the resistive material has been measured accumulating charge equivalent to 100 years of operation in the HL-LHC and exposing the samples to intense gamma irradiation equivalent to 10 years of HL-LHC operation. The third part covers the impact of the mesh distance holders (pillars) on the performance of the detector. This study has been performed with a 10 x 10 cm\$^2\$ bulk-micromegas with two different pillar shapes. Both 5.9 keV gammas from a \$^{55}\$Fe and 8 keV X-rays from a Cu target were used. In this context also the electrostatic charge-up of the detector is discussed. In the Appendices one finds a summary of the fundamental physics relevant for gaseous detectors as well as some supporting material for the topics covered in the main part of the thesis.}, subject = {ATLAS }, language = {en} } @phdthesis{Razinskas2018, author = {Razinskas, Gary}, title = {Functional plasmonic nanocircuitry}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this work, functional plasmonic nanocircuitry is examined as a key of revolutionizing state-of-the-art electronic and photonic circuitry in terms of integration density and transmission bandwidth. In this context, numerical simulations enable the design of dedicated devices, which allow fundamental control of photon flow at the nanometer scale via single or multiple plasmonic eigenmodes. The deterministic synthesis and in situ analysis of these eigenmodes is demonstrated and constitutes an indispensable requirement for the practical use of any device. By exploiting the existence of multiple eigenmodes and coherence - both not accessible in classical electronics - a nanoscale directional coupler for the ultrafast spatial and spatiotemporal coherent control of plasmon propagation is conceived. Future widespread application of plasmonic nanocircuitry in quantum technologies is boosted by the promising demonstrations of spin-optical and quantum plasmonic nanocircuitry.}, subject = {Nanooptik}, language = {en} } @phdthesis{Maier2018, author = {Maier, Patrick}, title = {Memristanz und Memkapazit{\"a}t von Quantenpunkt-Speichertransistoren: Realisierung neuromorpher und arithmetischer Operationen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164234}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In dieser Arbeit werden Quantenpunkt-Speichertransistoren basierend auf modulationsdotierten GaAs/AlGaAs Heterostrukturen mit vorpositionierten InAs Quantenpunkten vorgestellt, welche in Abh{\"a}ngigkeit der Ladung auf den Quantenpunkten unterschiedliche Widerst{\"a}nde und Kapazit{\"a}ten aufweisen. Diese Ladungsabh{\"a}ngigkeiten f{\"u}hren beim Anlegen von periodischen Spannungen zu charakteristischen, durch den Ursprung gehenden Hysteresen in der Strom-Spannungs- und der Ladungs-Spannungs-Kennlinie. Die ladungsabh{\"a}ngigen Widerst{\"a}nde und Kapazit{\"a}ten erm{\"o}glichen die Realisierung von neuromorphen Operationen durch Nachahmung von synaptischen Funktionalit{\"a}ten und arithmetischen Operationen durch Integration von Spannungs- und Lichtpulsen.}, subject = {Nichtfl{\"u}chtiger Speicher}, language = {de} } @phdthesis{Treisch2018, author = {Treisch, Florian}, title = {Die Entwicklung der Professionellen Unterrichtswahrnehmung im Lehr-Lern-Labor Seminar}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164170}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Der {\"U}bergang vom der ersten Phase der Lehramtsausbildung ins Referendariat wird h{\"a}ufig mit dem Begriff „Praxisschock" verbunden. Viele Studierende und Referendare f{\"u}hlen sich unzureichend auf den Unterricht in der Schule vorbereitet. Sie fordern deshalb eine st{\"a}rkere Verzahnung von Theorie und Praxis, also eine Anwendung der erlernten Theorien in „echten" Praxisphasen auch schon in der ersten Phase der Lehramtsausbildung. Das Lehr-Lern-Labor Seminar der Universit{\"a}t W{\"u}rzburg kann dazu beitragen, diese Verbindung von Theorie und Praxis herzustellen. Grundlegend sollen die Studierenden in diesem Seminar ihr fachliches, didaktisches und p{\"a}dagogisches (Vor-)Wissen aufgreifen und in komplexit{\"a}tsreduzierten Handlungsumgebungen anwenden. Dabei sollen sie im Rahmen des Lehr-Lern-Labor Seminars zun{\"a}chst Experimentierstationen zu vorgegebenen Themengebieten aus dem bayerischen Lehrplan konzipieren, um anschließend mehrmals Sch{\"u}lerinnen und Sch{\"u}ler an diesen Stationen zu betreuen. Im Sinne einer iterativen Praxis werden die Betreuungen mehrmals von den Studierenden zusammen mit zwei Dozenten reflektiert. Letztlich wiederholen sich die Betreuungen, die Reflexionsphasen und m{\"o}gliche Verbesserungen der Stationen viermal in einem zyklischen Prozess. F{\"u}r die Verkn{\"u}pfung von theoretischem Wissen in konkreten Handlungssituationen sind Wahrnehmungsprozesse von Bedeutung. Die sogenannte Professionelle Unterrichts-wahrnehmung beschreibt die F{\"a}higkeit, relevante Unterrichtssituationen zu erkennen und theoriebezogen zu bewerten. Sie verkn{\"u}pft das zugrunde liegende Wissen mit konkreten Handlungssituationen und dient somit als Bindeglied zwischen dem Wissen und dem Handeln, welches speziell in Reflexionsphasen gef{\"o}rdert werden kann. Durch die mehrmaligen Reflexionsprozesse der eigenen Betreuungen und die der Kommilitonen im Lehr-Lern-Labor Seminar k{\"o}nnte es eine vielversprechende Grundlage zur F{\"o}rderung der Professionellen Unterrichtswahrnehmung darstellen. Die grundlegende Fragestellung der vorliegenden Arbeit ist es daher zu untersuchen, ob sich die Professionelle Unterrichtswahrnehmung im Rahmen des Lehr-Lern-Labor Seminars f{\"o}rdern l{\"a}sst und inwieweit neu integrierte Videoanalysen der eigenen Betreuungen und die der Kommilitonen die Professionelle Unterrichtswahrnehmung der Studierenden zus{\"a}tzlich f{\"o}rdern. Weiterhin interessiert, ob personenspezifische Merkmale einen zus{\"a}tzlichen Einfluss auf die Entwicklung der Professionellen Unterrichtswahrnehmung aus{\"u}ben. Erg{\"a}nzend wird untersucht, ob zwischen dem Fachwissen, dem didaktischen Wissen und der Professionellen Unterrichtswahrnehmung Zusammenh{\"a}nge bestehen. Dies k{\"o}nnte Aufschluss darauf geben, inwieweit Fachwissen und didaktisches Wissen die Entwicklung der Professionellen Unterrichtswahrnehmung im Seminar bedingen. Diese Arbeit leistet somit einen wichtigen Beitrag zur Untersuchung der Wirksamkeit eines Lehr-Lern-Labor Seminars, welches in die Ausbildung von Physiklehrkr{\"a}ften integriert wurde und zeigt auf, wie das Seminar bez{\"u}glich der F{\"o}rderung der Professionellen Unterrichtswahrnehmung effektiver gestaltet werden kann.}, subject = {Lehramtsstudium}, language = {de} } @phdthesis{Finkenberg2018, author = {Finkenberg, Frank}, title = {Flipped Classroom im Physikunterricht}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164146}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In der Unterrichtsmethode Flipped Classroom sind schulische und h{\"a}usliche Aktivit{\"a}ten vertauscht. Instruktionale Elemente werden in online verf{\"u}gbare Lernvideos ausgelagert, welche die Sch{\"u}ler als h{\"a}usliche Vorbereitung ansehen. Im Unterricht stehen dann sch{\"u}lerzentrierte T{\"a}tigkeiten im Vordergrund, in denen die Sch{\"u}ler ihr Wissen anwenden und vertiefen k{\"o}nnen. Durch die Auslagerung von Inputphasen wandelt sich die Rolle des Lehrers vom Instructor zum Lernbegleiter. Die vorliegende quasi-experimentelle Studie im Pre-/Postdesign mit Kontrollgruppe untersuchte die Wirkungen des Flipped Classroom in Physikkursen der Oberstufe (Grundkursniveau) an zwei deutschen Gymnasien mit N = 151 Sch{\"u}lerinnen und Sch{\"u}lern. Acht Physikkurse der 11. Jahrgangsstufe nahmen an der Studie teil, die sich {\"u}ber einen Zeitraum von zwei Schuljahren erstreckte (2015/16 und 2016/17). Vier der f{\"u}nf teilnehmenden Lehrkr{\"a}fte unterrichteten sowohl einen Kontroll- als auch einen Treatmentkurs. S{\"a}mtliche Lernvideos wurden von den Lehrkr{\"a}ften selbst erstellt. Dabei integrierten sie reale Experimente, um dem Anspruch physikauthentischen Unterrichts gerecht zu werden. Die Forschungsfragen richteten sich sowohl auf die Leistung in einem Fachwissenstest als auch auf affektive Lernmerkmale wie die Motivation, das Interesse und das Selbstkonzept. Zus{\"a}tzlich wurden die wahrgenommene Lehrerunterst{\"u}tzung und das Hausaufgabenverhalten untersucht. Die Anwendung von Flipped Classroom im Physikunterricht zeigte gr{\"o}ßtenteils positive Effekte. Die Sch{\"u}lerinnen und Sch{\"u}ler im Flipped Classroom hatten einen h{\"o}heren kognitiven Lernzuwachs und ein besseres Selbstkonzept als ihre Mitsch{\"u}ler, die traditionell unterrichtet wurden. Das Leistungsniveau und das Geschlecht der Sch{\"u}lerinnen und Sch{\"u}ler hatten dabei keinen Einfluss auf diese Effekte. W{\"a}hrend die Motivation, sich mit Physik zu besch{\"a}ftigen, in der Kontrollgruppe sank, blieb sie in der Treatmentgruppe auf konstantem Niveau. Bei genauerem Blick zeigte sich, dass die Motivation bei Sch{\"u}lerinnen im Flipped Classroom anstieg, bei Sch{\"u}lerinnen im traditionellen Unterricht jedoch abnahm. Das Interesse am Unterrichtsfach Physik wurde in beiden Gruppen geringer. Sowohl die wahrgenommene Lehrerunterst{\"u}tzung als auch die Hausaufgabendauer blieben in beiden Gruppen zwischen Pre- und Posttest unver{\"a}ndert. Die Hausaufgabendisziplin war im Flipped Classroom jedoch deutlich h{\"o}her, was zeigt, dass die Sch{\"u}lerinnen und Sch{\"u}ler eher bereit waren, sich instruktionale Lernvideos anzusehen als klassische Hausaufgaben zu bearbeiten.}, subject = {Physikunterricht}, language = {de} } @phdthesis{Pfenning2018, author = {Pfenning, Andreas Theo}, title = {Optoelektronische Transportspektroskopie an Resonanztunneldioden-Fotodetektoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163205}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit optoelektronischer Transportspektroskopie verschiedener Resonanztunneldioden (RTDs). Die Arbeit ist thematisch in zwei Schwerpunktee untergliedert. Im ersten Schwerpunkt werden anhand GaAs-basierter RTD-Fotosensoren f{\"u}r den Telekommunikationswellenl{\"a}ngenbereich um 1,3 µm die Akkumulationsdynamiken photogenerierter Minorit{\"a}tsladungstr{\"a}ger und deren Wirkung auf den RTD-Tunnelstrom untersucht. Im zweiten Schwerpunkt werden GaSb-basierte Al(As)Sb/GaSb-Doppelbarrieren-Quantentrog-RTDs in Hinblick auf ihren Raumtemperaturbetrieb entwickelt und erforscht. Diese legen den Grundstein f{\"u}r die sp{\"a}tere Realisation von RTD-Fotodetektoren im mittleren infraroten (MIR) Spektralbereich. Im Folgenden ist eine kurze inhaltliche Zusammenfassung der einzelnen Kapitel gegeben. Kapitel 1 leitet vor dem Hintergrund eines stark steigenden Bedarfs an verl{\"a}sslichen und sensitiven Fotodetektoren f{\"u}r Telekommunikationsanwendungen sowie f{\"u}r die optische Molek{\"u}l- und Gasspektroskopie in das {\"u}bergeordnete Thema der RTD-Fotodetektoren ein. Kapitel 2 erl{\"a}utert ausgew{\"a}hlte physikalische und technische Grundlagen zu RTD-Fotodetektoren. Ausgehend von einem kurzem {\"U}berblick zu RTDs, werden aktuelle Anwendungsgebiete aufgezeigt und die physikalischen Grundlagen elektrischen Transports in RTDs diskutiert. Anschließend werden Grundlagen, Definitionen und charakteristische Kenngr{\"o}ßen optischer Detektoren und Sensoren definiert. Abschließend werden die physikalischen Grundlagen zum Fotostrom in RTDs beschrieben. In Kapitel 3 RTD-Fotosensor zur Lichtdetektion bei 1,3 µm werden AlGaAs/GaAs-Doppelbarrieren-Quantentrog-Resonanztunneldioden (DBQW-RTDs) mit gitterangepasster, quatern{\"a}rer GaInNAs-Absorptionsschicht als Raumtemperatur-Fotodetektoren f{\"u}r den nahen infraroten (NIR) Spektralbereich bei der Telekommunikationswellenl{\"a}nge von λ=1,3 µm untersucht. RTDs sind photosensitive Halbleiterbauteile, die innerhalb der vergangenen Jahre aufgrund ihrer hohen Fotosensitivit{\"a}t und F{\"a}higkeit selbst einzelne Photonen zu detektieren, ein beachtliches Interesse geweckt haben. Die RTD-Fotosensitivit{\"a}t basiert auf einer Coulomb-Wechselwirkung photogenerierter und akkumulierter Ladungstr{\"a}ger. Diese ver{\"a}ndern das lokale elektrostatische Potential und steuern so einen empfindlichen Resonanztunnelstrom. Die Kenntnis der zugrundeliegenden physikalischen Parameter und deren Spannungsabh{\"a}ngigkeit ist essentiell, um optimale Arbeitspunkte und Bauelementdesigns zu identifizieren. Unterkapitel 3.1 gibt einen {\"U}berblick {\"u}ber das Probendesign der untersuchten RTD-Fotodetektoren, deren Fabrikationsprozess sowie eine Erl{\"a}uterung des Fotodetektionsmechanismus. {\"U}ber Tieftemperatur-Elektrolumineszenz-Spektroskopie wird die effektive RTD-Quantentrog-Breite zu d_DBQW≃3,4 nm bestimmt. Die Quantisierungsenergien der Elektron- und Schwerloch-Grundzust{\"a}nde ergeben sich zu E_Γ1≈144 meV und E_hh1≈39 meV. Abschließend wird der in der Arbeit verwendeten Messaufbau skizziert. In Unterkapitel 3.2 werden die physikalischen Parameter, die die RTD-Fotosensitivit{\"a}t bestimmen, auf ihre Spannungsabh{\"a}ngigkeit untersucht. Die Fotostrom-Spannungs-Kennlinie des RTD-Fotodetektors ist nichtlinear und {\"u}ber drei spannungsabh{\"a}ngige Parametern gegeben: der RTD-Quanteneffizienz η(V), der mittleren Lebensdauer photogenerierter und akkumulierter Minorit{\"a}tsladungstr{\"a}ger (L{\"o}cher) τ(V) und der RTD-I(V)-Kennlinie im Dunkeln I_dark (V). Die RTD Quanteneffizienz η(V) kann {\"u}ber eine Gaußsche-Fehlerfunktion modelliert werden, welche beschreibt, dass Lochakkumulation erst nach {\"U}berschreiten einer Schwellspannung stattfindet. Die mittlere Lebensdauer τ(V) f{\"a}llt exponentiell mit zunehmender Spannung V ab. {\"U}ber einen Vergleich mit thermisch limitierten Lebensdauern in Quantentr{\"o}gen k{\"o}nnen Leitungsband- und Valenzband-Offset zu Q_C \≈0,55 und Q_V≈0,45 abgesch{\"a}tzt werden. Basierend auf diesen Ergebnissen wird ein Modell f{\"u}r die Fotostrom-Spannungs-Kennlinie erstellt, das eine elementare Grundlage f{\"u}r die Charakterisierung von RTD-Photodetektoren bildet. In Unterkapitel 3.3 werden die physikalischen Parameter, die die RTD-Fotosensitivit{\"a}t beschr{\"a}nken, detailliert auf ihre Abh{\"a}ngigkeit gegen{\"u}ber der einfallenden Lichtleistung untersucht. Nur f{\"u}r kleine Lichtleistungen wird eine konstante Sensitivit{\"a}t von S_I=5,82×〖10〗^3 A W-1 beobachtet, was einem Multiplikationsfaktor von M=3,30×〖10〗^5 entspricht. F{\"u}r steigende Lichtleistungen f{\"a}llt die Sensitivit{\"a}t um mehrere Gr{\"o}ßenordnungen ab. Die abfallende, nichtkonstante Sensitivit{\"a}t ist maßgeblich einer Reduktion der mittleren Lebensdauer τ zuzuschreiben, die mit steigender Lochpopulation exponentiell abf{\"a}llt. In Kombination mit den Ergebnissen aus Unterkapitel 3.2 wird ein Modell der RTD-Fotosensitivit{\"a}t vorgestellt, das die Grundlage einer Charakterisierung von RTD-Fotodetektoren bildet. Die Ergebnisse k{\"o}nnen genutzt werden, um die kritische Lichtleistung zu bestimmen, bis zu der der RTD-Fotodetektor mit konstanter Sensitivit{\"a}t betrieben werden kann, oder um den idealen Arbeitspunkt f{\"u}r eine minimale rausch{\"a}quivalente Leistung (NEP) zu identifizieren. Dieser liegt f{\"u}r eine durch theoretisches Schrotrauschen limitierte RTD bei einem Wert von NEP=1,41×〖10〗^(-16) W Hz-1/2 bei V=1,5 V. In Kapitel 4 GaSb-basierte Doppelbarrieren-RTDs werden unterschiedliche Al(As)Sb/GaSb-DBQW-RTDs auf ihre elektrische Transporteigenschaften untersucht und erstmalig resonantes Tunneln von Elektronen bei Raumtemperatur in solchen Resonanztunnelstrukturen demonstriert. Unterkapitel 4.1 beschreibt den Wachstums- und der Fabrikationsprozess der untersuchten AlAsSb/GaSb-DBQW-RTDs. In Unterkapitel 4.2 wird Elektronentransport durch eine AlSb/GaSb-DBQW-Resonanztunnelstruktur untersucht. Bei einer Temperatur von T=4,2 K konnte resonantes Tunneln mit bisher unerreicht hohen Resonanz-zu-Talstrom-Verh{\"a}ltnisse von PVCR=20,4 beobachtet werden. Dies wird auf die exzellente Qualit{\"a}t des Halbleiterkristallwachstums und des Fabrikationsprozesses zur{\"u}ckgef{\"u}hrt. Resonantes Tunneln bei Raumtemperatur konnte hingegen nicht beobachtet werden. Dies wird einer Besonderheit des Halbleiters GaSb zugeschrieben, welche daf{\"u}r sorgt, dass bei Raumtemperatur die Mehrheit der Elektronen Zust{\"a}nde am L-Punkt anstelle des Γ Punktes besetzt. Resonantes Tunneln {\"u}ber den klassischen Γ Γ Γ-Tunnelpfad ist so unterbunden. In Unterkapitel 4.3 werden die elektrischen Transporteigenschaften von AlAsSb/GaSb DBQW RTDs mit pseudomorph gewachsenen tern{\"a}ren Vorquantentopfemittern untersucht. Der prim{\"a}re Zweck der Vorquantentopfstrukturen liegt in der Erh{\"o}hung der Energieseparation zwischen Γ- und L-Punkt. So kann Elektronentransport {\"u}ber L- Kan{\"a}le unterdr{\"u}ckt und Elektronenzust{\"a}nde am Γ-Punkt wiederbev{\"o}lkert werden. Zudem ist bei gen{\"u}gend tiefen Vorquantentopfstrukturen aufgrund von Quantisierungseffekten eine Verbesserung der RTD-Transporteigenschaften m{\"o}glich. Strukturen ohne Vorquantentopf-Emitter zeigen ein Tieftemperatur- (T=77 K) Resonanz-zu-Talstrom-Verh{\"a}ltnis von PVCR=8,2, w{\"a}hrend bei Raumtemperatur kein resonantes Tunneln beobachtet werden kann. Die Integration von Ga0,84In0,16Sb- beziehungsweise GaAs0,05Sb0,95-Vorquantentopfstrukturen f{\"u}hrt zu resonantem Tunneln bei Raumtemperatur mit Resonanz-zu-Talstrom-Verh{\"a}ltnissen von PVCR=1,45 und 1,36. In Unterkapitel 4.4 wird die Abh{\"a}ngigkeit der elektrischen Transporteigenschaften von AlAsSb/GaSb RTDs vom As-Stoffmengenanteil des GaAsSb-Emitter-Vorquantentopfs und der AlAsSb-Tunnelbarriere untersucht. Eine Erh{\"o}hung der As-Stoffmengenkonzentration f{\"u}hrt zu einem erh{\"o}hten Raumtemperatur-PVCR mit Werten von bis zu 2,36 bei gleichzeitig reduziertem Tieftemperatur-PVCR. Das reduzierte Tieftemperatur-Transportverm{\"o}gen wird auf eine mit steigendem As-Stoffmengenanteil zunehmend degradierende Kristallqualit{\"a}t zur{\"u}ckgef{\"u}hrt. In Kapitel 5 AlAsSb/GaSb-RTD-Fotosensoren zur MIR-Lichtdetektion werden erstmalig RTD-Fotodetektoren f{\"u}r den MIR-Spektralbereich vorgestellt und auf ihre optoelektronischen Transporteigenschaften hin untersucht. Zudem wird erstmalig ein p-dotierter RTD-Fotodetektor demonstriert. In Unterkapitel 5.1 wird das Probendesign GaSb-basierter RTD-Fotodetektoren f{\"u}r den mittleren infraroten Spektralbereich vorgestellt. Im Speziellen werden Strukturen mit umgekehrter Ladungstr{\"a}gerpolarit{\"a}t (p- statt n-Dotierung, L{\"o}cher als Majorit{\"a}tsladungstr{\"a}ger) vorgestellt. In Unterkapitel 5.2 werden die optischen Eigenschaften der gitterangepassten quatern{\"a}ren GaInAsSb-Absorptionsschicht mittels Fourier-Transformations-Infrarot-Spektroskopie untersucht. {\"U}ber das Photolumineszenz-Spektrum wird die Bandl{\"u}ckenenergie zu E_Gap≅(447±5) meV bestimmt. Das entspricht einer Grenzwellenl{\"a}nge von λ_G≅(2,77±0,04) µm. Aus dem niederenergetischen monoexponentiellem Abfall der Linienform wird eine Urbach-Energie von E_U=10 meV bestimmt. Der hochenergetische Abfall folgt der Boltzmann-Verteilungsfunktion mit einem Abfall von k_B T=25 meV. In Unterkapitel 5.3 werden die elektrischen Transporteigenschaften der RTD-Fotodetektoren untersucht und mit denen einer n-dotierten Referenzprobe verglichen. Erstmalig wird resonantes Tunneln von L{\"o}chern in AlAsSb/GaSb-DBQW-RTDs bei Raumtemperatur demonstriert. Dabei ist PVCR=1,58. Bei T=4,2 K zeigen resonantes Loch- und Elektrontunneln vergleichbare Kenngr{\"o}ßen mit PVCR=10,1 und PVCR=11,4. Die symmetrische I(V)-Kennlinie der p-dotierten RTD-Fotodetektoren deutet auf eine geringe Valenzbanddiskontinuit{\"a}t zwischen GaSb und der GaInAsSb-Absorptionsschicht hin. Zudem sind die p-dotierten RTDs besonders geeignet f{\"u}r eine sp{\"a}tere Integration mit Typ-II-{\"U}bergittern. In Unterkapitel 5.4 werden die optoelektronischen Transporteigenschaften p-dotierter RTD-Fotodetektoren untersucht. Das vorgestellte neuartige RTD-Fotodetektorkonzept, welches auf resonanten Lochtransport als Majorit{\"a}tsladungstr{\"a}ger setzt, bietet speziell im f{\"u}r den MIR-Spektralbereich verwendeten GaSb-Materialsystem Vorteile, l{\"a}sst sich aber auch auf das InP- oder GaAs- Materialsystem {\"u}bertragen. Die untersuchten p-dotierten Fotodetektoren zeigen eine ausgepr{\"a}gte Fotosensitivit{\"a}t im MIR-Spektralbereich. Fotostromuntersuchungen werden f{\"u}r optische Anregung mittels eines Halbleiterlasers der Wellenl{\"a}nge λ=2,61 µm durchgef{\"u}hrt. Bei dieser Wellenl{\"a}nge liegen fundamentale Absorptionslinien atmosph{\"a}rischen Wasserdampfs. Die Fotostrom-Spannungs-Charakteristik best{\"a}tigt, dass die Fotosensitivit{\"a}t auf einer Modulation des resonanten Lochstroms {\"u}ber Coulomb-Wechselwirkung akkumulierter photogenerierter Minorit{\"a}tsladungstr{\"a}ger (Elektronen) beruht. Es werden Sensitivit{\"a}ten von S_I=0,13 A W-1 ermittelt. Durch eine verbesserte RTD-Quanteneffizienz aufgrund eines optimierten Dotierprofils der Absorptionsschicht l{\"a}sst sich die Sensitivit{\"a}t auf S_I=2,71 A W-1 erh{\"o}hen, was einem Multiplikationsfaktor von in etwa M\≈8,6 entspricht. Gleichzeitig wird jedoch der RTD-Hebelfaktor verringert, sodass n_(RTD p2)=0,42⋅n_(RTD p1). Erstmalig wurde damit erfolgreich Gas-Absorptionsspektroskopie anhand von H2O-Dampf mittels MIR-RTD-Fotodetektor an drei beieinanderliegenden Absorptionslinien demonstriert.}, subject = {Resonanz-Tunneldiode}, language = {de} } @phdthesis{Graus2018, author = {Graus, Martin}, title = {Anwendung und Weiterentwicklung der Orbitaltomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163194}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Als Orbitaltomographie wird eine junge Methode innerhalb der Photoelektronenspektrokopie bezeichnet, welche es erm{\"o}glicht, Molek{\"u}lorbitale mit hoher Ortsaufl{\"o}sung abzubilden. Hierf{\"u}r werden die zu untersuchenden Molek{\"u}le durch elektromagnetische Strahlung angeregt und die mittels Photoeffekt emittierten Elektronen hinsichtlich ihres Impulses und ihrer kinetischen Energie charakterisiert. Moderne Photoemissionsexperimente erlauben die simultane Vermessung des gesamten Impulshalbraumes oberhalb der Probe. Die detektierte Intensit{\"a}tsverteilung stellt dann unter bestimmten Bedingungen das Betragsquadrat eines hemisph{\"a}rischen Schnittes durch den Fourierraum des spektroskopierten Orbitals dar, wobei der Radius der Hemisph{\"a}re von der Energie der anregenden Strahlung abh{\"a}ngt. Bei den in dieser Arbeit untersuchten Systemen handelt es sich um adsorbierte Molek{\"u}le, die hochgeordnete Schichten auf kristallinen Edelmetalloberfl{\"a}chen bilden. Im Fall eindom{\"a}nigen Wachstums liefern die parallel orientierten Molek{\"u}le identische Photoemissionssignale. Kommt es hingegen zur Ausbildung von Rotations- und Spiegeldom{\"a}nen, stellt die gemessene Impulsverteilung eine Superposition der unterschiedlichen Einzelbeitr{\"a}ge dar. Somit lassen sich R{\"u}ckschl{\"u}sse auf die Orientierungen der Molek{\"u}le auf den Substraten ziehen. Diese Charakterisierung molekularer Adsorptionsgeometrien wird anhand verschiedener Modellsysteme vorgestellt. Variiert man die Energie der anregenden Strahlung und somit den Radius der hemisph{\"a}rischen Schnitte durch den Impulsraum, ist es m{\"o}glich den Fourierraum des untersuchten Molek{\"u}lorbitals dreidimensional abzubilden. Kombiniert man die gemessenen Intensit{\"a}ten mit Informationen {\"u}ber die Phase der Wellenfunktion im Impulsraum, die durch zus{\"a}tzliche Experimente oder rechnerisch gewonnen werden k{\"o}nnen, l{\"a}sst sich durch eine Fouriertransformation ein dreidimensionales Bild des Orbitals generieren, wie Schritt f{\"u}r Schritt gezeigt wird. Im Zuge eines Photoemissionsprozesses kann das Molek{\"u}l in einen angeregten vibronischen Zustand {\"u}bergehen. Mittels Photoemissionsexperimenten mit hoher Energieaufl{\"o}sung lassen sich Unterschiede zwischen den Impulsverteilungen der schwingenden Molek{\"u}le und denen im vibronischen Grundzustand feststellen. Ein Vergleich der Messdaten mit Simulationen kann die Identifikation der angeregten Schwingungsmode erm{\"o}glichen, was eine neue Methode darstellt, Erkenntnisse {\"u}ber die Elektron-Phonon-Kopplung in molekularen Materialien zu gewinnen.}, subject = {ARPES}, language = {de} } @phdthesis{Wiedenmann2018, author = {Wiedenmann, Jonas}, title = {Induced topological superconductivity in HgTe based nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162782}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {This thesis describes the studies of topological superconductivity, which is predicted to emerge when pair correlations are induced into the surface states of 2D and 3D topolog- ical insulators (TIs). In this regard, experiments have been designed to investigate the theoretical ideas first pioneered by Fu and Kane that in such system Majorana bound states occur at vortices or edges of the system [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)]. These states are of great interest as they constitute a new quasiparticle which is its own antiparticle and can be used as building blocks for fault tolerant topological quantum computing. After an introduction in chapter 1, chapter 2 of the thesis lays the foundation for the understanding of the field of topology in the context of condensed matter physics with a focus on topological band insulators and topological superconductors. Starting from a Chern insulator, the concepts of topological band theory and the bulk boundary corre- spondence are explained. It is then shown that the low energy Hamiltonian of mercury telluride (HgTe) quantum wells of an appropriate thickness can be written as two time reversal symmetric copies of a Chern insulator. This leads to the quantum spin Hall effect. In such a system, spin-polarized one dimensional conducting states form at the edges of the material, while the bulk is insulating. This concept is extended to 3D topological insulators with conducting 2D surface states. As a preliminary step to treating topological superconductivity, a short review of the microscopic theory of superconductivity, i.e. the theory of Bardeen, Cooper, and Shrieffer (BCS theory) is presented. The presence of Majorana end modes in a one dimensional superconducting chain is explained using the Kitaev model. Finally, topological band insulators and conventional superconductivity are combined to effectively engineer p-wave superconductivity. One way to investigate these states is by measuring the periodicity of the phase of the Josephson supercurrent in a topological Josephson junction. The signature is a 4π-periodicity compared to the 2π-periodicity in conventional Josephson junctions. The proof of the presence of this effect in HgTe based Josephson junction is the main goal of this thesis and is discussed in chapters 3 to 6. Chapter 3 describes in detail the transport of a 3D topological insulator based weak link under radio-frequency radiation. The chapter starts with a review of the state of research of (i) strained HgTe as 3D topological insulator and (ii) the progress of induc- ing superconducting correlations into the topological surface states and the theoretical predictions of 3D TI based Josephson junctions. Josephson junctions based on strained HgTe are successfully fabricated. Before studying the ac driven Josephson junctions, the dc transport of the devices is analysed. The critical current as a function of temperature is measured and it is possible to determine the induced superconducting gap. Under rf illumination Shapiro steps form in the current voltage characteristic. A missing first step at low frequencies and low powers is found in our devices. This is a signature of a 4π-periodic supercurrent. By studying the device in a wide parameter range - as a 147148 SUMMARY function of frequency, power, device geometry and magnetic field - it is shown that the results are in agreement with the presence of a single gapless Andreev doublet and several conventional modes. Chapter 4 gives results of the numerical modelling of the I -V dynamics in a Josephson junction where both a 2π- and a 4π-periodic supercurrents are present. This is done in the framework of an equivalent circuit representation, namely the resistively shunted Josephson junction model (RSJ-model). The numerical modelling is in agreement with the experimental results in chapter 3. First, the missing of odd Shapiro steps can be understood by a small 4π-periodic supercurrent contribution and a large number of modes which have a conventional 2π-periodicity. Second, the missing of odd Shapiro steps occurs at low frequency and low rf power. Third, it is shown that stochastic processes like Landau Zener tunnelling are most probably not responsible for the 4π contribution. In a next step the periodicity of Josephson junctions based on quantum spin Hall insulators using are investigated in chapter 5. A fabrication process of Josephson junctions based on inverted HgTe quantum wells was successfully developed. In order to achieve a good proximity effect the barrier material was removed and the superconductor deposited without exposing the structure to air. In a next step a gate electrode was fabricated which allows the chemical potential of the quantum well to be tuned. The measurement of the diffraction pattern of the critical current Ic due to a magnetic field applied perpendicular to the sample plane was conducted. In the vicinity to the expected quantum spin Hall phase, the pattern resembles that of a superconducting quantum interference device (SQUID). This shows that the current flows predominantly on the edges of the mesa. This observation is taken as a proof of the presence of edge currents. By irradiating the sample with rf, missing odd Shapiro steps up to step index n = 9 have been observed. This evidences the presence of a 4π-periodic contribution to the supercurrent. The experiment is repeated using a weak link based on a non-inverted HgTe quantum well. This material is expected to be a normal band insulator without helical edge channels. In this device, all the expected Shapiro steps are observed even at low frequencies and over the whole gate voltage range. This shows that the observed phenomena are directly connected to the topological band structure. Both features, namely the missing of odd Shapiro steps and the SQUID like diffraction pattern, appear strongest towards the quantum spin Hall regime, and thus provide evidence for induced topological superconductivity in the helical edge states. A more direct way to probe the periodicity of the Josephson supercurrent than using Shapiro steps is the measurement of the emitted radiation of a weak link. This experiment is presented in chapter 6. A conventional Josephson junction converts a dc bias V to an ac current with a characteristic Josephson frequency fJ = eV /h. In a topological Josephson junction a frequency at half the Josephson frequency fJ /2 is expected. A new measurement setup was developed in order to measure the emitted spectrum of a single Josephson junction. With this setup the spectrum of a HgTe quantum well based Josephson junction was measured and the emission at half the Josephson frequency fJ /2 was detected. In addition, fJ emission is also detected depending on the gate voltage and detection frequency. The spectrum is again dominated by half the Josephson emission at low voltages while the conventional emission is determines the spectrum at high voltages. A non-inverted quantum well shows only conventional emission over the whole gateSUMMARY 149 voltage and frequency range. The linewidth of the detected frequencies gives a measure on the lifetime of the bound states: From there, a coherence time of 0.3-4ns for the fJ /2 line has been deduced. This is generally shorter than for the fJ line (3-4ns). The last part of the thesis, chapter 7, reports on the induced superconducting state in a strained HgTe layer investigated by point-contact Andreev reflection spectroscopy. For the experiment, a HgTe mesa was fabricated with a small constriction. The diameter of the orifice was chosen to be smaller than the mean free path estimated from magne- totransport measurements. Thus one gets a ballistic point-contact which allows energy resolved spectroscopy. One part of the mesa is covered with a superconductor which induces superconducting correlations into the surface states of the topological insulator. This experiment therefore probes a single superconductor normal interface. In contrast to the Josephson junctions studied previously, the geometry allows the acquisition of energy resolved information of the induced superconducting state through the measurement of the differential conductance dI/dV as a function of applied dc bias for various gate voltages, temperatures and magnetic fields. An induced superconducting order parame- ter of about 70µeV was extracted but also signatures of the niobium gap at the expected value around Δ Nb ≈ 1.1meV have been found. Simulations using the theory developed by Blonder, Tinkham and Klapwijk and an extended model taking the topological surface states into account were used to fit the data. The simulations are in agreement with a small barrier at the topological insulator-induced topological superconductor interface and a high barrier at the Nb to topological insulator interface. To understand the full con- ductance curve as a function of applied voltage, a non-equilibrium driven transformation is suggested. The induced superconductivity is suppressed at a certain bias value due to local electron population. In accordance with this suppression, the relevant scattering regions change spatially as a function of applied bias. To conclude, it is emphasized that the experiments conducted in this thesis found clear signatures of induced topological superconductivity in HgTe based quantum well and bulk devices and opens up the avenue to many experiments. It would be interesting to apply the developed concepts to other topological matter-superconductor hybrid systems. The direct spectroscopy and manipulation of the Andreev bound states using circuit quantum electrodynamic techniques should be the next steps for HgTe based samples. This was already achieved in superconducting atomic break junctions by the group in Saclay [Science 2015, 349, 1199-1202 (2015)]. Another possible development would be the on-chip detection of the emitted spectrum as a function of the phase φ through the junction. In this connection, the topological junction needs to be shunted by a parallel ancillary junction. Such a setup would allow the current phase relation I(φ) directly and the lifetime of the bound states to be measured directly. By coupling this system to a spectrometer, which can be another Josephson junction, the energy dependence of the Andreev bound states E(φ) could be obtained. The experiments on the Andreev reflection spectroscopy described in this thesis could easily be extended to two dimensional topological insulators and to more complex geometries, like a phase bias loop or a tunable barrier at the point-contact. This work might also be useful for answering the question how and why Majorana bound states can be localized in quantum spin Hall systems.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{PonceGarcia2018, author = {Ponce Garcia, Irene Paola}, title = {Strategies for optimizing dynamic MRI}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162622}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In Magnetic Resonance Imaging (MRI), acquisition of dynamic data may be highly complex due to rapid changes occurred in the object to be imaged. For clinical diagnostic, dynamic MR images require both high spatial and temporal resolution. The speed in the acquisition is a crucial factor to capture optimally dynamics of the objects to obtain accurate diagnosis. In the 90's, partially parallel MRI (pMRI) has been introduced to shorten scan times reducing the amount of acquired data. These approaches use multi-receiver coil arrays to acquire independently and simultaneously the data. Reduction in the amount of acquired data results in images with aliasing artifacts. Dedicated methods as such Sensitivity Encoding (SENSE) and Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) were the basis of a series of algorithms in pMRI. Nevertheless, pMRI methods require extra spatial or temporal information in order to optimally reconstruct the data. This information is typically obtained by an extra scan or embedded in the accelerated acquisition applying a variable density acquisition scheme. In this work, we were able to reduce or totally eliminate the acquisition of the training data for kt-SENSE and kt-PCA algorithms obtaining accurate reconstructions with high temporal fidelity. For dynamic data acquired in an interleaved fashion, the temporal average of accelerated data can generate an artifact-free image used to estimate the coil sensitivity maps avoiding the need of extra acquisitions. However, this temporal average contains errors from aliased components, which may lead to signal nulls along the spectra of reconstructions when methods like kt-SENSE are applied. The use of a GRAPPA filter applied to the temporal average reduces these errors and subsequently may reduce the null components in the reconstructed data. In this thesis the effect of using temporal averages from radial data was investigated. Non-periodic artifacts performed by undersampling radial data allow a more accurate estimation of the true temporal average and thereby avoiding undesirable temporal filtering in the reconstructed images. kt-SENSE exploits not only spatial coil sensitivity variations but also makes use of spatio-temporal correlations in order to separate the aliased signals. Spatio-temporal correlations in kt-SENSE are learnt using a training data set, which consists of several central k-space lines acquired in a separate scan. The scan of these extra lines results in longer acquisition times even for low resolution images. It was demonstrate that limited spatial resolution of training data set may lead to temporal filtering effects (or temporal blurring) in the reconstructed data. In this thesis, the auto-calibration for kt-SENSE was proposed and its feasibility was tested in order to completely eliminate the acquisition of training data. The application of a prior TSENSE reconstruction produces the training data set for the kt-SENSE algorithm. These training data have full spatial resolution. Furthermore, it was demonstrated that the proposed auto-calibrating method reduces significantly temporal filtering in the reconstructed images compared to conventional kt-SENSE reconstructions employing low resolution training images. However, the performance of auto-calibrating kt-SENSE is affected by the Signal-to-Noise Ratio (SNR) of the first pass reconstructions that propagates to the final reconstructions. Another dedicated method used in dynamic MRI applications is kt-PCA, that was first proposed for the reconstruction of MR cardiac data. In this thesis, kt-PCA was employed for the generation of spatially resolved M0, T1 and T2 maps from a single accelerated IRTrueFISP or IR-Snapshot FLASH measurement. In contrast to cardiac dynamic data, MR relaxometry experiments exhibit signal at all temporal frequencies, which makes their reconstruction more challenging. However, since relaxometry measurements can be represented by only few parameters, the use of few principal components (PC) in the kt-PCA algorithm can significantly simplify the reconstruction. Furthermore, it was found that due to high redundancy in relaxometry data, PCA can efficiently extract the required information from just a single line of training data. It has been demonstrated in this thesis that auto-calibrating kt-SENSE is able to obtain high temporal fidelity dynamic cardiac reconstructions from moderate accelerated data avoiding the extra acquisition of training data. Additionally, kt-PCA has been proved to be a suitable method for the reconstruction of highly accelerated MR relaxometry data. Furthermore, a single central training line is necessary to obtain accurate reconstructions. Both reconstruction methods are promising for the optimization of training data acquisition and seem to be feasible for several clinical applications.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Strauss2018, author = {Strauß, Micha Johannes}, title = {Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen f{\"u}r AlGaAs Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159024}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Erforschung von Quantenpunkten mit ihren quantisierten, atom{\"a}hnlichen Zust{\"a}nden, bietet eine Vielzahl von M{\"o}glichkeiten auf dem Weg zum Quantencomputer und f{\"u}r Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden k{\"o}nnen. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass G{\"u}ten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und T{\"u}rmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor f{\"u}r diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatort{\"u}rmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der T{\"u}rmchen. Dar{\"u}ber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatort{\"u}rmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es m{\"o}glich sein, ein Resonatort{\"u}rmchen direkt {\"u}ber dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung f{\"u}r die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der H{\"a}lfte des angestrebten T{\"u}rmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel {\"u}ber den Quantenpunkten, Resonatort{\"u}rmchen zielgenau auf die Quantenpunkte prozessiert werden k{\"o}nnen. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. F{\"u}r ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe m{\"o}glichst defektfrei {\"u}berwachsen werden konnte, die Struktur des Lochgitters aber nicht zerst{\"o}rt wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum n{\"a}chsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung f{\"u}r eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 \% der Quantenpunkte innerhalb von 50 nm und 60 \% innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte M{\"o}glichkeit, diese in Halbleiterresonatoren einbinden zu k{\"o}nnen, machen sie auch interessant f{\"u}r die Anwendung im Telekommunikationsbereich. Um f{\"u}r Glasfasernetze Anwendung zu finden, muss jedoch die Wellenl{\"a}nge auf den Bereich von 1300 nm oder 1550 nm {\"u}bertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenl{\"a}nge von 1300nm. Eine fu ̈r andere Bauteile sowie f{\"u}r Laserdioden bereits h{\"a}ufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von {\"u}ber 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenl{\"a}ngen gr{\"o}ßer 1300 nm emittieren. So ist es nun m{\"o}glich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenl{\"a}nge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen f{\"u}r 1300nm zu realisieren.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Zimmermann2018, author = {Zimmermann, Christian}, title = {Halbleiterlaser mit lateralem R{\"u}ckkopplungsgitter f{\"u}r metrologische Anwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In der vorliegenden Arbeit wurde angestrebt, die Eigenschaften komplexgekoppelter DFB-Laser bez{\"u}glich ihrer Nutzung f{\"u}r metrologische Untersuchungen zu analysieren und zu verbessern. Hierf{\"u}r wurden die r{\"a}umlichen Emissionseigenschaften der lateral komplexgekoppelten DFB-Laser in ausgiebigen Studien diskutiert. F{\"u}r kommerziell erh{\"a}ltliche Laser wurde daraufhin das Fernfeld sowohl in lateraler als auch vertikaler Richtung berechnet. Die entsprechenden Fernfeldmessungen konnten die Theorie best{\"a}tigen und wie erwartet, waren die Divergenzwinkel mit 52° FWHM in der Wachstumsrichtung und 12° FWHM in lateraler Richtung (vgl. Abb. 6.4 und 6.5) sehr unterschiedlich und zeugen von einer großen Differenz in den Fernfeldwinkeln. Mit {\"U}berlegungen zu dem optischen bzw. elektrischen Einschlusspotential im Hinblick auf die ver{\"a}nderte Fernfeldsituation wurde zun{\"a}chst die reine Halbleiterlaserschichtfolge optimiert. Der Divergenzwinkel in Wachstumsrichtung wurde um mehr als 50\% auf 25° FWHM gesenkt. Damit konnte die Asymmetrie des Fernfeldes um einen Faktor von mehr als 4 reduziert werden. Strahlg{\"u}teuntersuchungen zeigten ein nahezu beugungsbegrenztes Gaußsches Strahlprofil in der langsamen Achse mit einem M2-Wert von 1,13 (Abb. 6.3). Eine weitere Untersuchung betraf die Linienbreitenabh{\"a}ngigkeit solcher Laser von ihrer Ausgangsleistung, der Resonatorl{\"a}nge, der Facettenverg{\"u}tung und der Gitterkopplung. Die erste Beobachtung betraf die Verschm{\"a}lerung der Linienbreite mit ansteigender Ausgangsleistung bis hin zu einer erneuten Verbreiterung (Rebroadening) der Linienbreite (siehe Abb. 7.3). Der Einfluss auf die Linienbreite durch eine Ver{\"a}nderung der Resonatorl{\"a}nge ließ sich sehr gut mit der Theorie vergleichen und so erbrachte eine Verdopplung der Resonatorl{\"a}nge eine Verschm{\"a}lerung der Linienbreite um mehr als einen Faktor 3. Die Verl{\"a}ngerung der Kavit{\"a}t beg{\"u}nstigte den negativen Effekt des sog. Rebroadenings nicht, da bei der verwendeten Technologie der lateral komplexen Kopplung der Index-Beitrag an der R{\"u}ckkopplung sehr klein ist. Im Falle reiner Indexkopplung w{\"a}re dies durch die ver{\"a}nderte κ · L-Lage deutlich zu sp{\"u}ren. Ein weiterer, oben auch angesprochener Vorteil der komplexen Kopplung ist, dass die Facettenreflektivit{\"a}ten einen wesentlich kleineren Einfluss auf die DFB-Ausbeute und auf deren Eigenschaften haben als bei der reinen Indexkopplung. Dies l{\"a}sst sich ausnutzen, um die Photonenlebensdauer in der Kavit{\"a}t zu erh{\"o}hen ohne negativ die DFB-Ausbeute zu beeinflussen. In dieser Arbeit wurde bei verschiedenen L{\"a}ngen die reine gebrochene Facette mit einer verg{\"u}teten verglichen und der Einfluss auf die Linienbreite analysiert. Die Frontfacette wurde durch eine Passivierung bei ca. 30\% gehalten und die R{\"u}ckfacette durch einen doppelten Reflektor auf ca. 85\% gesetzt. Daraus resultierte eine Reduktion der Linienbreite um mehr als die H{\"a}lfte. Neben diesen Ergebnissen wurde auch der Einfluss der komplexen Kopplung untersucht. Da die durch das Gitter zus{\"a}tzlich eingebrachten Verluste zu einer Vergr{\"o}ßerung der Linienbreiten beitragen, wird bei einem gr{\"o}ßeren geometrischen Gitter{\"u}berlapp das Frequenzrauschen auch entsprechend steigen. Dies ließ sich auch im Experiment best{\"a}tigen. Zudem wurde eine L{\"a}ngenabh{\"a}ngigkeit dieses Effektes festgestellt. Die Reduzierung der Linienbreite bei l{\"a}ngeren Bauteilen ist deutlich ausgepr{\"a}gter als bei k{\"u}rzeren. So ist bei {\"a}hnlicher Verringerung des Gitter{\"u}berlappes bei einem 900 μm langen Bauteil eine Linienbreitenreduzierung um einen Faktor von „nur" 1,85 beobachtbar, aber bei der doppelten Kavit{\"a}tsl{\"a}nge ist dieser Faktor schon auf 3,60 angestiegen. Im Rahmen dieser Arbeit wurden DFB-Laser hergestellt, die eine Linienbreite von bis zu 198 kHz aufwiesen. Dies stellt f{\"u}r lateral komplexgekoppelte Laser einen absoluten Rekordwert dar. Im Vergleich zu Index-DFB-Lasern ist dieser Wert bzgl. der Linienbreite mit den aktuellsten Ergebnissen aus der Forschung zu vergleichen [CTR+11], bei welchen eine Linienbreite zu 200 kHz bestimmt wurde. In dem letzten Abschnitt dieser Arbeit wurde der Einfluss einer ver{\"a}nderten Phasenlage von Gitter und Facette untersucht. Dabei wurden spezielle Bauteile hergestellt (3-Segment-DFB-Laser) und verschiedene Gitterl{\"a}ngen untersucht. Die Phasenlage kann reversibel {\"u}ber den eingestellten Strom in den gitterfreien Segmenten geregelt werden. Wie vorhergesagt, best{\"a}tigen die Experimente, dass diese Phasenbeziehung einen signifikanten Einfluss auf die Ausgangsleistung, die Wellenl{\"a}nge mit ihrer zugeh{\"o}rigen Seitenmodenunterdr{\"u}ckung und auch auf die Linien-breite hat. Bei der Analyse der Linienbreite konnte eindeutig beobachtet werden, dass f{\"u}r die verschiedenen L{\"a}ngen die inverse Linienbreite sehr gut mit der relativen Seitenmodenunterdr{\"u}ckung gekoppelt ist. Dies stellt eine deutliche Erleichterung der zuk{\"u}nftigen Optimierung der komplexgekoppelten DFB-Laser dar, da eine Linienbreitenuntersuchung meist deutlich zeitaufwendiger ist als eine Analyse mit einem optischen Spektrometer.}, subject = {DFB-Laser}, language = {de} } @phdthesis{Lutz2018, author = {Lutz, Peter}, title = {Surface and Interface Electronic Structure in Ferroelectric BaTiO\(_3\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159057}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Transition metal oxides (TMO) represent a highly interesting material class as they exhibit a variety of different emergent phenomena including multiferroicity and superconductivity. These effects result from a significant interplay of charge, spin and orbital degrees of freedom within the correlated d-electrons. Oxygen vacancies (OV) at the surface of certain d0 TMO release free charge carriers and prompt the formation of a two-dimensional electron gas (2DEG). Barium titanate (BaTiO3) is a prototypical and promising d0 TMO. It displays ferroelectricity at room temperature and features several structural phase transitions, from cubic over tetragonal (at room temperature) and orthorhombic to rhombohedral. The spontaneous electric polarization in BaTiO3 can be used to manipulate the physical properties of adjacent materials, e.g. in thin films. Although the macroscopic properties of BaTiO3 are studied in great detail, the microscopic electronic structure at the surface and interface of BaTiO3 is not sufficiently understood yet due to the complex interplay of correlation within the d states, oxygen vacancies at the surface, ferroelectricity in the bulk and the structural phase transitions in BaTiO3. This thesis investigates the electronic structure of different BaTiO3 systems by means of angle-resolved photoelectron spectroscopy (ARPES). The valence band of BaTiO3 single crystals is systematically characterized and compared to theoretical band structure calculations. A finite p-d hybridization of titanium and oxygen states was inferred at the high binding energy side of the valence band. In BaTiO3 thin films, the occurrence of spectral weight near the Fermi level could be linked to a certain amount of OV at the surface which effectively dopes the host system. By a systematic study of the metallic surface states as a function of temperature and partial oxygen pressure, a model was established which reflects the depletion and accumulation of charge carriers at the surface of BaTiO3. An instability at T ~ 285K assumes a volatile behavior of these surface states. The ferroelectricity in BaTiO3 allows a control of the electronic structure at the interface of BaTiO3-based heterostructures. Therefore, the interface electronic structure of Bi/BaTiO3 was studied with respect to the strongly spin-orit coupled states in Bi by also including a thickness dependent characterization. The ARPES results, indeed, confirm the presence of Rashba spin-split electronic states in the bulk band gap of the ferroelectric substrate. By varying the film thickness in Bi/BaTiO3, it was able to modify the energy position and the Fermi vector of the spin-split states. This observation is associated with the appearance of an interface state which was observed for very low film thickness. Both spectral findings suggest a significant coupling between the Bi films and BaTiO3.}, subject = {Bariumtitanat}, language = {en} } @phdthesis{Brendel2018, author = {Brendel, Harald}, title = {W{\"a}rmetransport in keramischen Faserisolationen bei hohen Temperaturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Das Ziel dieser Arbeit ist eine umfassende numerische und experimentelle Charakterisierung des W{\"a}rmetransports in oxidkeramischen Faserisolationen im Hochtemperaturbereich. Zugleich sollen neue Konzepte f{\"u}r eine optimierte technische Auslegung von Faserisolationen erarbeitet werden. Oxidkeramiken zeigen im Infrarotbereich ein semitransparentes Verhalten. Das bedeutet, ein Teil der Strahlung gelangt durch die Probe, ohne gestreut oder absorbiert zu werden. Durch die Ausgestaltung als disperses Medium mit Abmessungen der Fasern im \$\mu m\$ Bereich wird jedoch eine starke Wechselwirkung mit infraroter Lichtstrahlung erzeugt. Man befindet sich im optischen Resonanzbereich. Technisch relevante Faserisolationen besitzen eine Rohdichte zwischen \$50 \mathrm{kg/m^3}\$ und \$700 \mathrm{kg/m^3}\$ und k{\"o}nnen als optisch dichtes Medium betrachtet werden. Eine Optimierung hinsichtlich der D{\"a}mmwirkung gegen W{\"a}rmestrahlung bedeutet eine massenspezifische Maximierung des Lichtstreuverm{\"o}gens im relevanten Wellenl{\"a}ngenbereich. Hierzu werden in einer numerischen Studie keramische Hohlfaserisolationen mit konventionellen Fasern verglichen. Diese Abhandlung unter Ber{\"u}cksichtigung anwendungsnaher Aspekte gelangt zu der Schlussfolgerung, dass die Strahlungsw{\"a}rmestromdichte in Hohlfaserisolationen, im Vergleich zu konventionellen Isolationen, signifikant erniedrigt wird. Hinsichtlich der Gesamtw{\"a}rmeleitf{\"a}higkeit ist eine Reduzierung um den Faktor zwei zu erwarten. \\ Trotz moderner Rechner ist die Anwendung der vollen Maxwellschen Streutheorie, insbesondere im Rahmen von Optimierungsaufgaben mehrschichtiger Streuk{\"o}rper, ein zeitaufwendiges Unterfangen. Um sinnvolle Parameterkonfigurationen bereichsweise eingrenzen zu k{\"o}nnen, wird eine N{\"a}herungsmethode f{\"u}r die Lichtstreuung an mehrschichtigen Zylindern weiterentwickelt und mit der vollst{\"a}ndigen Maxwellschen Streutheorie verglichen. Es zeigt sich, dass das Modell f{\"u}r kleine bis moderate Brechungsindizes sehr gute Vorhersagekraft besitzt und auch zur n{\"a}herungsweisen Berechnung der Streueffizienzen f{\"u}r r{\"a}umlich isotrop angeordnete Zylinder herangezogen werden kann. \\ Neben den numerischen Studien wird im experimentellen Teil dieser Arbeit eine kommerzielle Faserisolierung aus Aluminiumoxid hinsichtlich ihrer W{\"a}rmetransporteigenschaften charakterisiert. Die optischen Transportparameter Albedo und Extinktion werden mittels etablierter Messmethoden bestimmt. Bei bekannter Faserdurchmesserverteilung k{\"o}nnen diese Messwerte dann mit den theoretischen Vorhersagen der Maxwellschen Streutheorie verglichen werden.\\ Um technische Optimierungsmaßnahmen experimentell zu verifizieren, besteht die Notwendigkeit, die Temperaturleitf{\"a}higkeit bzw. die W{\"a}rmeleitf{\"a}higkeit auch bei hohen Temperaturen oberhalb von \$1000^\mathrm{o}\mathrm{C}\$ zuverl{\"a}ssig bestimmen zu k{\"o}nnen. Zu diesem Zweck wird ein Versuchsaufbau realisiert, um in diesem Temperaturbereich erstmals die sogenannte Thermal-Wave-Analyse anzuwenden. Durch Abgleich mit einem gekoppelten W{\"a}rmetransportmodell und einem etablierten Messverfahren wird die besondere Eignung der Thermal-Wave-Analyse f{\"u}r ber{\"u}hrungsfreie Hochtemperaturmessungen gezeigt.}, subject = {W{\"a}rme{\"u}bertragung}, language = {de} } @phdthesis{Dremel2018, author = {Dremel, Kilian}, title = {Modellbildung des Messprozesses und Umsetzung eines modellbasierten iterativen L{\"o}sungsverfahrens der Schnittbild-Rekonstruktion f{\"u}r die R{\"o}ntgen-Computertomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157718}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In der computertomographischen Schnittbildgebung treten Artefakte, also Anteile des Ergebnisses auf, die nicht Teil des gemessenen Objekts sind und die somit die Auswertbarkeit der Ergebnisse beeinflussen. Viele dieser Artefakte sind auf die Inkonsistenz des Modells der Rekonstruktion zur Messung zur{\"u}ckzuf{\"u}hren. Gerade im Hinblick auf Artefakte durch die Energieabh{\"a}ngigkeit der rekonstruierten Schw{\"a}chungskoeffizienten und Abweichungen der Geometrieinformation des Rekonstruktionsmodells wird h{\"a}ufig der Weg einer Nachbearbeitung der Messdaten beschritten, um Rekonstruktionsartefakte zu vermeiden. Im Zuge dieser Arbeit wird ein Modell der computertomographischen Aufnahme mit Konzentration auf industrielle und materialwissenschaftliche Systeme erstellt, das nicht genutzt wird um die Messdaten zu ver{\"a}ndern, sondern um das Rekonstruktionsmodell der Aufnahmerealit{\"a}t anzupassen. Zun{\"a}chst werden iterative Rekonstruktionsverfahren verglichen und ein passender Algorithmus ausgew{\"a}hlt, der die gew{\"u}nschten Modifikationen des Aufnahmemodells erlaubt. F{\"u}r diese Modifikationen werden bestehende Methoden erweitert und neue modellbasierte Ans{\"a}tze entwickelt, die in den Rekonstruktionsablauf integriert werden k{\"o}nnen. Im verwendeten Modell werden die Abh{\"a}ngigkeiten der rekonstruierten Werte vom polychromatischen R{\"o}ntgenspektrum in das Simulationsmodell des Rekonstruktionsprozesses eingebracht und die Geometrie von Brennfleck und Detektorelementen integriert. Es wird gezeigt, dass sich durch die verwendeten Methoden Artefakte vermeiden lassen, die auf der Energieabh{\"a}ngigkeit der Schw{\"a}chungskoeffizienten beruhen und die Aufl{\"o}sung des Rekonstruktionsbildes durch Geometrieannahmen gesteigert werden kann. Neben diesen Ans{\"a}tzen werden auch neue Erweiterungen der Modellierung umgesetzt und getestet. Das zur Modellierung verwendete R{\"o}ntgenspektrum der Aufnahme wird im Rekonstruktionsprozess angepasst. Damit kann die ben{\"o}tigte Genauigkeit dieses Eingangsparameters gesenkt werden. Durch die neu geschaffene M{\"o}glichkeit zur Rekonstruktion der Kombination von Datens{\"a}tzen die mit unterschiedlichen R{\"o}ntgenspektren aufgenommen wurden wird es m{\"o}glich neben dem Schw{\"a}chungskoeffizienten die Anteile der Comptonabsorption und der photoelektrischen Absorption getrennt zu bestimmen. Um Abweichungen vom verwendeten Geometriemodell zu ber{\"u}cksichtigen wird eine Methode auf der Basis von Bildkorrelation implementiert und getestet, mit deren Hilfe die angenommene Aufnahmegeometrie automatisch korrigiert wird. Zudem wird in einem neuartigen Ansatz zus{\"a}tzlich zur detektorinternen Streustrahlung die Objektstreustrahlung w{\"a}hrend des Rekonstruktionsprozesses deterministisch simuliert und so das Modell der Realit{\"a}t der Messdatenaufnahme angepasst. Die Umsetzung des daraus zusammengesetzten Rekonstruktionsmodells wird an Simulationsdatens{\"a}tzen getestet und abschließend auf Messdaten angewandt, die das Potential der Methode aufzeigen.}, subject = {Dreidimensionale Rekonstruktion}, language = {de} } @phdthesis{Grauer2018, author = {Grauer, Stefan}, title = {Transport Phenomena in Bi\(_2\)Se\(_3\) and Related Compounds}, publisher = {Verlag Dr. Hut GmbH}, isbn = {978-3-8439-3481-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {One of the most significant technological advances in history was driven by the utilization of a new material class: semiconductors. Its most important application being the transistor, which is indispensable in our everyday life. The technological advance in the semiconductor industry, however, is about to slow down. Making transistors ever smaller to increase the performance and trying to reduce and deal with the dissipative heat will soon reach the limits dictated by quantum mechanics with Moore himself, predicting the death of his famous law in the next decade. A possible successor for semiconductor transistors is the recently discovered material class of topological insulators. A material which in its bulk is insulating but has topological protected metallic surface states or edge states at its boundary. Their electrical transport characteristics include forbidden backscattering and spin-momentum-locking with the spin of the electron being perpendicular to its momentum. Topological insulators therefore offer an opportunity for high performance devices with low dissipation, and applications in spintronic where data is stored and processed at the same point. The topological insulator Bi\(_2\)Se\(_3\) and related compounds offer relatively high energy band gaps and a rather simple band structure with a single dirac cone at the gamma point of the Brillouin zone. These characteritics make them ideal candidates to study the topological surface state in electrical transport experiments and explore its physics.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Balzer2018, author = {Balzer, Christian}, title = {Adsorption-Induced Deformation of Nanoporous Materials — in-situ Dilatometry and Modeling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157145}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The goal of this work is to improve the understanding of adsorption-induced deformation in nanoporous (and in particular microporous) materials in order to explore its potential for material characterization and provide guidelines for related technical applications such as adsorption-driven actuation. For this purpose this work combines in-situ dilatometry measurements with in-depth modeling of the obtained adsorption-induced strains. A major advantage with respect to previous studies is the combination of the dilatometric setup and a commercial sorption instrument resulting in high quality adsorption and strain isotherms. The considered model materials are (activated and thermally annealed) carbon xerogels, a sintered silica aerogel, a sintered hierarchical structured porous silica and binderless zeolites of type LTA and FAU; this selection covers micro-, meso- and macroporous as well as ordered and disordered model materials. All sample materials were characterized by scanning electron microscopy, gas adsorption and sound velocity measurements. In-situ dilatometry measurements on mesoporous model materials were performed for the adsorption of N2 at 77 K, while microporous model materials were also investigated for CO2 adsorption at 273 K, Ar adsorption at 77 K and H2O adsorption at 298 K. Within this work the available in-situ dilatometry setup was revised to improve resolution and reproducibility of measurements of small strains at low relative pressures, which are of particular relevance for microporous materials. The obtained experimental adsorption and strain isotherms of the hierarchical structured porous silica and a micro-macroporous carbon xerogel were quantitatively analyzed based on the adsorption stress model; this approach, originally proposed by Ravikovitch and Neimark, was extended for anisotropic pore geometries within this work. While the adsorption in silica mesopores could be well described by the classical and analytical theory of Derjaguin, Broekhoff and de Boer, the adsorption in carbon micropores required for comprehensive nonlocal density functional theory calculations. To connect adsorption-induced stresses and strains, furthermore mechanical models for the respective model materials were derived. The resulting theoretical framework of adsorption, adsorption stress and mechanical model was applied to the experimental data yielding structural and mechanical information about the model materials investigated, i.e., pore size or pore size distribution, respectively, and mechanical moduli of the porous matrix and the nonporous solid skeleton. The derived structural and mechanical properties of the model materials were found to be consistent with independent measurements and/or literature values. Noteworthy, the proposed extension of the adsorption stress model proved to be crucial for the correct description of the experimental data. Furthermore, it could be shown that the adsorption-induced deformation of disordered mesoporous aero-/xerogel structures follows qualitatively the same mechanisms obtained for the ordered hierarchical structured porous silica. However, respective quantitative modeling proved to be challenging due to the ill-shaped pore geometry of aero-/xerogels; good agreement between model and experiment could only be achieved for the filled pore regime of the adsorption isotherm and the relative pressure range of monolayer formation. In the intermediate regime of multilayer formation a more complex model than the one proposed here is required to correctly describe stress related to the curved adsorbate-adsorptive interface. Notably, for micro-mesoporous carbon xerogels it could be shown that micro- and mesopore related strain mechanisms superimpose one another. The strain isotherms of the zeolites were only qualitatively evaluated. The result for the FAU type zeolite is in good agreement with other experiments reported in literature and the theoretical understanding derived from the adsorption stress model. On the contrary, the strain isotherm of the LTA type zeolite is rather exceptional as it shows monotonic expansion over the whole relative pressure range. Qualitatively this type of strain isotherm can also be explained by the adsorption stress model, but a respective quantitative analysis is beyond the scope of this work. In summary, the analysis of the model materials' adsorption-induced strains proved to be a suitable tool to obtain information on their structural and mechanical properties including the stiffness of the nonporous solid skeleton. Investigations on the carbon xerogels modified by activation and thermal annealing revealed that adsorption-induced deformation is particularly suited to analyze even small changes of carbon micropore structures.}, subject = {Nanopor{\"o}ser Stoff}, language = {en} } @phdthesis{AlBaidhani2018, author = {Al-Baidhani, Mohammed}, title = {Spectroscopy as a tool to investigate the high energy optical properties of nanostructured magnetically doped topological insulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157221}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In this dissertation the electronic and high-energy optical properties of thin nanoscale films of the magnetic topological insulator (MTI) (V,Cr)y(BixSb1-x)2-yTe3 are studied by means of X-ray photoelectron spectroscopy (XPS) and electron energy-loss spectroscopy (EELS). Magnetic topological insulators are presently of broad interest as the combination of ferromagnetism and spin-orbit coupling in these materials leads to a new topological phase, the quantum anomalous Hall state (QAHS), with dissipation less conduction channels. Determining and controlling the physical properties of these complex materials is therefore desirable for a fundamental understanding of the QAHS and for their possible application in spintronics. EELS can directly probe the electron energy-loss function of a material from which one can obtain the complex dynamic dielectric function by means of the Kramers-Kronig transformation and the Drude-Lindhard model of plasmon oscillations. The XPS core-level spectra in (V,Cr)y(BixSb1-x)2-yTe3 are analyzed in detail with regards to inelastic background contributions. It is shown that the spectra can be accurately described based on the electron energy-loss function obtained from an independent EELS measurement. This allows for a comprehensive and quantitative analysis of the XPS data, which will facilitate future core-level spectroscopy studies in this class of topological materials. From the EELS data, furthermore, the bulk and surface optical properties were estimated, and compared to ab initio calculations based on density functional theory (DFT) performed in the GW approximation for Sb2Te3. The experimental results show a good agreement with the calculated complex dielectric function and the calculated energy-loss function. The positions of the main plasmon modes reported here are expected to be generally similar in other materials in this class of nanoscale TI films. Hence, the present work introduces EELS as a powerful method to access the high-energy optical properties of TI thin films. Based on the presented results it will be interesting to explore more systematically the effects of stoichiometry, magnetic doping, film thickness and surface morphology on the electron-loss function, potentially leading to a better understanding of the complex interplay of structural, electronic, magnetic and optical properties in MTI nanostructures.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Fiedler2018, author = {Fiedler, Sebastian}, title = {Strukturelle und elektronische Zusammenh{\"a}nge von inversionsasymmetrischen Halbleitern mit starker Spin-Bahn-Kopplung; BiTeX (X =I, Br, Cl)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155624}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabh{\"a}ngigen Spinaufspaltung der Bandstruktur f{\"u}hrt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabh{\"a}ngigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplement{\"a}rer, oberfl{\"a}chensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie (STM) und Photoelektronenspektroskopie (PES) - an geeigneten Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zus{\"a}tzliche Experimente werden an d{\"u}nnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgef{\"u}hrt. Die inversionsasymmetrische Kristallstruktur in BiTeX f{\"u}hrt zur Existenz zweier nicht-{\"a}quivalenter Oberfl{\"a}chen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberfl{\"a}chen gespaltener Einkristalle belegen f{\"u}r BiTeI(0001) eine Koexistenz beider Terminierungen auf einer L{\"a}ngenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zur{\"u}ckf{\"u}hren lassen. Diese Dom{\"a}nen sind groß genug, um eine vollst{\"a}ndig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei r{\"a}umlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen L{\"a}ngenskala aus. Atomar aufgel{\"o}ste STM-Messungen zeigen f{\"u}r die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberfl{\"a}chen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativit{\"a}t der Halogene resultiert in verschieden starken Ladungs{\"u}berg{\"a}ngen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberfl{\"a}cheneigenschaften ist durch die Bedampfung mit Cs m{\"o}glich, wobei eine {\"A}nderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfl{\"a}che durch Heizen im Vakuum, bewirkt dies eine Ver{\"a}nderung der Bandstruktur in zwei Schritten. So f{\"u}hrt zun{\"a}chst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberfl{\"a}chenzust{\"a}nde hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfl{\"a}che - im Volumen bleibt die inversionsasymmetrische Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von D{\"u}nnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Ver{\"a}nderung der Morphologie und elektronischen Struktur in Abh{\"a}ngigkeit von St{\"o}chiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der D{\"u}nnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberfl{\"a}chenzustands auf.}, subject = {Rashba-Effekt}, language = {de} } @phdthesis{Simin2017, author = {Simin, Dmitrij}, title = {Quantum Sensing with Highly Coherent Spin Centers in Silicon Carbide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In the present work, the energetic structure and coherence properties of the silicon vacancy point defect in the technologically important material silicon carbide are extensively studied by the optically detected magnetic resonance (ODMR) technique in order to verify its high potential for various quantum applications. In the spin vacancy, unique attributes are arising from the C3v symmetry and the spin-3/2 state, which are not fully described by the standard Hamiltonian of the uniaxial model. Therefore, an advanced Hamiltonian, describing well the appearing phenomena is established and the relevant parameters are experimentally determined. Utilizing these new accomplishments, several quantum metrology techniques are proposed. First, a vector magnetometry scheme, utilizing the appearance of four ODMR lines, allows for simultaneous detection of the magnetic field strength and the tilting angle of the magnetic field from the symmetry axis of the crystal. The second magnetometry protocol utilizes the appearance of energetic level anticrossings (LAC) in the ground state (GS) energy levels. Relying only on the change in photoluminescence in the vicinity of this GSLACs, this all-optical method does not require any radio waves and hence provides a much easier operation with less error sources as for the common magnetometry schemes utilizing quantum points. A similar all-optical method is applied for temperature sensing, utilizing the thermal shift of the zero field splitting and consequently the anticrossing in the excited state (ES). Since the GSLACs show no dependence on temperature, the all-optical magnetometry and thermometry (utilizing the ESLACs) can be conducted subsequently on the same defect. In order to quantify the achievable sensitivity of quantum metrology, as well as to prove the potential of the Si-vacancy in SiC for quantum processing, the coherence properties are investigated by the pulsed ODMR technique. The spin-lattice relaxation time T1 and the spin-spin relaxation time T2 are thoroughly analyzed for their dependence on the external magnetic field and temperature. For actual sensing implementations, it is crucial to obtain the best signal-to-noise ratio without loss in coherence time. Therefore, the irradiation process, by which the defects are created in the crystal, plays a decisive role in the device performance. In the present work, samples irradiated with electrons or neutrons with different fluences and energies, producing different defect densities, are analyzed in regard to their T1 and T2 times at room temperature. Last but not least, a scheme to substantially prolong the T2 coherence time by locking the spin polarization with the dynamic decoupling Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is applied.}, subject = {Siliciumcarbid}, language = {en} } @phdthesis{Feichtner2017, author = {Feichtner, Thorsten}, title = {Optimal Design of Focusing Nanoantennas for Light : Novel Approaches: From Evolution to Mode-Matching}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140604}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Optische Antennen arbeiten {\"a}hnlich wie Antennen f{\"u}r Radiowellen und wandeln elektromagnetische Strahlung in elektrische Wechselstr{\"o}me um. Ladungsdichteansammlungen an der Antennen-Oberfl{\"a}che f{\"u}hren zu starken und lokalisierten Nahfeldern. Da die meisten optischen Antennen eine Ausdehnung von wenigen hundert Nanometern besitzen, erm{\"o}glichen es ihre Nahfelder, Licht auf ein Volumen weit unterhalb des Beugungslimits zu fokussieren, mit Intensit{\"a}ten, die mehrere Gr{\"o}ßenordnungen {\"u}ber dem liegen, was man mit klassischer beugender und reflektierender Optik erreichen kann. Die Aufgabe, die Abstrahlung eines Quantenemitters zu maximieren, eines punktf{\"o}rmigen Objektes, welches einzelne Photonen absorbieren und emittieren kann, ist identisch mit der Aufgabe, die Feldintensit{\"a}t am Ort des Quantenemitters zu maximieren. Darum ist es erstrebenswert, den Fokus optischer Antennen zu optimieren Optimierte Radiofrequenz-Antennen, welche auf Gr{\"o}ßenordnungen von wenigen 100 Nanometern herunterskaliert werden, zeigen bereits eine gute Funktionalit{\"a}t. Jedoch liegen optische Frequenzen in der N{\"a}he der Plasmafrequenz von den Metallen, die f{\"u}r optische Antennen genutzt werden und die Masse der Elektronen kann nicht mehr vernachl{\"a}ssigt werden. Dadurch treten neue physikalische Ph{\"a}nomene auf. Es entstehen gekoppelte Zust{\"a}nde aus Licht und Ladungsdichte-Schwingungen, die sogenannten Plasmonen. Daraus folgen Effekte wie Volumenstr{\"o}me und k{\"u}rzere effektive Wellenl{\"a}ngen. Zus{\"a}tzlich f{\"u}hrt die endliche Leitf{\"a}higkeit zu thermischen Verluste. Das macht eine Antwort auf die Frage nach der optimalen Geometrie f{\"u}r fokussierende optische Antennen schwer. Jedoch stand vor dieser Arbeit der Beweis noch aus, dass es f{\"u}r optische Antennen bessere Alternativen gibt als herunterskalierte Radiofrequenz-Konzepte. In dieser Arbeit werden optische Antennen auf eine bestm{\"o}gliche Fokussierung optimiert. Daf{\"u}r wird ein Ansatz gew{\"a}hlt, welcher bei Radiofrequenz-Antennen f{\"u}r komplexe Anwendungsfelder (z.B. isotroper Breitbandempfang) schon oft Erfolg hatte: evolution{\"a}re Algorithmen. Die hier eingef{\"u}hrte erste Implementierung erlaubt eine große Freiheit in Bezug auf Partikelform und Anzahl, da sie quadratische Voxel auf einem planaren, quadratischen Gitter beliebig anordnet. Die Geometrien werden in einer bin{\"a}ren Matrix codiert, welche als Genom dient und somit Methoden wie Mutation und Paarung als Verbesserungsmechanismus erlaubt. So optimierte Antennen-Geometrien {\"u}bertreffen vergleichbare klassische Dipol-Geometrien um einen Faktor von Zwei. Dar{\"u}ber hinaus l{\"a}sst sich aus den optimierten Antennen ein neues Funktionsprinzip ableiten: ein magnetische Split-Ring-Resonanz kann mit Dipol-Antennen leitend zu neuartigen und effektiveren Split-Ring-Antennen verbunden werden, da sich ihre Str{\"o}me nahe des Fokus konstruktiv {\"u}berlagern. Im n{\"a}chsten Schritt wird der evolution{\"a}re Algorithmus so angepasst, so die Genome real herstellbare Geometrien beschreiben. Zus{\"a}tzlich wird er um eine Art ''Druckertreiber'' erweitert, welcher aus den Genomen direkt Anweisungen zur fokussierten Ionenstrahl-Bearbeitung von einkristallinen Goldflocken erstellt. Mit Hilfe von konfokaler Mikroskopie der Zwei-Photonen-Photolumineszenz wird gezeigt, dass Antennen unterschiedlicher Effizienz reproduzierbar aus dem evolution{\"a}ren Algorithmus heraus hergestellt werden k{\"o}nnen. Außerdem wird das Prinzip der Split-Ring-Antenne verbessert, indem zwei Ring-Resonanzen zu einer Dipol-Resonanz hinzugef{\"u}gt werden. Zu guter Letzt dient die beste Antenne des zweiten evolution{\"a}re Algorithmus als Inspiration f{\"u}r einen neuen Formalismus zur Beschreibung des Leistungs{\"u}bertrages zwischen einer optischen Antenne und einem Punkt-Dipol, welcher sich als "dreidimensionaler Moden{\"u}berlapp" beschreiben l{\"a}sst. Damit k{\"o}nnen erstmals intuitive Regeln f{\"u}r die Form einer optischen Antenne aufgestellt werden. Die G{\"u}ltigkeit der Theorie wird analytisch f{\"u}r den Fall eines Dipols nahe einer metallischen Nano-Kugel gezeigt. Das vollst{\"a}ndige Problem, Licht mittels einer optischen Antenne zu fokussieren, l{\"a}sst sich so auf die Erf{\"u}llung zweier Moden{\"u}berlapp-Bedingungen reduzieren -- mit dem Feld eines Punktdipols, sowie mit einer ebenen Welle. Damit lassen sich zwei Arten idealer Antennenmoden identifizieren, welche sich von der bekannten Dipol-Antennen-Mode grundlegend unterscheiden. Zum einen l{\"a}sst sich dadurch die Funktionalit{\"a}t der evolution{\"a}ren und Split-Ring-Antennen erkl{\"a}ren, zum lassen sich neuartige plasmonische Hohlraum-Antennen entwerfen, welche zu besserer Fokussierung von Licht f{\"u}hren. Dies wird numerisch im direkten Vergleich mit einer klassischen Dipolantennen-Geometrie gezeigt.}, subject = {Physik}, language = {en} } @phdthesis{Pakkayil2017, author = {Pakkayil, Shijin Babu}, title = {Towards ferromagnet/superconductor junctions on graphene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis reports a successful fabrication and characterisation of ferromagnetic/superconductor junction (F/S) on graphene. The thesis preposes a fabrication method to produce F/S junctions on graphene which make use of ALD grown Al2O3 as the tunnel barrier for the ferromagnetic contacts. Measurements done on F/G/S/G/F suggests that by injecting spin polarised current into the superconductor, a spin imbalance is created in the quasiparticle density of states of the superconductor which then diffuses through the graphene channel. The observed characteristic curves are similar to the ones which are already reported on metallic ferromagnet/superconductor junctions where the spin imbalance is created using Zeeman splitting. Further measurements also show that the curves loose their characteristic shapes when the temperature is increased above the critical temperature (Tc) or when the external magnetic field is higher then the critical field (Hc) of the superconducting contact. But to prove conclusively and doubtlessly the existence of spin imbalance in ferromagnet/superconductor junctions on graphene, more devices have to be made and characterised preferably in a dilution refrigerator.}, subject = {Graphen}, language = {en} } @phdthesis{Swimm2017, author = {Swimm, Katrin}, title = {Experimentelle und theoretische Untersuchungen zur gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeit von por{\"o}sen Materialien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Als W{\"a}rmed{\"a}mmstoffe werden {\"u}blicherweise makropor{\"o}se Stoffsysteme wie Sch{\"a}ume, Pul-versch{\"u}ttungen, Faservliese und - wolle eingesetzt. Zus{\"a}tzlich finden mikro- und mesopor{\"o}se D{\"a}mmstoffe wie Aerogele Anwendung. Um effiziente W{\"a}rmed{\"a}mmstoffe entwickeln zu k{\"o}nnen, muss der Gesamtw{\"a}rmetransport in por{\"o}sen Materialien verstanden werden. Die ein-zelnen W{\"a}rmetransport-Mechanismen Festk{\"o}rperw{\"a}rmeleitung, Gasw{\"a}rmeleitung und W{\"a}rme-strahlung k{\"o}nnen zuverl{\"a}ssig analytisch beschrieben werden. Bei manchen por{\"o}sen Materialien liefert jedoch auch eine Wechselwirkung zwischen den verschiedenen W{\"a}rmetransport-Mechanismen, d.h. die Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung, einen hohen Beitrag zur Gesamtw{\"a}rmeleitf{\"a}higkeit. Wie hoch dieser Kopplungseffekt bei einer bestimmten Probe ausf{\"a}llt, kann bisher schwer abgesch{\"a}tzt werden. Um den Kopplungseffekt von Festk{\"o}rper- und Gasw{\"a}rmeleitung besser zu verstehen, sind sowohl experimentelle als auch theoretische Untersuchungen an verschiedenen por{\"o}sen Stoffsystemen erforderlich. Zus{\"a}tzlich kann ein zuverl{\"a}ssiges theoretisches Modell dazu beitragen, die mittlere Porengr{\"o}ße von por{\"o}sen Mate-rialien zerst{\"o}rungsfrei anhand von gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeitsmessungen zu bestimmen. Als Modellsystem f{\"u}r die experimentellen Untersuchungen wurde der hochpor{\"o}se Feststoff Aerogel verwendet, da seine strukturellen Eigenschaften wie Porengr{\"o}ße und Dichte w{\"a}hrend der Synthese gut eingestellt werden k{\"o}nnen. Es wurden Resorcin-Formaldehyd-Aerogele mit mittleren Porengr{\"o}ßen von etwa 600 nm, 1 µm und 8 µm sowie daraus mittels Pyrolyse abge-leitete Kohlenstoff-Aerogele synthetisiert und jeweils hinsichtlich ihrer Struktur und W{\"a}rme-leitf{\"a}higkeiten experimentell charakterisiert. Die Gesamtw{\"a}rmeleitf{\"a}higkeiten dieser Aerogele wurden f{\"u}r verschiedene Gasatmosph{\"a}ren (Kohlenstoffdioxid, Argon, Stickstoff und Helium) in Abh{\"a}ngigkeit vom Gasdruck durch das Hitzdraht-Verfahren bestimmt. Hierf{\"u}r wurde der Messbereich der Hitzdraht-Apparatur des ZAE Bayern mittels einer Druckzelle auf 10 MPa erweitert. Die Messergebnisse zeigen, dass bei allen Aerogel-Proben Festk{\"o}rper- und Gasw{\"a}r-meleitung einen deutlichen Kopplungsbeitrag liefern: Die gemessenen gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeiten sind um Faktor 1,3 bis 3,3 h{\"o}her als die entsprechenden reinen Gas-w{\"a}rmeleitf{\"a}higkeiten. Die jeweilige H{\"o}he h{\"a}ngt sowohl vom verwendeten Gas (Gasw{\"a}rmeleitf{\"a}higkeit) als auch vom Aerogeltyp (Festk{\"o}rperw{\"a}rmeleitf{\"a}higkeit und Festk{\"o}rperstruktur) ab. Ein stark vernetzter Festk{\"o}rper verursacht beispielsweise einen niedrigeren Kopplungsbei-trag als ein weniger stark vernetzter Festk{\"o}rper. Andererseits wurde die gasdruckabh{\"a}ngige W{\"a}rmeleitf{\"a}higkeit von Melaminharzschaum - einem flexiblen, offenporigen und hochpor{\"o}sen Material - in einer evakuierbaren Zwei-Plattenapparatur unter Stickstoff-Atmosph{\"a}re bestimmt. Das Material zeichnet sich dadurch aus, dass die Addition der Einzelw{\"a}rmeleitf{\"a}higkeiten gut erf{\"u}llt ist, d.h. kein Kopplungsef-fekt auftritt. Allerdings konnte gezeigt werden, dass die gestauchte und damit unregelm{\"a}ßige Struktur von Melaminharzschaum die Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung deut-lich beg{\"u}nstigt. Je st{\"a}rker die Melaminharzschaumprobe komprimiert wird, umso st{\"a}rker f{\"a}llt der Kopplungseffekt aus. Bei einer Kompression um 84 \% ist beispielsweise die gemessene gasdruckabh{\"a}ngige W{\"a}rmeleitf{\"a}higkeit bei 0,1 MPa um ca. 17 \% gegen{\"u}ber der effektiven W{\"a}rmeleitf{\"a}higkeit von freiem Stickstoff erh{\"o}ht. Die experimentellen Untersuchungen wurden durch theoretische Betrachtungen erg{\"a}nzt. Zum einen wurde die Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung anhand einer Serienschal-tung der thermischen Widerst{\"a}nde von Festk{\"o}rper- und Gasphase dargestellt, um die Abh{\"a}n-gigkeit von verschiedenen Parametern zu untersuchen. Dadurch konnte gezeigt werden, dass der Kopplungsterm stets von den Verh{\"a}ltnissen aus Festk{\"o}rper- und Gasw{\"a}rmeleitf{\"a}higkeit sowie aus den geometrischen Parametern beider Phasen abh{\"a}ngt. Des Weiteren wurden mit dem Computerprogramm HEAT2 Finite-Differenzen-Simulationen an Modellstrukturen durchgef{\"u}hrt, die f{\"u}r por{\"o}se Stoffsysteme, insbesondere Aerogel, charakteristisch sind (Stege, H{\"a}lse, Windungen und tote Enden). Die simulierten gasdruckabh{\"a}ngigen W{\"a}rmeleitf{\"a}higkeiten zeigen deutlich, dass die Festk{\"o}rperstruktur mit der geringsten Vernetzung, d.h. das tote Ende, am meisten zur Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung beitr{\"a}gt. Dies korre-liert mit den experimentellen Ergebnissen. Dar{\"u}ber hinaus kann man erkennen, dass die Ge-samtw{\"a}rmeleitf{\"a}higkeit eines schlecht vernetzten por{\"o}sen Systems, wo also ein hoher Kopp-lungseffekt (Serienschaltung) auftritt, niemals gr{\"o}ßer wird als die eines gut vernetzten Sys-tems mit gleicher Porosit{\"a}t, wo haupts{\"a}chlich paralleler W{\"a}rmetransport durch beide Phasen stattfindet. Schließlich wurden drei Modelle entwickelt bzw. modifiziert, um die gasdruckabh{\"a}ngige W{\"a}rmeleitf{\"a}higkeit von por{\"o}sen Stoffsystemen theoretisch beschreiben zu k{\"o}nnen. Zun{\"a}chst wurde ein f{\"u}r Kugelsch{\"u}ttungen entwickeltes Modell f{\"u}r Aerogel angepasst, d.h. Kopplung von Festk{\"o}rper- und Gasw{\"a}rmeleitung wurde nur in den L{\"u}cken zwischen zwei benachbarten Partikeln ber{\"u}cksichtigt. Ein Vergleich mit den Messkurven zeigt, dass der ermittelte Kopplungsterm zu gering ausf{\"a}llt. Daher wurde ein bereits existierendes Aerogelmodell mit kubischer Einheitszelle, welches zus{\"a}tzlich Kopplung zwischen den einzelnen Partikelstr{\"a}ngen beinhaltet, verbessert. Auch dieses Modell liefert keine zufriedenstellende {\"U}bereinstimmung mit den Messwerten, denn der Kopplungsbeitrag wird immer noch untersch{\"a}tzt. Das liegt daran, dass die gew{\"a}hlte regelm{\"a}ßige kubische Struktur f{\"u}r Aerogel zu ungenau ist. So geht bei der Berechnung des Kopplungsterms der bereits erw{\"a}hnte hohe Beitrag durch tote Enden (und auch Windungen) verloren. Erfahrungsgem{\"a}ß k{\"o}nnen jedoch alle f{\"u}r Aerogel erhaltenen gasdruckabh{\"a}ngigen Messkurven mit dem sogenannten Skalierungsmodell relativ gut beschrieben werden. Das entspricht dem Knudsen-Modell f{\"u}r reine Gasw{\"a}rmeleitung, welches mit einem konstanten Faktor skaliert wird. Die Anwendung dieses einfachen Modells auf die Messdaten hat gezeigt, dass die Akkommodationskoeffizienten von Helium in Aerogel deut-lich h{\"o}her sind als die Literaturwerte (ca. 0,3 auf Metalloberfl{\"a}chen): In den vermessenen RF- und Kohlenstoff-Aerogelen lassen sich Akkommodationskoeffizienten nahe 1 f{\"u}r Helium ab-leiten. Dar{\"u}ber hinaus ist das Skalierungsmodell gut geeignet, die mittleren Porengr{\"o}ßen por{\"o}ser Materialien zuverl{\"a}ssig aus gasdruckabh{\"a}ngig gemessenen W{\"a}rmeleitf{\"a}higkeitskurven zu bestimmen. Dies stellt somit eine unkomplizierte und zerst{\"o}rungsfreie Charakterisierungsmethode dar.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {de} } @phdthesis{Huewe2017, author = {H{\"u}we, Florian}, title = {Electrothermal Investigation on Charge and Heat Transport in the Low-Dimensional Organic Conductor (DCNQI)\(_2\)Cu}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis aimed at the coherent investigation of the electrical and thermal transport properties of the low-dimensional organic conductor (DCNQI)2M (DCNQI: dicyanoquinonediimine; M: metallic counterion). These radical anion salts present a promising, new material class for thermoelectric applications and hence, a consistent characterization of the key parameters is required to evaluate and to optimize their performance. For this purpose, a novel experimental measurement setup enabling the determination of the electrical conductivity, the Seebeck coefficient and the thermal conductivity on a single crystalline specimen has been designed and implemented in this work. The novel measurement setup brought to operation within this thesis enabled a thorough investigation of the thermal transport properties in the (DCNQI)2M system. The thermal conductivity of (DCNQI-h8)2Cu at RT was determined to κ=1.73 W m^(-1) K^(-1). By reducing of the copper content in isostructural, crystalline (DMe-DCNQI)2CuxLi1-x alloys, the electrical conductivity has been lowered by one order of magnitude and the correlated changes in the thermal conductivity allowed for a verification of the Wiedemann-Franz (WF) law at RT. A room temperature Lorenz number of L=(2.48±0.45)⋅〖10〗^(-8) WΩK^(-2) was obtained in agreement with the standard Lorenz number L_0=2,44⋅〖10〗^(-8) WΩK^(-2) for 3D bulk metals. This value appears to be significantly reduced upon cooling below RT, even far above the Debye temperature of θ_D≈82 K, below which a breakdown of the WF law is caused by different relaxation times in response to thermal and to electric field perturbations. The experimental data enabled the first consistent evaluation of the thermoelectric performance of (DCNQI)\$_2\$Cu. The RT power factor of 110 μWm^(-1) K^(-2) is comparable to values obtained on PEDOT-based thermoelectric polymers. The RT figure of merit amounts to zT=0.02 which falls short by a factor of ten compared to the best values of zT=0.42 claimed for conducting polymers. It originates from the larger thermal conductivity in the organic crystals of about 1.73 W m^(-1) K^(-1) in (DCNQI)2Cu. Yet, more elaborate studies on the anisotropy of the thermal conductivity in PEDOT polymers assume their figure of merit to be zT=0.15 at most, recently. Therefore, (DCNQI)2Cu can be regarded as thermoelectric material of similar performance to polymer-based ones. Moreover, it represents one of the best organic n-type thermoelectric materials to date and as such, may also become important in hybrid thermoelectrics in combination with conducting polymers. Upon cooling below room temperature, (DCNQI)2Cu reveals its full potential attaining power factors of 50 mW K^(-2) m^(-1) and exceeding values of zT>0.15 below 40 K. These values represent the best thermoelectric performance in this low-temperature regime for organic as well as inorganic compounds and thus, low-dimensional organic conductors might pave the way toward new applications in cryogenic thermoelectrics. Further improvements may be expected from optimizing the charge carrier concentration by taking control over the CT process via the counterion stack of the crystal lattice. The concept has also been demonstrated in this work. Moreover, the thermoelectric performance in the vicinity of the CDW transition in (MeBr-DCNQI)2Cu was found to be increased by a factor of 5. Accordingly, the diversity of electronic ground states accessible in organic conductors provides scope for further improvements. Finally, the prototype of an all-organic thermoelectric generator has been built in combination with the p-type organic metal TTT2I3. While it only converts about 0.02\% of the provided heat into electrical energy, the specific power output per active area attains values of up to 5 mW cm^(-2). This power output, defining the cost-limiting factor in the recovery of waste heat, is three orders of magnitude larger than in conducting polymer devices and as such, unrivaled in organic thermoelectrics. While the thermoelectric key parameters of (DCNQI)2Cu still lack behind conventional thermoelectrics made of e.g. Bi2Te3, the promising performance together with its potential for improvements make this novel material class an interesting candidate for further exploration. Particularly, the low-cost and energy-efficient synthesis routes of organic materials highlight their relevance for technological applications.}, subject = {Radikalanionensalz}, language = {en} } @phdthesis{Maass2017, author = {Maaß, Henriette}, title = {Spin-dependence of angle-resolved photoemission from spin-orbit split surface states}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151025}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Spin- and angle-resolved photoelectron spectroscopy is the prime method to investigate spin polarized electronic states at solid state surfaces. In how far the spin polarization of an emitted photoelectron reflects the intrinsic spin character of an electronic state is the main question in the work at hand. It turns out that the measured spin polarization is strongly influenced by experimental conditions, namely by the polarization of the incoming radiation and the excitation energy. The photoemission process thus plays a non-negligible role in a spin-sensitive measurement. This work is dedicated to unravel the relation between the result of a spin-resolved measurement and the spin character in the ground state and, therefore, to gain a deep understanding of the spin-dependent photoemission process. Materials that exhibit significant spin-splittings in their electronic structure, owing to a strong spin-orbit coupling, serve as model systems for the investigations in this work. Therefore, systems with large Rashba-type spin-splittings as BiTeI(0001) and the surface alloys BiAg2/Ag(111) and PbAg2/Ag(111) are investigated. Likewise, the surface electronic structure of the topological insulators Bi2Te2Se(0001) and Bi2Te3(0001) are analyzed. Light polarization dependent photoemission experiments serve as a probe of the orbital composition of electronic states. The knowledge of the orbital structure helps to disentangle the spin-orbital texture inherent to the different surface states, when in addition the spin-polarization is probed. It turns out that the topological surface state of Bi2Te2Se(0001) as well as the Rashba-type surface state of BiTeI(0001) exhibit chiral spin-textures associated with the p-like in-plane orbitals. In particular, opposite chiralities are coupled to either tangentially or radially aligned p-like orbitals, respectively. The results presented here are thus evidence that a coupling between spin- and orbital part of the wave function occurs under the influence of spin-orbit coupling, independent of the materials topology. Systematic photon energy dependent measurements of the out-of-plane spin polarization of the topological surface state of Bi2Te3(0001) reveal a strong dependence and even a reversal of the sign of the photoelectron spin polarization with photon energy. Similarly, the measured spin component perpendicular to the wave vector of the surface state of BiAg2/Ag(111) shows strong modulations and sign reversals when the photon energy is changed. In BiAg2/Ag(111) the variations in the photoelectron spin polarization are accompanied by significant changes and even a complete suppression of the photoemission intensity from the surface state, indicating that the variations of the spin polarization are strongly related to the photoemission cross section. This relation is finally analyzed in detail by employing a simple model, which is based on an evaluation of the transition matrix elements that describe the presented experiments. The model shows that the underlying cause for the observed photoelectron spin reversals can be found in the coupling of the spin structure to the spatial part of the initial state wave function, revealing the crucial role of spin-orbit interaction in the initial state wave function. The model is supported by ab initio photoemission calculations, which show strong agreement with the experimental results.}, subject = {Photoelektronenspektroskopie}, language = {en} } @phdthesis{Maier2017, author = {Maier, Sebastian}, title = {Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152972}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie L{\"o}sungen f{\"u}r aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abh{\"o}rsichere Kommunikationsprotokolle und k{\"o}nnte, mit der Realisierung von Quantenrepeatern, auch {\"u}ber große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) k{\"o}nnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu l{\"o}sen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik gen{\"u}gen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu k{\"o}nnen. In halbleiterbasierten Ans{\"a}tzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten f{\"u}r diese Experimente etabliert. Halbleiterquantenpunkte weisen große {\"A}hnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich {\"u}berdies als exzellente Emitter f{\"u}r einzelne und ununterscheidbare Photonen aus. Außerdem k{\"o}nnen mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So k{\"o}nnen station{\"a}re Quantenbits (Qubits) in Form von Elektronenspinzust{\"a}nden gespeichert werden und mittels Spin-Photon-Verschr{\"a}nkung weit entfernte station{\"a}re Qubits {\"u}ber fliegende photonische Qubits verschr{\"a}nkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften f{\"u}r Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis f{\"u}r das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie erm{\"o}glicht h{\"o}chste kristalline Qualit{\"a}ten und bietet die M{\"o}glichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erh{\"o}ht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verst{\"a}rkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. F{\"u}r die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind f{\"u}r Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration f{\"u}r Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Koh{\"a}renzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavit{\"a}ten weisen gr{\"o}ßere Werte f{\"u}r die Spindephasierungszeit auf als Mikro- und Nanot{\"u}rmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle f{\"u}r einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensit{\"a}t und optische Qualit{\"a}t mit Halbwertsbreiten nahe der nat{\"u}rlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42\% f{\"u}r reine Einzelphotonenemission bestimmt und {\"u}bersteigt damit die, f{\"u}r eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33\%) deutlich. Als Grund hierf{\"u}r konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavit{\"a}ten einerseits als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtb{\"u}ndelung verbessern. In weiterf{\"u}hrenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschr{\"a}nkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein f{\"u}r halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es m{\"o}glich, die komplette Tomographie eines verschr{\"a}nkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. {\"U}berdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei r{\"a}umlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein f{\"u}r Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen f{\"u}r optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerst{\"o}rungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein k{\"u}rzlich ver{\"o}ffentlichtes theoretisches Konzept k{\"o}nnte hierzu einen eleganten Weg er{\"o}ffnen: Hierbei wird die spinabh{\"a}ngige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgen{\"u}tzt. So k{\"o}nnte die Spin-Information zerst{\"o}rungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits {\"u}ber gr{\"o}ßere Distanzen erm{\"o}glicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abh{\"a}ngig von der G{\"u}te des Mikroresonators, {\"u}ber mehrere μm ausdehnen kann. Dies und weitere m{\"o}gliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems w{\"u}nschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universit{\"a}t Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavit{\"a}t mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualit{\"a}t und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer N{\"a}he zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: F{\"u}r die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualit{\"a}t ist eine skalierbare technologische Produktionsplattform w{\"u}nschenswert. Dazu m{\"u}ssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden k{\"o}nnen. Basierend auf zweidimensionalen, regelm{\"a}ßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip f{\"u}r die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit ge{\"a}tzten Nanol{\"o}chern, welche als Nukleationszentren f{\"u}r das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erh{\"o}hte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenl{\"a}nge erreicht werden.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Kuger2017, author = {Kuger, Fabian}, title = {Signal Formation Processes in Micromegas Detectors and Quality Control for large size Detector Construction for the ATLAS New Small Wheel}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152495}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The Micromegas technology is one of the most successful modern gaseous detector concepts and widely utilized in nuclear and particle physics experiments. Twenty years of R \& D rendered the technology sufficiently mature to be selected as precision tracking detector for the New Small Wheel (NSW) upgrade of the ATLAS Muon spectrometer. This will be the first large scale application of Micromegas in one of the major LHC experiments. However, many of the fundamental microscopic processes in these gaseous detectors are still not fully understood and studies on several detector aspects, like the micromesh geometry, have never been addressed systematically. The studies on signal formation in Micromegas, presented in the first part of this thesis, focuses on the microscopic signal electron loss mechanisms and the amplification processes in electron gas interaction. Based on a detailed model of detector parameter dependencies, these processes are scrutinized in an iterating comparison between exper- imental results, theory prediction of the macroscopic observables and process simulation on the microscopic level. Utilizing the specialized detectors developed in the scope of this thesis as well as refined simulation algorithms, an unprecedented level of accuracy in the description of the microscopic processes is reached, deepening the understanding of the fundamental process in gaseous detectors. The second part is dedicated to the challenges arising with the large scale Micro- megas production for the ATLAS NSW. A selection of technological choices, partially influenced or determined by the herein presented studies, are discussed alongside a final report on two production related tasks addressing the detectors' core components: For the industrial production of resistive anode PCBs a detailed quality control (QC) and quality assurance (QA) scheme as well as the therefore required testing tools have been developed. In parallel the study on micromesh parameter optimization and production feasibility resulted in the selection of the proposed mesh by the NSW community and its full scale industrial manufacturing. The successful completion of both tasks were im- portant milestones towards the construction of large size Micromegas detectors clearing the path for NSW series production.}, subject = {Gasionisationsdetektor}, language = {en} } @phdthesis{Then2017, author = {Then, Patrick}, title = {Waveguide-based single molecule detection in flow}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this work fluorescence-based single molecule detection at low concetration is investigated, with an emphasis on the usage of active transport and waveguides. Active transport allows to overcome the limits of diffusion-based systems in terms of the lowest detectable threshold of concentration. The effect of flow in single molecule experiments is investigated and a theoretical model is derived for laminar flow. Waveguides on the other hand promise compact detection schemes and show great potential for their possible integration into lab-on-a-chip applications. Their properties in single molecule experiments are analyzed with help of a method based on the reciprocity theorem of electromagnetic theory.}, subject = {Optik}, language = {en} } @phdthesis{Leubner2017, author = {Leubner, Philipp}, title = {Strain-engineering of the Topological Insulator HgTe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152446}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The subject of this thesis is the control of strain in HgTe thin-film crystals. Such systems are members of the new class of topological insulator materials and therefore of special research interest. A major task was the experimental control of the strain in the HgTe films. This was achieved by a new epitaxial approach and confirmed by cristallographic analysis and magneto-transport measurements. In this work, strain was induced in thin films by means of coherent epitaxy on substrate crystals. This means that the film adopts the lattice constant of the substrate in the plane of the substrate-epilayer interface. The level of strain is determined by the difference between the strain-free lattice constants of the substrate and epilayer material (the so-called lattice mismatch). The film responds to an in-plane strain with a change of its lattice constant perpendicular to the interface. This relationship is crucial for both the correct interpretation of high resolution X-ray diffraction (HRXRD) measurements, and the precise determination of the band dispersion. The lattice constant of HgTe is smaller than the lattice constant of CdTe. Therefore, strain in HgTe is tensile if it is grown on a CdTe substrate. In principle, compressive strain can be achieved by using an appropriate \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) substrate. This concept was modified and applied in this work. Epilayers have been fabricated by molecular-beam epitaxy (MBE). The growth of thick buffer layers of CdTe on GaAs:Si was established as an alternative to commercial CdTe and \(text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) substrates. The growth conditions have been optimized by an analysis of atomic force microscopy and HRXRD studies. HRXRD measurements reveal a power-law increase of the crystal quality with increasing thickness. Residual strain was found in the buffer layers, and was attributed to a combination of finite layer thickness and mismatch of the thermal expansion coefficients of CdTe and GaAs. In order to control the strain in HgTe epilayers, we have developed a new type of substrate with freely adjustable lattice constant. CdTe-\(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) strained-layer-superlattices have been grown by a combination of MBE and atomic-layer epitaxy (ALE), and have been analyzed by HRXRD. ALE of the \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) layer is self-limiting to one monolayer, and the effective lattice constant can be controlled reproducibly and straightforward by adjusting the CdTe layer thickness. The crystal quality has been found to degrade with increasing Zn-fraction. However, the effect is less drastic compared to single layer \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) solid solutions. HgTe quantum wells (QWs) sandwiched in between CdHgTe barriers have been fabricated in a similar fashion on superlattices and conventional CdTe and \(\text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) substrates. The lower critical thickness of the CdHgTe barrier material grown on superlattice substrates had to be considered regarding the sample design. The electronic properties of the QWs depend on the strain and thickness of the QW. We have determined the QW thickness with an accuracy of \(\pm\)0.5 nm by an analysis of the beating patterns in the thickness fringes of HRXRD measurements and X-ray reflectometry measurements. We have, for the first time, induced compressive strain in HgTe QWs by an epitaxial technique (i.e. the effective lattice constant of the superlattice is lower compared to the lattice constant of HgTe). The problem of the lattice mismatch between superlattice and barriers has been circumvented by using CdHgTe-ZnHgTe superlattices instead of CdHgTe as a barrier material. Furthermore, the growth of compressively strained HgTe bulk layers (with a thickness of at least 50 nm) was demonstrated as well. The control of the state of strain adds a new degree of freedom to the design of HgTe epilayers, which has a major influence on the band structure of QWs and bulk layers. Strain in bulk layers lifts the degeneracy of the \(\Gamma_8\) bands at \(\mathbf{k}=0\). Tensile strain opens an energy gap, compressive strain shifts the touching points of the valence- and conduction band to positions in the Brillouin zone with finite \(\mathbf{k}\). Such a situation has been realized for the first time in the course of this work. For QWs in the inverted regime, it is demonstrated that compressive strain can be used to significantly enhance the thermal energy gap of the two-dimensional electron gas (2DEG). In addition, semi-metallic and semiconducting behavior is expected in wide QWs, depending on the state of strain. An examination of the temperature dependence of the subband ordering in QWs revealed that the band gap is only temperature-stable for appropriate sample parameters and temperature regimes. The band inversion is always lifted for sufficiently high temperatures. A large number of models investigate the influence of the band gap on the stability of the quantum-spin-Hall (QSH) effect. An enhancement of the stability of QSH edge state conductance is expected for enlarged band gaps. Furthermore, experimental studies on the temperature dependence of the QSH conductance are in contradiction to theoretical predictions. Systematic studies of these aspects have become feasible based on the new flexibility of the sample design. Detailed low-temperature magnetotransport studies have been carried out on QWs and bulk layers. For this purpose, devices have been fabricated lithographically, which consist of two Hall-bar geometries with different dimensions. This allows to discriminate between conductance at the plane of the 2DEG and the edge of the sample. The Fermi energy in the 2DEG has been adjusted by means of a top gate electrode. The strain-induced transition from semi-metallic to semiconducting characteristics in wide QWs was shown. The magnitude of the semi-metallic overlap of valence- and conduction band was determined by an analysis of the two-carrier conductance and is in agreement with band structure calculations. The band gap of the semiconducting sample was determined by measurements of the temperature dependence of the conductance at the charge-neutrality point. Agreement with the value expected from theory has been achieved for the first time in this work. The influence of the band gap on the stability of QSH edge state conductance has been investigated on a set of six samples. The band gap of the set spans a range of 10 to 55 meV. The latter value has been achieved in a highly compressively strained QW, has been confirmed by temperature-dependent conductance measurements, and is the highest ever reported in the inverted regime. Studies of the carrier mobility reveal a degradation of the sample quality with increasing Zn-fraction in the superlattice, in agreement with HRXRD observations. The enhanced band gap does not suppress scattering mechanisms in QSH edge channels, but lowers the conductance in the plane of the 2DEG. Hence, edge state conductance is the dominant conducting process even at elevated temperatures. An increase in conductance with increasing temperature has been found, in agreement with reports from other groups. The increase follows a power-law dependency, the underlying physical mechanism remains open. A cause for the lack of an increase of the QSH edge state conductance with increasing energy gap has been discussed. Possibly, the sample remains insulating even at finite carrier densities, due to localization effects. The measurement does not probe the QSH edge state conductance at the situation where the Fermi energy is located in the center of the energy gap, but in the regime of maximized puddle-driven scattering. In a first set of measurements, it has been shown that the QSH edge state conductance can be influenced by hysteretic charging effects of trapped states in the insulating dielectric. A maximized conductance of \(1.6\ \text{e}^2/\text{h}\) was obtained in a \(58\ \mu\text{m}\) edge channel. Finally, measurements on three dimensional samples have been discussed. Recent theoretical works assign compressively strained HgTe bulk layers to the Weyl semi-metal class of materials. Such layers have been synthesized and studied in magnetotransport experiments for the first time. Pronounced quantum-Hall- and Shubnikov-de-Haas features in the Hall- and longitudinal resistance indicate two-dimensional conductance on the sample surface. However, this conductance cannot be assigned definitely to Weyl surface states, due to the inversion of \(\Gamma_6\) and \(\Gamma_8\) bands. If a magnetic field is aligned parallel to the current in the device, a decrease in the longitudinal resistance is observed with increasing magnetic field. This is a signature of the chiral anomaly, which is expected in Weyl semi-metals.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Quast2017, author = {Quast, Jan-Henrik}, title = {Influence of Hot Carriers on Spin Diffusion in Gallium Arsenide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147611}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Since the late 20th century, spintroncis has become a very active field of research [ŽFS04]. The prospect of spin based information technology, featuring strongly decreased energy consumption and possibly quantum-computation capabilities, has fueled this interest. Standard materials, like bulk gallium arsenide (GaAs), have experienced new attention in this context by exhibiting extraordinarily long lifetimes for nonequilibrium spin information, which is an important requirement for efficient spin based information storage and transfer. Another important factor is the lengthscale over which spin information can be transported in a given material and the role of external influences. Both aspects have been studied experimentally with innovative optical methods since the late 1990s by the groups of D. D. AWSHALOM and S. A. CROOKER et al. [KA99, CS05, CFL+05]. Although the pioneering experimental approaches presented by these authors led to a variety of insights into spin propagation, some questions were raised as well. Most prominently, the classical Einstein relation, which connects the mobility and diffusivity of a given particle species, seemed to be violated for electron spins in a bulk semiconductor. In essence, nonequilibrium spins appeared to move (diffuse) faster than the electrons that actually carry the spin. However, this contradiction was masked by the fact, that the material of interest was n-type GaAs with a doping concentration directly at the transition between metallic and insulating behavior (MIT). In this regime, the electron mobility is difficult to determine experimentally. Consequently, it was not a priori obvious that the spin diffusion rates determined by the newly introduced optical methods were in contradiction with established electrical transport data. However, in an attempt to extend the available data of optical spin microscopy, another issue surfaced, concerning the mathematical drift-diffusion model that has been commonly used to evaluate lateral spin density measurements. Upon close investigation, this model appears to have a limited range of applicability, due to systematic discrepancies with the experimental data (chapter 4). These deviations are noticeable in original publications as well, and it is shown in the present work that they originate from the local heating of electrons in the process of optical spin pumping. Based on insights gained during the second half of the 20th century, it is recapitulated why conduction electrons are easily overheated at cryogenic temperatures. The main reason is the poor thermal coupling between electrons and the crystal lattice (chapter 3). Experiments in the present work showed that a significant thermal gradient exists in the conduction band under local optical excitation of electron-hole pairs. This information was used to develop a better mathematical model of spin diffusion, which allowed to derive the diffusivity of the undisturbed system, due to an effective consideration of electron overheating. In this way, spin diffusivities of n-GaAs were obtained as a function of temperature and doping density in the most interesting regime of the metal-insulator-transition. The experiments presented in this work were performed on a series of n-type bulk GaAs samples, which comprised the transition between metallic conductivity and electrical insulation at low temperatures. Local electron temperature gradients were measured by a hyperspectral photoluminescence imaging technique with subsequent evaluation of the electron-acceptor (e,A\$^0\$) line shape. The local density of nonequilibrium conduction electron spins was deduced from scanning magneto-optic Kerr effect microscopy. Numerical evaluations were performed using the finite elements method in combination with a least-squares fitting procedure. Chapter 1 provides an introduction to historical and recent research in the field of spintronics, as far as it is relevant for the understanding of the present work. Chapter 2 summarizes related physical concepts and experimental methods. Here, the main topics are semiconductor optics, relaxation of hot conduction electrons, and the dynamics of nonequilibrium electron spins in semiconductors. Chapter 3 discusses optical heating effects due to local laser excitation of electron-hole pairs. Experimental evaluations of the acceptor-bound-exciton triplet lines led to the conclusion that the crystal lattice is usually not overheated even at high excitation densities. Here, the heat is efficiently dissipated to the bath, due to the good thermal conductivity of the lattice. Furthermore, the heating of the lattice is inherently limited by the weak heat transfer from the electron system, which on the other hand is also the reason why conduction electrons are easily overheated at temperatures below ≈ 30 K. Spatio-spectral imaging of the electron-acceptor-luminescence line shape allowed to trace the thermal gradient within the conduction band under focused laser excitation. A heat-diffusion model was formulated, which reproduces the experimental electron-temperature trend nicely for low-doped GaAs samples of n- and p-type. For high-doped n-type GaAs samples, it could be shown that the lateral electron-temperature profile is well approximated by a Gaussian. This facilitated easy integration of hot electron influence into the mathematical model of spin diffusion. Chapter 4 deals with magneto-optical imaging of optically induced nonequilibrium conduction-electron spins in n-GaAs close to the MIT. First, the spectral dependence of the magneto-optic Kerr effect was examined in the vicinity of the fundamental band gap. Despite the marked differences among the investigated samples, the spectral shape of the Kerr rotation could be described in terms of a simple Lorentz-oscillator model in all cases. Based on this model, the linearity of the Kerr effect with respect to a nonequilibrium spin polarization is demonstrated, which is decisively important for further quantitative evaluations. Furthermore, chapter 4 presents an experimental survey of spin relaxation in n-GaAs at the MIT. Here, the dependence of the spin relaxation time on bath temperature and doping density was deduced from Hanle-MOKE measurements. While all observed trends agree with established literature, the presented results extend the current portfolio by adding a coherent set of data. Finally, diffusion of optically generated nonequilibrium conduction-electron spins was investigated by scanning MOKE microscopy. First, it is demonstrated that the standard diffusion model is inapplicable for data evaluation in certain situations. A systematic survey of the residual deviations between this model and the experimental data revealed that this situation unfortunately persisted in published works. Moreover, the temperature trend of the residual deviations suggests a close connection to the local overheating of conduction electrons. Consequently, a modified diffusion model was developed and evaluated, in order to compensate for the optical heating effect. From this model, much more reliable results were obtained, as compared to the standard diffusion model. Therefore, it was shown conclusively that the commonly reported anomalously large spin diffusivities were at least in parts caused by overheated conduction electrons. In addition to these new insights some experimental and technological enhancements were realized in the course of this work. First, the optical resolution of scanning MOKE microscopy was improved by implementing a novel scanning mechanism, which allows the application of a larger aperture objective than in the usual scheme. Secondly, imaging photoluminescence spectroscopy was employed for spatially resolved electron-temperature measurements. Here, two different implementations were developed: One for lattice-temperature measurements by acceptor-bound exciton luminescence and a second for conduction-electron temperature measurements via the analysis of the electron-acceptor luminescence line shape. It is shown in the present work that the originally stated anomalously high spin diffusivities were caused to a large extent by unwanted optical heating of the electron system. Although an efficient method was found to compensate for the influence of electron heating, it became also evident that the classical Einstein relation was nonetheless violated under the given experimental conditions. In this case however, it could be shown that this discrepancy did not originate from an experimental artifact, but was instead a manifestation of the fermionic nature of conduction electrons.}, subject = {Galliumarsenid}, language = {en} } @phdthesis{Carinci2017, author = {Carinci, Flavio}, title = {Quantitative Characterization of Lung Tissue Using Proton MRI}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151189}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Stender2017, author = {Stender, Benedikt}, title = {Einzelphotonenemitter und ihre Wechselwirkung mit Ladungstr{\"a}gern in organischen Leuchtdioden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150913}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In dieser Arbeit wird die Photophysik von Einzelphotonenemittern unterschiedlicher Materialklassen, wie Fehlstellen in Diamant und Siliziumcarbid sowie organischer Molek{\"u}le bei Raumtemperatur untersucht. Zu diesem Zweck wurde ein hochaufl{\"o}sendes konfokales Mikroskop konzipiert und konstruiert, welches die optische Detektion einzelner Quantensysteme erm{\"o}glicht. Zus{\"a}tzlich werden verschiedene Methoden wie die Rotationsbeschichtung, das Inkjet-Printing und das Inkjet-Etching in Bezug auf die Reproduzierbarkeit und Strukturierbarkeit von organischen Leuchtdioden (OLEDs) verglichen. Im weiteren Verlauf werden die optoelektronischen Prozesse in dotierten OLEDs untersucht, ausgehend von hohen Dotierkonzentrationen bis hin zur Dotierung mit einzelnen Molek{\"u}len. Dadurch kann die Exzitonen-Ladungstr{\"a}ger Wechselwirkung auf und in der Umgebung von r{\"a}umlich isolierten Molek{\"u}len analysiert werden.}, subject = {Einzelphotonenemission}, language = {de} } @phdthesis{Ames2015, author = {Ames, Christopher}, title = {Molecular Beam Epitaxy of 2D and 3D HgTe, a Topological Insulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In the present thesis the MBE growth and sample characterization of HgTe structures is investigated and discussed. Due to the first experimental discovery of the quantum Spin Hall effect (QSHE) in HgTe quantum wells, this material system attains a huge interest in the spintronics society. Because of the long history of growing Hg-based heterostructures here at the Experimentelle Physik III in W{\"u}rzburg, there are very good requirements to analyze this material system more precisely and in new directions. Since in former days only doped HgTe quantum wells were grown, this thesis deals with the MBE growth in the (001) direction of undoped HgTe quantum wells, surface located quantum wells and three dimensional bulk layers. All Hg-based layers were grown on CdTe substrates which generate strain in the layer stack and provide therefore new physical effects. In the same time, the (001) CdTe growth was investigated on n-doped (001) GaAs:Si because the Japanese supplier of CdTe substrates had a supply bottleneck due to the Tohoku earthquake and its aftermath in 2011. After a short introduction of the material system, the experimental techniques were demonstrated and explained explicitly. After that, the experimental part of this thesis is displayed. So, the investigation of the (001) CdTe growth on (001) GaAs:Si is discussed in chapter 4. Firstly, the surface preparation of GaAs:Si by oxide desorption is explored and analyzed. Here, rapid thermal desorption of the GaAs oxide with following cool down in Zn atmosphere provides the best results for the CdTe due to small holes at the surface, while e.g. an atomic flat GaAs buffer deteriorates the CdTe growth quality. The following ZnTe layer supplies the (001) growth direction of the CdTe and exhibits best end results of the CdTe for 30 seconds growth time at a flux ratio of Zn/Te ~ 1/1.2. Without this ZnTe layer, CdTe will grow in the (111) direction. However, the main investigation is here the optimization of the MBE growth of CdTe. The substrate temperature, Cd/Te flux ratio and the growth time has to be adjusted systematically. Therefore, a complex growth process is developed and established. This optimized CdTe growth process results in a RMS roughness of around 2.5 nm and a FWHM value of the HRXRD w-scan of 150 arcsec. Compared to the literature, there is no lower FWHM value traceable for this growth direction. Furthermore, etch pit density measurements show that the surface crystallinity is matchable with the commercial CdTe substrates (around 1x10^4 cm^(-2)). However, this whole process is not completely perfect and offers still room for improvements. The growth of undoped HgTe quantum wells was also a new direction in research in contrast to the previous n-doped grown HgTe quantum wells. Here in chapter 5, the goal of very low carrier densities was achieved and therefore it is now possible to do transport experiments in the n - and p - region by tuning the gate voltage. To achieve this high sample quality, very precise growth of symmetric HgTe QWs and their HRXRD characterization is examined. Here, the quantum well thickness can now determined accurate to under 0.3 nm. Furthermore, the transport analysis of different quantum well thicknesses shows that the carrier density and mobility increase with rising HgTe layer thickness. However, it is found out that the band gap of the HgTe QW closes indirectly at a thickness of 11.6 nm. This is caused by the tensile strained growth on CdTe substrates. Moreover, surface quantum wells are studied. These quantum wells exhibit no or a very thin HgCdTe cap. Though, oxidization and contamination of the surface reduces here the carrier mobility immensely and a HgCdTe layer of around 5 nm provides the pleasing results for transport experiments with superconductors connected to the topological insulator [119]. A completely new achievement is the realization of MBE growth of HgTe quantum wells on CdTe/GaAs:Si substrates. This is attended by the optimization of the CdTe growth on GaAs:Si. It exposes that HgTe quantum wells grown in-situ on optimized CdTe/GaAs:Si show very nice transport data with clear Hall plateaus, SdH oscillations, low carrier densities and carrier mobilities up to 500 000 cm^2/Vs. Furthermore, a new oxide etching process is developed and analyzed which should serve as an alternative to the standard HCl process which generates volcano defects at some time. However, during the testing time the result does not differ in Nomarski, HRXRD, AFM and transport measurements. Here, long-time tests or etching and mounting in nitrogen atmosphere may provide new elaborate results. The main focus of this thesis is on the MBE growth and standard characterization of HgTe bulk layers and is discussed in chapter 6. Due to the tensile strained growth on lattice mismatched CdTe, HgTe bulk opens up a band gap of around 22 meV at the G-point and exhibits therefore its topological surface states. The analysis of surface condition, roughness, crystalline quality, carrier density and mobility via Nomarski, AFM, XPS, HRXRD and transport measurements is therefore included in this work. Layer thickness dependence of carrier density and mobility is identified for bulk layer grown directly on CdTe substrates. So, there is no clear correlation visible between HgTe layer thickness and carrier density or mobility. So, the carrier density is almost constant around 1x10^11 cm^(-2) at 0 V gate voltage. The carrier mobility of these bulk samples however scatters between 5 000 and 60 000 cm^2/Vs almost randomly. Further experiments should be made for a clearer understanding and therefore the avoidance of unusable bad samples.But, other topological insulator materials show much higher carrier densities and lower mobility values. For example, Bi2Se3 exhibits just density values around 1019 cm^(-2) and mobility values clearly below 5000 cm2/Vs. The carrier density however depends much on lithography and surface treatment after growth. Furthermore, the relaxation behavior and critical thickness of HgTe grown on CdTe is determined and is in very good agreement with theoretical prediction (d_c = 155 nm). The embedding of the HgTe bulk layer between HgCdTe layers created a further huge improvement. Similar to the quantum well structures the carrier mobility increases immensely while the carrier density levels at around 1x10^11 cm^(-2) at 0 V gate voltage as well. Additionally, the relaxation behavior and critical thickness of these barrier layers has to be determined. HgCdTe grown on commercial CdTe shows a behavior as predicted except the critical thickness which is slightly higher than expected (d_c = 850 nm). Otherwise, the relaxation of HgCdTe grown on CdTe/GaAs:Si occurs in two parts. The layer is fully strained up to 250 nm. Between 250 nm and 725 nm the HgCdTe film starts to relax randomly up to 10 \%. The relaxation behavior for thicknesses larger than 725 nm occurs than linearly to the inverse layer thickness. A explanation is given due to rough interface conditions and crystalline defects of the CdTe/GaAs:Si compared to the commercial CdTe substrate. HRXRD and AFM data support this statement. Another point is that the HgCdTe barriers protect the active HgTe layer and because of the high carrier mobilities the Hall measurements provide new transport data which have to be interpreted more in detail in the future. In addition, HgTe bulk samples show very interesting transport data by gating the sample from the top and the back. It is now possible to manipulate the carrier densities of the top and bottom surface states almost separately. The back gate consisting of the n-doped GaAs substrate and the thick insulating CdTe buffer can tune the carrier density for Delta(n) ~ 3x10^11 cm^(-2). This is sufficient to tune the Fermi energy from the p-type into the n-type region [138]. In this thesis it is shown that strained HgTe bulk layers exhibit superior transport data by embedding between HgCdTe barrier layers. The n-doped GaAs can here serve as a back gate. Furthermore, MBE growth of high crystalline, undoped HgTe quantum wells shows also new and extended transport output. Finally, it is notable that due to the investigated CdTe growth on GaAs the Hg-based heterostructure MBE growth is partially independent from commercial suppliers.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{BreuergebHemberger2015, author = {Breuer [geb. Hemberger], Kathrin R. F.}, title = {Effiziente 3D Magnetresonanzbildgebung schnell abfallender Signale}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150750}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In der vorliegenden Arbeit wird die Rotated-Cone-UTE-Sequenz (RC-UTE), eine 3D k-Raum-Auslesetechnik mit homogener Verteilung der Abtastdichte, vorgestellt. Diese 3D MR-Messtechnik erm{\"o}glicht die f{\"u}r die Detektion von schnell abfallenden Signalen notwendigen kurzen Echozeiten und weist eine h{\"o}here SNR-Effizienz als konventionelle radiale Pulssequenzen auf. Die Abtastdichte ist dabei in radialer und azimutaler Richtung angepasst. Simulationen und Messungen in vivo zeigen, dass die radiale Anpassung das T2-Blurring reduziert und die SNR-Effizienz erh{\"o}ht. Die Drehung der Trajektorie in azimutale Richtung erm{\"o}glicht die Reduzierung der Unterabtastung bei gleicher Messzeit bzw. eine Reduzierung der Messzeit ohne Aufl{\"o}sungsverlust. Die RC-UTE-Sequenz wurde erfolgreich f{\"u}r die Bildgebung des Signals des kortikalen Knochens und der Lunge in vivo angewendet. Im Vergleich mit der grundlegenden UTE-Sequenz wurden die Vorteile von RC-UTE in allen Anwendungsbeispielen aufgezeigt. Die transversalen Relaxationszeit T2* des kortikalen Knochen bei einer Feldst{\"a}rke von 3.0T und der Lunge bei 1.5T und 3.0T wurde in 3D isotroper Aufl{\"o}sung gemessen. Außerdem wurde die Kombination von RC-UTE-Sequenz mit Methoden der Magnetisierungspr{\"a}paration zur besseren Kontrasterzeugung gezeigt. Dabei wurden die Doppel-Echo-Methode, die Unterdr{\"u}ckung von Komponenten mit langer Relaxationszeit T2 durch Inversionspulse und der Magnetisierungstransfer-Kontrast angewendet. Die Verwendung der RC-UTE-Sequenz f{\"u}r die 3D funktionelle Lungenbildgebung wird ebenfalls vorgestellt. Mit dem Ziel der umfassenden Charakterisierung der Lungenfunktion in 3D wurde die simultane Messung T1-gewichteter Bilder und quantitativer T2*-Karten f{\"u}r verschiedene Atemzust{\"a}nde an sechs Probanden durchgef{\"u}hrt. Mit der hier vorgestellten Methode kann die Lungenfunktion in 3D {\"u}ber T1-Wichtung, quantitative T2*-Messung und Rekonstruktion verschiedener Atemzust{\"a}nde durch Darstellung von Ventilation, Sauerstofftransport und Volumen{\"a}nderung beurteilt werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Fischer2015, author = {Fischer, Julian}, title = {Koh{\"a}renz- und Magnetfeldmessungen an Polariton-Kondensaten unterschiedlicher r{\"a}umlicher Dimensionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149488}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die Bose-Einstein-Kondensation (BEK) und die damit verbundenen Effekte wie Superfluidit{\"a}t und Supraleitung sind faszinierende Resultate der Quantennatur von Bosonen. Nachdem die Bose-Einstein-Kondensation f{\"u}r Atom-Systeme nur bei Temperaturen nahe dem absoluten Nullpunkt realisierbar ist, was einen enormen technologischen Aufwand ben{\"o}tigt, wurden Bosonen mit wesentlich kleineren Massen zur Untersuchung der BEK gesucht. Hierf{\"u}r bieten sich Quasiteilchen in Festk{\"o}rpern wie Magnonen oder Exzitonen an, da deren effektive Massen sehr klein sind und die Kondensationstemperatur dementsprechend h{\"o}her ist als f{\"u}r ein atomares System. Ein weiteres Quasiteilchen ist das Exziton-Polariton als Resultat der starken Licht-Materie-Wechselwirkung in Halbleitermikrokavit{\"a}ten, welches sowohl Materie- als auch Photoneigenschaften hat und dessen Masse theoretisch eine BEK bis Raumtemperatur erlaubt. Ein weiterer Vorteil dieses System ist die einfache Erzeugung des Bose-Einstein-Kondensats in diesen Systemen durch elektrisches oder optisches Injizieren von Exzitonen in die Halbleiter-Quantenfilme der Struktur. Außerdem kann die Impulsraumverteilung dieser Quasiteilchen leicht durch einfache experimentelle Methoden mittels eines Fourierraumspektroskopie-Aufbaus bestimmt werden. Durch die winkelabh{\"a}ngige Messung der Emission kann direkt auf die Impulsverteilung der Exziton-Polaritonen in der Quantenfilmebene zur{\"u}ckgerechnet werden, die zur Identifikation der BEK hilfreich ist. Deshalb wird das Exziton-Polariton als ein Modellsystem f{\"u}r die Untersuchung von Bose-Einstein-Kondensation in Festk{\"o}rpern und den damit in Relation stehenden Effekten angesehen. In dieser Arbeit wird die Grundzustandskondensation von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten verschiedener Dimensionen realisiert und deren Emissionseigenschaften untersucht. Dabei wird vor allem die Wechselwirkung des Polariton-Kondensats mit der der unkondensierten Polaritonen bzw. der Quantenfilm-Exzitonen im externen Magnetfeld verglichen und ein Nachweis zum Erhalt der starken Kopplung {\"u}ber die Polariton-Kondensationsschwelle hinaus entwickelt. Außerdem werden die Koh{\"a}renzeigenschaften von null- und eindimensionalen Polariton-Kondensaten durch Bestimmung der Korrelationsfunktion erster beziehungsweise zweiter Ordnung analysiert. Als Materialsystem werden hierbei die III/V-Halbleiter gew{\"a}hlt und die Quantenfilme bestehen bei allen Messungen aus GaAs, die von einer AlAs Kavit{\"a}t umgeben sind. Eindimensionale Polariton-Kondensation - r{\"a}umliche Koh{\"a}renz der Polariton-Dr{\"a}hte Im ersten experimentellen Teil dieser Arbeit (Kapitel 1) wird die Kondensation der Polaritonen in eindimensionalen Dr{\"a}hten unter nicht-resonanter optischer Anregung untersucht. Dabei werden verschiedene Drahtl{\"a}ngen und -breiten verwendet, um den Einfluss des zus{\"a}tzlichen Einschlusses auf die Polariton-Dispersion bestimmen zu k{\"o}nnen. Ziel dieser Arbeit ist es, ein eindimensionales Bose-Einstein-Kondensat mit einer konstanten r{\"a}umlichen Koh{\"a}renz nach dem zentralen Abfall der g^(1)(r)-Funktion f{\"u}r große Abst{\"a}nde r in diesen Dr{\"a}hten zu realisieren (sogenannte langreichweitige Ordnung im System, ODLRO (Abk{\"u}rzung aus dem Englischen off-diagonal long-range order). Durch Analyse der Fernfeldemissionseigenschaften k{\"o}nnen mehrere Polariton-{\"A}ste, der eindimensionale Charakter und die Polariton-Kondensation in 1D-Systemen nachgewiesen werden. Daraufhin wird die r{\"a}umliche Koh{\"a}renzfunktion g^(1)(r) mithilfe eines hochpr{\"a}zisen Michelson-Interferometer, das im Rahmen dieser Arbeit aufgebaut wurde, bestimmt. Die g^(1)(r)-Funktion nimmt hierbei {\"u}ber große Abst{\"a}nde im Vergleich zur thermischen De-Broglie-Wellenl{\"a}nge einen konstanten Plateauwert an, der abh{\"a}ngig von der Anregungsleistung ist. Unterhalb der Polariton-Kondensationsschwelle (Schwellleistung P_S) ist kein Plateau sichtbar und die r{\"a}umliche Koh{\"a}renz ist nur im zentralen Bereich von unter |r| < 1 µm vorhanden. Mit ansteigender Anregungsleistung nimmt das zentrale Maximum in der Weite zu und es bildet sich das Plateau der g^(1)(r)-Funktion aus, das nur außerhalb des Drahtes auf Null abf{\"a}llt. Bei P=1,6P_S ist das Plateau maximal und betr{\"a}gt circa 0,15. Außerdem kann nachgewiesen werden, dass mit steigender Temperatur die Plateauh{\"o}he abnimmt und schließlich bei T=25K nicht mehr gemessen werden kann. Hierbei ist dann nur noch das zentrale Maximum der Koh{\"a}renzfunktion g^(1)(r) sichtbar. Weiterhin werden die Ergebnisse mit einer modernen mikroskopischen Theorie, die auf einem stochastischen Mastergleichungssystem basiert, verglichen, wodurch die experimentellen Daten reproduziert werden k{\"o}nnen. Im letzten Teil des Kapitels wird noch die Koh{\"a}renzfunktion g^(1)(r) im 1D-Fall mit der eines planaren Polariton-Kondensats verglichen (2D). Nulldimensionale Polariton-Kondensation - Kondensation und Magnetfeldwechselwirkung in einer Hybridkavit{\"a}t Im zweiten Teil der Arbeit wird die Polariton-Kondensation in einer neuartigen Hybridkavit{\"a}t untersucht. Der Aufbau des unteren Spiegels und der Kavit{\"a}t inklusive der 12 verwendeten Quantenfilme ist analog zu den gew{\"o}hnlichen Mikrokavit{\"a}ten auf Halbleiterbasis. Der obere Spiegel jedoch besteht aus einer Kombination von einem DBR (Abk{\"u}rzung aus dem Englischen distributed Bragg reflector) und einem Brechungsindexkontrast-Gitter mit einem Luft-Halbleiter{\"u}bergang (gr{\"o}ßt m{\"o}glichster Brechungsindexkontrast). Durch die quadratische Strukturgr{\"o}ße des Gitters (Seitenl{\"a}nge 5µm) sind die Polaritonen zus{\"a}tzlich zur Wachstumsrichtung noch in der Quantenfilmebene eingesperrt, so dass sie als nulldimensional angesehen werden k{\"o}nnen (Einschluss auf der ungef{\"a}hren Gr{\"o}ße der thermischen De-Broglie-Wellenl{\"a}nge). Um den Erhalt der starken Kopplung {\"u}ber die Kondensationsschwelle hinaus nachweisen zu k{\"o}nnen, wird ein Magnetfeld in Wachstumsrichtung angelegt und die diamagnetische Verschiebung des Quantenfilms mit der des 0D-Polariton-Kondensats verglichen. Hierdurch kann das Polariton-Kondensat von dem konventionellen Photonlasing in solchen Strukturen unterschieden werden. Weiterhin wird als letztes Unterscheidungsmerkmal zwischen Photonlasing und Polariton-Kondensation eine Messung der Autokorrelationsfunktion zweiter Ordnung g^(2)(t) durchgef{\"u}hrt. Dabei kann ein Wiederanstieg des g^(2)(t = 0)-Werts mit ansteigender Anregungsleistung nachgewiesen werden, nachdem an der Kondensationsschwelle der g^(2)(t = 0)-Wert auf 1 abgefallen ist, was auf eine zeitliche Koh{\"a}renzzunahme im System hinweist. Oberhalb der Polariton-Kondensationsschwelle P_S steigt der g^(2)(t = 0)-Wert wieder aufgrund zunehmender Dekoh{\"a}renzprozesse, verursacht durch die im System ansteigende Polariton-Polariton-Wechselwirkung, auf Werte gr{\"o}ßer als 1 an. F{\"u}r einen gew{\"o}hnlichen Photon-Laser (VCSEL, Abk{\"u}rzung aus dem Englischen vertical-cavity surface-emitting laser) im monomodigen Betrieb kann mit steigender Anregungsleistung kein Wiederanstieg des g^(2)(t = 0)-Werts gemessen werden. Somit stellt dies ein weiteres Unterscheidungsmerkmal zwischen Polariton-Kondensation und Photonlasing dar. Zweidimensionale Polariton-Kondensation - Wechselwirkung mit externem Magnetfeld Im letzten experimentellen Kapitel dieser Arbeit wird die Magnetfeldwechselwirkung der drei m{\"o}glichen Regime der Mikrokavit{\"a}tsemission einer planaren Struktur (zweidimensional) untersucht. Dazu werden zuerst durch eine Leistungsserie bei einer Verstimmung des Photons und des Quantenfilm-Exzitons von d =-6,5meV das lineare, polaritonische Regime, das Polariton-Kondensat und bei weiterer Erh{\"o}hung der Anregungsleistung das Photonlasing identifiziert. Diese drei unterschiedlichen Regime werden daraufhin im Magnetfeld von B=0T-5T auf ihre Zeeman-Aufspaltung und ihre diamagnetische Verschiebung untersucht und die Ergebnisse der Magnetfeldwechselwirkung werden anschließend miteinander verglichen. Im linearen Regime kann die Abh{\"a}ngigkeit der Zeeman-Aufspaltung und der diamagnetischen Verschiebung vom exzitonischen Anteils des Polaritons best{\"a}tigt werden. Oberhalb der Polariton-Kondensationsschwelle wird eine gr{\"o}ßere diamagnetische Verschiebung gemessen als f{\"u}r die gleiche Verstimmung im linearen Regime. Dieses Verhalten wird durch Abschirmungseffekte der Coulomb-Anziehung von Elektronen und L{\"o}chern erkl{\"a}rt, was in einer Erh{\"o}hung des Bohrradius der Exzitonen resultiert. Auch die Zeeman-Aufspaltung oberhalb der Polariton-Kondensationsschwelle zeigt ein vom unkondensierten Polariton abweichendes Verhalten, es kommt sogar zu einer Vorzeichenumkehr der Aufspaltung im Magnetfeld. Aufgrund der langen Spin-Relaxationszeiten von 300ps wird eine Theorie basierend auf der im thermischen Gleichgewichtsfall entwickelt, die nur ein partielles anstatt eines vollst{\"a}ndigen thermischen Gleichgewicht annimmt. So befinden sich die einzelnen Spin-Komponenten im Gleichgewicht, w{\"a}hrend zwischen den beiden Spin-Komponenten kein Gleichgewicht vorhanden ist. Dadurch kann die Vorzeichenumkehr als ein Zusammenspiel einer dichteabh{\"a}ngigen Blauverschiebung jeder einzelner Spin-Komponente und der Orientierung der Spins im Magnetfeld angesehen werden. F{\"u}r das Photonlasing kann keine Magnetfeldwechselwirkung festgestellt werden, wodurch verdeutlicht wird, dass die Messung der Zeeman-Aufspaltung beziehungsweise der diamagnetischen Verschiebung im Magnetfeld als ein eindeutiges Werkzeug zur Unterscheidung zwischen Polariton-Kondensation und Photonlasing verwendet werden kann.}, subject = {Exziton-Polariton}, language = {de} } @phdthesis{Kessel2016, author = {Kessel, Maximilian}, title = {HgTe shells on CdTe nanowires: A low-dimensional topological insulator from crystal growth to quantum transport}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149069}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A novel growth method has been developed, allowing for the growth of strained HgTe shells on CdTe nanowires (NWs). The growth of CdTe-HgTe core-shell NWs required high attention in controlling basic parameters like substrate temperature and the intensity of supplied material fluxes. The difficulties in finding optimized growth conditions have been successfully overcome in this work. We found the lateral redistribution of liquid growth seeds with a ZnTe growth start to be crucial to trigger vertical CdTe NW growth. Single crystalline zinc blende CdTe NWs grew, oriented along [111]B. The substrate temperature was the most critical parameter to achieve straight and long wires. In order to adjust it, the growth was monitored by reflection high-energy electron diffraction, which was used for fine tuning of the temperature over time in each growth run individually. For optimized growth conditions, a periodic diffraction pattern allowed for the detailed analysis of atomic arrangement on the surfaces and in the bulk. The ability to do so reflected the high crystal quality and ensemble uniformity of our CdTe NWs. The NW sides were formed by twelve stable, low-index crystalline facets. We observed two types stepped and polar sides, separated by in total six flat and non-polar facets. The high crystalline quality of the cores allowed to grow epitaxial HgTe shells around. We reported on two different heterostructure geometries. In the first one, the CdTe NWs exhibit a closed HgTe shell, while for the second one, the CdTe NWs are overgrown mainly on one side. Scanning electron microscopy and scanning transmission electron microscopy confirmed, that many of the core-shell NWs are single crystalline zinc blende and have a high uniformity. The symmetry of the zinc blende unit cell was reduced by residual lattice strain. We used high-resolution X-ray diffraction to reveal the strain level caused by the small lattice mismatch in the heterostructures. Shear strain has been induced by the stepped hetero-interface, thereby stretching the lattice of the HgTe shell by 0.06 \% along a direction oriented with an angle of 35 ° to the interface. The different heterostructures obtained, were the base for further investigation of quasi-one-dimensional crystallites of HgTe. We therefore developed methods to reliably manipulate, align, localize and contact individual NWs, in order to characterize the charge transport in our samples. Bare CdTe cores were insulating, while the HgTe shells were conducting. At low temperature we found the mean free path of charge carriers to be smaller, but the phase coherence length to be larger than the sample size of several hundred nanometers. We observed universal conductance fluctuations and therefore drew the conclusion, that the trajectories of charge carriers are defined by elastic backscattering at randomly distributed scattering sites. When contacted with superconducting leads, we saw induced superconductivity, multiple Andreev reflections and the associated excess current. Thus, we achieved HgTe/superconductor interfaces with high interfacial transparency. In addition, we reported on the appearance of peaks in differential resistance at Delta/e for HgTe-NW/superconductor and 2*Delta/e for superconductor/HgTe-NW/superconductor junctions, which is possibly related to unconventional pairing at the HgTe/superconductor interface. We noticed that the great advantage of our self-organized growth is the possibility to employ the metallic droplet, formerly seeding the NW growth, as a superconducting contact. The insulating wire cores with a metallic droplet at the tip have been overgrown with HgTe in a fully in-situ process. A very high interface quality was achieved in this case.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Fella2016, author = {Fella, Christian}, title = {High-Resolution X-ray Imaging based on a Liquid-Metal-Jet-Source with and without X-ray Optics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145938}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of everincreasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding and quality assurance of microscopic species, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volumevia computed tomography (CT). The following thesis describes the conceptualization, design, construction and characterization of a compact laboratory-based X-ray microscope in the hard X-ray regime around 9 keV, corresponding to a wavelength of 0.134 nm. Hereby, the main focus is on the optimization of resolution and contrast at relatively short exposure times. For this, a novel liquid-metal-jet anode source is the basis. Such only recently commercially available X-ray source reaches a higher brightness than other conventional laboratory sources, i.e. the number of emitted photons (X-ray quanta) per area and solid angle is exceptionally high. This is important in order to reach low exposure times. The reason for such high brightness is the usage of the rapidly renewing anode out of liquid metal which enables an effective dissipation of heat, normally limiting the creation of high intensities on a small area. In order to cover a broad range of different samples, the microscope can be operated in two modes. In the "micro-CT mode", small pixels are realized with a crystal-scintillator and an optical microscope via shadow projection geometry. Therefore, the resolution is limited by the emitted wavelength of the scintillator, as well as the blurring of the screen. However, samples in the millimeter range can be scanned routinely with low exposure times. Additionally, this mode is optimized with respect to in-line phase contrast, where edges of an object are enhanced and thus better visible. In the second "nano-CT mode", a higher resolution can be reached via X-ray lenses. However, their production process is due to the physical properties of the hard X-ray range - namely high absorption and low diffraction - extremely difficult, leading typically to low performances. In combination with a low brightness, this leads to long exposure times and high requirements in terms of stability, which is one of the key problems of laboratory-based X-ray microscopy. With the here-developed setup and the high brightness of its source, structures down to 150 nm are resolved at moderate exposure times (several minutes per image) and nano-CTs can be obtained.}, subject = {computed tomography}, language = {en} } @phdthesis{Unsleber2016, author = {Unsleber, Sebastian Philipp}, title = {Festk{\"o}rperbasierte Einzelphotonenquellen als Grundbausteine der Quanteninformationstechnologie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147322}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit hatte das Ziel basierend auf Halbleiternanostrukturen eine effiziente und skalierbare Quelle einzelner und ununterscheidbarer Photonen zu entwickeln. Dies ist eine Basiskomponente von zuk{\"u}nftigen quantenphysikalischen Anwendungen wie der Quantenkommunikation oder dem Quantencomputer. Diese Konzepte nutzen gezielt quantenmechanische Systeme um einerseits Kommunikation absolut abh{\"o}rsicher zu machen oder um neuartige Computer zu konstruieren, die bestimmte Aufgaben - wie die Produktzerlegung großer Zahlen - effizienter l{\"o}sen als heutige Systeme. Ein m{\"o}gliche Realisierung der Quantenkommunikation ist beispielsweise die Schl{\"u}sselverteilung zwischen zwei Parteien durch Verwendung des BB84-Protokolls. Dazu wird eine Lichtquelle ben{\"o}tigt, welche die physikalisch kleinstm{\"o}gliche Lichtmenge - ein einzelnes Photon - aussendet. Der Kommunikationskanal wird dann {\"u}ber verschiedene Polarisationszust{\"a}nde dieser Photonen gegen ein Abh{\"o}ren nach außen hin abgesichert. Da die maximale Kommunikationsdistanz aufgrund von Verlusten im Quantenkanal beschr{\"a}nkt ist, muss das Signal f{\"u}r gr{\"o}ßere Distanzen mit Hilfe eines sog. Quantenrepeaters aufbereitet werden. Ein solcher kann ebenfalls unter Verwendung von Einzelphotonenquellen realisiert werden. Das Konzept des Quantenverst{\"a}rkers stellt aber die zus{\"a}tzliche Anforderung an die Einzelphotonenquelle, dass die ausgesendeten Lichtteilchen in der Summe ihrer Eigenschaften wie Energie und Polarisation immer gleich und somit ununterscheidbar sein m{\"u}ssen. Auf Basis solcher ununterscheidbarer Photonen gibt es zudem mit dem linear optischen Quantenrechner auch m{\"o}gliche theoretische Ans{\"a}tze zur Realisierung eines Quantencomputers. Dabei kann {\"u}ber die Quanteninterferenz von ununterscheidbaren Photonen an optischen Bauteilen wie Strahlteilern ein Quanten-NOT-Gatter zur Berechnung spezieller Algorithmen realisiert werden. Als vielversprechende Kandidaten f{\"u}r eine solche Lichtquelle einzelner Photonen haben sich in den letzten Jahren Halbleiter-Quantenpunkte herauskristallisiert. Dank des festk{\"o}rperbasierten Ansatzes k{\"o}nnen diese Strukturen in komplexe photonische Umgebungen zur Erh{\"o}hung der Photonen-Extraktionseffizienz und -Emissionsrate eingebettet werden. Ziel dieser Arbeit war somit eine effiziente Quelle einzelner ununterscheidbarer Photonen zu realisieren. Im Hinblick auf die sp{\"a}tere Anwendbarkeit wurde der Fokus zudem auf die skalierbare bzw. deterministische Fabrikation der Quantenpunkt-Strukturen gelegt und zwei technologische Ans{\"a}tze - die kryogene in-situ-Lithographie und das positionierte Wachstum von Quantenpunkten - untersucht. Im ersten experimentellen Kapitel dieser Arbeit wird ein neuartiges Materialsystem vorgestellt, welches sich zur Generation einzelner Photonen eignet. Es k{\"o}nnen spektral scharfe Emissionslinien mit Linienbreiten bis knapp {\"u}ber 50 µeV aus Al\$_{0,48}\$In\$_{0,52}\$As Volumenmaterial beobachtet werden, wenn diese Schicht auf InP(111) Substraten abgeschieden wird. In Querschnitt-Rastertunnelmikroskopie-Messungen wurden ca. 16 nm große Cluster, welche eine um ungef{\"a}hr 7 \% h{\"o}here Indiumkonzentration im Vergleich zur nominellen Zusammensetzung des Volumenmaterials besitzen, gefunden. {\"U}ber die Simulation dieser Strukturen konnten diese als Quelle der spektral scharfen Emissionslinien identifiziert werden. Zudem wurde mittels Auto- und Kreuzkorrelationsmessungen nachgewiesen, dass diese Nanocluster einzelne Photonen emittieren und verschieden geladene exzitonische und biexzitonische Ladungstr{\"a}gerkomplexe binden k{\"o}nnen. Anschließend wurde der Fokus auf InGaAs-Quantenpunkte gelegt und zun{\"a}chst im Rahmen einer experimentellen und theoretischen Gemeinschaftsarbeit die Koh{\"a}renzeigenschaften eines gekoppelten Quantenpunkt-Mikrokavit{\"a}t-Systems untersucht. {\"U}ber temperaturabh{\"a}ngige Zwei-Photonen Interferenz Messungen und dem Vergleich mit einem mikroskopischen Modell des Systems konnten gezielt die Bestandteile der Quantenpunkt-Dephasierung extrahiert werden. Auf diesen Ergebnissen aufbauend wurde die gepulste, strikt resonante Anregung von Quantenpunkten als experimentelle Schl{\"u}sseltechnik etabliert. Damit konnten bei tiefen Temperaturen nahezu vollst{\"a}ndig ununterscheidbare Photonen durch eine Zwei-Photonen Interferenz Visibilit{\"a}t von {\"u}ber 98 \% nachgewiesen werden. F{\"u}r ein skalierbares und deterministisches Quantenpunkt-Bauelement ist entweder die Kontrolle {\"u}ber die Position an welcher der Quantenpunkt gewachsen wird n{\"o}tig, oder die Position an der eine Mikrokavit{\"a}t ge{\"a}tzt wird muss auf die Position eines selbstorganisiert gewachsenen Quantenpunktes abgestimmt werden. Im weiteren Verlauf werden Untersuchungen an beiden technologischen Ans{\"a}tzen durchgef{\"u}hrt. Zun{\"a}chst wurde der Fokus auf positionierte Quantenpunkte gelegt. Mittels in das Substrat ge{\"a}tzter Nanol{\"o}cher wird der Ort der Quantenpunkt-Nukleation festgelegt. Durch die ge{\"a}tzten Grenzfl{\"a}chen in Quantenpunkt-N{\"a}he entstehen jedoch auch Defektzust{\"a}nde, die negativen Einfluss auf die Koh{\"a}renz der Quantenpunkt-Emission nehmen. Deshalb wurde an diesem Typus von Quantenpunkten die strikt resonante Anregung etabliert und zum ersten Mal die koh{\"a}rente Kopplung des Exzitons an ein resonantes Lichtfeld demonstriert. Zudem konnte die deterministische Kontrolle der Exzitonbesetzung {\"u}ber den Nachweis einer Rabi-Oszillation gezeigt werden. Abschließend wird das Konzept der kryogenen in-situ-Lithographie vorgestellt. Diese erlaubt die laterale Ausrichtung der Mikrokavit{\"a}t an die Position eines selbstorganisiert gewachsenen Quantenpunktes. Damit konnte gezielt die Emission eines zuvor ausgew{\"a}hlten, spektral schmalen Quantenpunktes mit nahezu 75 \% Gesamteffizienz eingesammelt werden. Die Ununterscheidbarkeit der Quantenpunkt-Photonen war dabei mit einer Zwei-Photonen Interferenz Visibilit{\"a}t von bis zu \$\nu=(88\pm3)~\\%\$ sehr hoch. Damit wurde im Rahmen dieser Arbeit eine Einzelphotonenquelle realisiert, aus der sich sehr effizient koh{\"a}rente Photonen auskoppeln lassen, was einen wichtigen Schritt hin zur deterministischen Fabrikation von Lichtquellen f{\"u}r quantenphysikalischen Anwendungen darstellt.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Herrmann2016, author = {Herrmann, Oliver}, title = {Graphene-based single-electron and hybrid devices, their lithography, and their transport properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146924}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {This work explores three different aspects of graphene, a single-layer of carbon atoms arranged in a hexagonal lattice, with regards to its usage in future electronic devices; for instance in the context of quantum information processing. For a long time graphene was believed to be thermodynamically unstable. The discovery of this strictly two-dimensional material completed the family of carbon based structures, which had already been subject of intensive research with focus on zero-dimensional fullerenes and one-dimensional carbon nanotubes. Within only a few years of its discovery, the field of graphene related research has grown into one of today's most diverse and prolific areas in condensed matter physics, highlighted by the award of the 2010 Nobel Prize in Physics to A.K. Geim and K. Noveselov for "their groundbreaking experiments regarding the two-dimensional material graphene". From the point of view of an experimental physicist interested in the electronic properties of a material system, the most intriguing characteristic of graphene is found in the Dirac-like nature of its charge carriers, a peculiar fact that distinguishes graphene from all other known standard semiconductors. The dynamics of charge carriers close to zero energy are described by a linear energy dispersion relation, as opposed to a parabolic one, which can be understood as a result of the underlying lattice symmetry causing them to behave like massless relativistic particles. This fundamentally different behavior can be expected to lead to the observation of completely new phenomena or the occurrence of deviations in well-known effects. Following a brief introduction of the material system in chapter 2, we present our work studying the effect of induced superconductivity in mesoscopic graphene Josephson junctions by proximity to superconducting contacts in chapter 3. We explore the use of Nb as the superconducting material driven by the lack of high critical temperature and high critical magnetic field superconductor technology in graphene devices at that time. Characterization of sputter-deposited Nb films yield a critical transition temperature of \(T_{C}\sim 8{\rm \,mK}\). A prerequisite for successful device operation is a high interface quality between graphene and the superconductor. In this context we identify the use of an Ti as interfacial layer and incorporate its use by default in our lithography process. Overall we are able to increase the interface transparency to values as high as \(85\\%\). With the prospect of interesting effects in the ballistic regime we try to enhance the electronic quality of our Josephson junction devices by substrate engineering, yet with limited success. We achieve moderate charge carrier mobilities of up to \(7000{\rm \,cm^2/Vs}\) on a graphene/Boron-nitride heterostructure (fabrication details are covered in chapter 5) putting the junction in the diffusive regime (\(L_{device} In oxidischen Heterostrukturen kann es zur Ausbildung unerwarteter elektronischer und magnetischer Phasen kommen. Ein bekanntes Beispiel ist das Heterostruktursystem LaAlO\(_3\)/SrTiO\(_3\), an dessen Grenzfl{\"a}che ein zweidimensionalen Elektronensystem (2DES) entsteht, sofern die LaAlO\(_3\)-Filmdicke einen kritischen Wert von mindestens vier Einheitszellen aufweist. {\"A}hnliches Verhalten konnte an der Heterostruktur γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) beobachtet werden. Die gemessenen Elektronenbeweglichkeiten und Fl{\"a}chenladungstr{\"a}gerdichten {\"u}bertreffen hierbei die in LaAlO\(_3\)/SrTiO\(_3\) um mehr als eine Gr{\"o}ßenordnung. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Herstellung sowie der Analyse dieser beiden Heterostruktursysteme. Die Hauptaspekte sind dabei die Untersuchung der physikalischen Eigenschaften an der Grenzfl{\"a}che sowie das Verst{\"a}ndnis der zugrundeliegenden Mechanismen. > > Im Hinblick auf das Wachstum wird demonstriert, dass die f{\"u}r LaAlO\(_3\)/SrTiO\(_3\) etablierte Wachstumsroutine der gepulsten Laserablation sowie die zur {\"U}berwachung des Schichtwachstums verwendete Methode der Beugung hochenergetischer Elektronen in Reflexion (RHEED) f{\"u}r das γ-Al\(_2\)O\(_3\)-Wachstum modifiziert werden m{\"u}ssen. So kann gezeigt werden, dass durch eine geeignete Variation der Wachstumsgeometrie die Resonanz von Oberfl{\"a}chenwellen, welche im Falle des γ-Al\(_2\)O\(_3\)-Wachstums die Beobachtung von RHEED-Oszillationen erschwert, vermieden werden kann und somit auch hier die {\"U}berwachung des heteroepitaktischen Schichtwachstum mittels Elektronenbeugung m{\"o}glich wird. > > F{\"u}r die Ausbildung des 2DES in LaAlO\(_3\)/SrTiO\(_3\) wird das Szenario der elektronischen Rekonstruktion als m{\"o}gliche Ursache diskutiert, wonach das divergierende Potential innerhalb des polaren LaAlO\(_3\)-Films durch einen Ladungstransfer von der Probenoberfl{\"a}che in die obersten Atomlagen des unpolaren SrTiO\(_3\)-Substrats kompensiert wird. Zudem sind die Eigenschaften der Heterostruktur von den Wachstumsparametern abh{\"a}ngig. So wird in der vorliegenden Arbeit eine deutliche Zunahme der Ladungstr{\"a}gerkonzentration und der r{\"a}umliche Ausdehnung der leitf{\"a}higen Schicht insbesondere f{\"u}r Proben, welche bei sehr niedrigen Sauerstoffhintergrunddr{\"u}cken gewachsen wurden, gezeigt und auf die Erzeugung von Sauerstofffehlstellen innerhalb des Substrats zur{\"u}ckgef{\"u}hrt. Dar{\"u}ber hinaus wird erstmalig die Herstellung atomar scharfer Grenzfl{\"a}chen mit sehr geringer Defektdichte selbst bei sehr niedrigen Wachstumsdr{\"u}cken belegt und erstmals auch direkt elektronenmikroskopisch nachgewiesen. Es werden allenfalls vernachl{\"a}ssigbare Effekte der Sauerstoffkonzentration auf charakteristische, strukturelle Merkmale der Probe beobachtet. Desweiteren zeigt diese Arbeit erstmalig eine von den Wachstumsbedingungen abh{\"a}ngige Gitterverzerrung des Films, was in {\"U}bereinstimmung mit Rechnungen auf Basis der Dichtefunktionaltheorie einen Hinweis auf ein komplexes Zusammenspiel von elektronischer Rekonstruktion, Sauerstofffehlstellen an der LaAlO\(_3\)-Oberfl{\"a}che und einer Verzerrung der Kristallstruktur als Ursache f{\"u}r die Entstehung des 2DES in LaAlO\(_3\)/SrTiO\(_3\) liefert. > > Neben der mikroskopischen Analyse des 2DES in LaAlO\(_3\)/SrTiO\(_3\) wird die elektronische Struktur dieses Systems zudem mithilfe der resonanten inelastischen R{\"o}ntgenstreuung charakterisiert. Die vorliegende Dissertation zeigt dabei, neben dem Nachweis lokalisierter Ladungstr{\"a}ger vor dem Einsetzen metallischen Verhaltens ab einer kritischen Schichtdicke von vier Einheitszellen, die Existenz eines Raman- und eines fluoreszenzartigen Signals in Abh{\"a}ngigkeit der verwendeten Photonenenergie, was wiederum auf einen unterschiedlichen elektronischen Charakter im Zwischenzustand zur{\"u}ckgef{\"u}hrt werden kann. Gest{\"u}tzt wird diese Interpretation durch vergleichbare Messungen an γ- Al\(_2\)O\(_3\)/SrTiO\(_3\). In diesem System finden sich zudem ebenfalls Anzeichen lokalisierter Ladungstr{\"a}ger unterhalb der kritischen Schichtdicke f{\"u}r metallisches Verhalten, was ein Hinweis auf einen mit LaAlO\(_3\)/SrTiO\(_3\) vergleichbaren Grundzustand sein k{\"o}nnte. > > Weitere Messungen mithilfe der resonanten Photoelektronenspektroskopie erm{\"o}glichen zudem eine direkte Beobachtung und Analyse der Ti 3d-Valenzelektronen. Messungen an LaAlO\(_3\)/SrTiO\(_3\) und γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) liefern dabei Hinweise auf verschiedene elektronische Ti 3d-artige Zust{\"a}nde. Diese werden zum einen den mobilen Ladungstr{\"a}gern des 2DES zugeschrieben, zum anderen als lokalisierte Elektronen in der N{\"a}he von Sauerstofffehlstellen identifiziert. Eine Analyse des Resonanzverhaltens sowie der spektralen Form der beobachteten Signale zeigt quantitative Unterschiede, was auf einen unterschiedlichen treibenden Mechanismus in beiden Systemen hindeutet und im Hin- blick auf den Einfluss von Sauerstofffehlstellen auf das System diskutiert wird. Zudem zeigen impulsaufgel{\"o}ste Messungen der Zust{\"a}nde am chemischen Potential eine unterschiedliche Intensit{\"a}tsverteilung im k -Raum. Dies wird im Zusammenhang mit Matrixelementeffekten diskutiert und kann vermutlich auf Photoelektronendiffraktion bedingt durch die unterschiedliche Kristallstruktur des Filmmaterials, zur{\"u}ckgef{\"u}hrt werden.}, subject = {{\"U}bergangsmetalloxide}, language = {de} } @phdthesis{Gessler2016, author = {Geßler, Jonas}, title = {Reduktion des Modenvolumens von Mikrokavit{\"a}ten im Regime der schwachen und starken Kopplung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144558}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Ziel dieser Arbeit war die Reduktion des Modenvolumens in Mikrokavit{\"a}ten. Ein klei-nes Modenvolumen ist f{\"u}r die St{\"a}rke der Licht-Materie-Wechselwirkung wesentlich, weil dadurch z.B. die Schwelle f{\"u}r koh{\"a}rente Lichtemission gesenkt werden kann [1]. Der Purcell-Faktor, ein Maß f{\"u}r die Rate der spontanen Emission, wird durch ein mi-nimales Modenvolumen maximiert [2, 3]. Im Regime der starken Kopplung steigt mit Abnahme des Modenvolumens die Rabi-Aufspaltung und damit die maximale Tempe-ratur, bei der das entsprechende Bauteil funktioniert [4, 5]. Spektrale Eigenschaften treten deutlicher hervor und machen die Funktion der Struktur stabiler gegen{\"u}ber st{\"o}-renden Einfl{\"u}ssen. Der erste Ansatz, das Modenvolumen einer Mikrokavit{\"a}t zu reduzieren, zielte darauf, die Eindringtiefe der optischen Mode in die beiden Bragg-Spiegel einer Mikrokavit{\"a}t zu minimieren. Diese h{\"a}ngt im Wesentlichen vom Kontrast der Brechungsindizes der alternierenden Schichten eines Bragg-Spiegels ab. Ein maximaler Kontrast kann durch alternierende Schichten aus Halbleiter und Luft erreicht werden. Theoretisch kann auf diese Weise das Modenvolumen in vertikaler Richtung um mehr als einen Faktor 6 im Vergleich zu einer konventionellen Galliumarsenid/Aluminiumgalliumarsenid Mikro-kavit{\"a}t reduziert werden. Zur Herstellung dieser Strukturen wurden die aluminiumhal-tigen Schichten einer Galliumarsenid/Aluminiumgalliumarsenid Mikrokavit{\"a}t voll-st{\"a}ndig entfernt und so der Brechungsindexkontrast maximiert. Die Schichtdicken sind dabei entsprechend anzupassen, um weiterhin die Bragg-Bedingung zu erf{\"u}llen. Die Herstellung einer freitragenden Galliumarsenid/Luft-Mikrokavit{\"a}t konnte so erfolg-reich demonstriert werden. Die Photolumineszenz der Bauteile weist diskrete Reso-nanzen auf, deren Ursache in der begrenzten lateralen Gr{\"o}ße der Strukturen liegt. In leistungsabh{\"a}ngigen Messungen kann durch ausgepr{\"a}gtes Schwellenverhalten und auf-l{\"o}sungsbegrenzte spektrale Linienbreiten Laseremission nachgewiesen werden. Wegen der Abh{\"a}ngigkeit der photonischen Resonanz vom genauen Brechungsindex in den freitragenden Schichten eignen sich die vorgestellten Strukturen auch zur Bestimmung von Brechungsindizes. Alternativ kann die photonische Resonanz durch Einbringen verschiedener Gase in die freitragenden Schichten abgestimmt werden. Beides konnte mit Erfolg nachgewiesen werden. Der Nachteil dieses Ansatzes liegt vor allem darin, dass ein elektrischer Betrieb der so gefertigten Strukturen nicht m{\"o}glich ist. Hier bie-tet der zweite Ansatz eine bestm{\"o}gliche L{\"o}sung. Das alternative Konzept f{\"u}r den oberen Bragg-Spiegel einer konventionellen Galli-umarsenid/Aluminiumgalliumarsenid Mikrokavit{\"a}t ist das der Tamm-Plasmonen. Der photonische Einschluss wird hier durch einen unteren Bragg-Spiegel und einem d{\"u}n-nen oberen Metallspiegel erreicht. An der Grenzfl{\"a}che vom Halbleiter zum Metall bil-den sich die optischen Tamm-Plasmonen aus. Dabei kann der Metallspiegel gleichzei-tig auch als elektrischer Kontakt genutzt werden. Die Kopplung von Quantenfilm-Exzitonen an optische Tamm-Plasmonen wird in dieser Arbeit erfolgreich demons-triert. Im Regime der starken Kopplung wird mittels Stark-Effekt eine vollst{\"a}ndige elektro-optische Verstimmung, d.h. vom Bereich positiver bis hin zur negativen Ver-stimmung, des Quantenfilm-Exzitons gegen{\"u}ber der Tamm-Plasmonen Mode nachge-wiesen. Die Messungen best{\"a}tigen entsprechend des reduzierten Modenvolumens (Faktor 2) eine erh{\"o}hte Rabi-Aufspaltung. Dabei sind die spektrale Verschiebung und die Oszillatorst{\"a}rke des Quantenfilm-Exzitons konsistent mit der Theorie und mit Li-teraturwerten. Der wesentliche Nachteil des Ansatzes liegt in der maximalen G{\"u}te, die durch den großen Extinktionskoeffizienten des Metallspiegels limitiert ist.}, subject = {Galliumarsenidlaser}, language = {de} } @phdthesis{Hansen2017, author = {Hansen, Nis Hauke}, title = {Mikroskopische Ladungstransportmechanismen und Exzitonen Annihilation in organischen Einkristallen und D{\"u}nnschichten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143972}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Um die Natur der Transportdynamik von Ladungstr{\"a}gern auch auf mikroskopischen L{\"a}ngenskalen nicht-invasiv untersuchen zu k{\"o}nnen, wurde im ersten Schwerpunkt dieser Arbeit das PL- (Photolumineszenz-) Quenching (engl.: to quench: l{\"o}schen; hier: strahlungslose Rekombination von Exzitonen) in einer organischen D{\"u}nnschicht durch die injizierten und akkumulierten L{\"o}cher in einer Transistorgeometrie analysiert. Diese Zusammenf{\"u}hrung zweier Methoden - der elektrischen Charakterisierung von D{\"u}nnschichttransistoren und der Photolumineszenzspektroskopie - erfasst die {\"A}nderung des strahlenden Zerfalls von Exzitonen infolge der Wechselwirkung mit Ladungstr{\"a}gern. Dadurch werden r{\"a}umlich aufgel{\"o}ste Informationen {\"u}ber die Ladungsverteilung und deren Spannungsabh{\"a}ngigkeit im Transistorkanal zug{\"a}nglich. Durch den Vergleich mit den makroskopischen elektrischen Kenngr{\"o}ßen wie der Schwell- oder der Turn-On-Spannung kann die Funktionsweise der Transistoren damit detaillierter beschrieben werden, als es die Kenngr{\"o}ßen alleine erm{\"o}glichen. Außerdem wird die Quantifizierung dieser mikroskopischen Interaktionen m{\"o}glich, welche beispielsweise als Verlustkanal in organischen Photovoltaikzellen und organicshen Leuchtdioden auftreten k{\"o}nnen. Die Abgrenzung zu anderen dissipativen Prozessen, wie beispielsweise der Exziton-Exziton Annihilation, Ladungstr{\"a}gerrekombination, Triplett-{\"U}berg{\"a}nge oder Rekombination an St{\"o}rstellen oder metallischen Grenzfl{\"a}chen, erlaubt die detaillierte Analyse der Wechselwirkung von optisch angeregten Zust{\"a}nden mit Elektronen und L{\"o}chern. Im zweiten Schwerpunkt dieser Arbeit werden die Transporteigenschaften des Naphthalindiimids Cl2-NDI betrachtet, bei dem der molekulare {\"U}berlapp sowie die Reorganisationsenergie in derselben Gr{\"o}ßenordnung von etwa 0,1 eV liegen. Um experimentell auf den mikroskopischen Transport zu schließen, werden nach der Optimierung des Kristallwachstums Einkristalltransistoren hergestellt, mit Hilfe derer die Beweglichkeit entlang verschiedener kristallographischer Richtungen als Funktion der Temperatur gemessen werden kann. Die einkristalline Natur der Proben und die spezielle Transistorgeometrie erm{\"o}glichen die Analyse der r{\"a}umlichen Anisotropie des Stromflusses. Der gemessene Beweglichkeitstensor wird daraufhin mit simulierten Tensoren auf der Basis von Levich-Jortner Raten verglichen, um auf den zentralen Ladungstransfermechanismus zu schließen.}, subject = {Organischer Halbleiter}, language = {de} } @phdthesis{Schwarz2015, author = {Schwarz, Christoph Benjamin}, title = {Full vector-field control of femtosecond laser pulses with an improved optical design}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142948}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The controlled shaping of ultrashort laser pulses is a powerful technology and applied in many laser laboratories today. Most of the used pulse shapers are only able to produce linearly polarized pulses shaped in amplitude and phase. Some devices are also capable of producing limited time-varying polarization profiles, but they are not able to control the amplitude. However, for some state-of-the-art non-linear time-resolved methods, such as polarization-enhanced two-dimensional spectroscopy, the possibility of controlling the amplitude and the polarization simultaneously is desirable. Over the last years, different concepts have been developed to overcome these restrictions and to manipulate the complete vector-field of an ultrashort laser pulse with independent control over all four degrees of freedom - phase, amplitude, orientation, and ellipticity. The aim of this work was to build such a vector-field shaper. While the basic concept used for our setup is based on previous designs reported in the literature, the goal was to develop an optimized optical design that minimizes artifacts, allowing for the generation of predefined polarization pulse sequences with the highest achievable accuracy. In Chapter 3, different approaches reported in the literature for extended and unrestricted vector-field control were examined and compared in detail. Based on this analysis, we decided to follow the approach of modulating the spectral phase and amplitude of two perpendicularly polarized pulses independently from each other in two arms of an interferometer and recombining them to a single laser pulse to gain control over the complete vector field. As described in Chapter 4, the setup consists of three functional groups: i) an optical component to generate and recombine the two polarized beams, ii) a 4f setup, and iii) a refracting telescope to direct the two beams under two different angles of incidence onto the grating of the 4f setup in a common-path geometry. This geometry was chosen to overcome potential phase instabilities of an interferometric vector-field shaper. Manipulating the two perpendicularly polarized pulses simultaneously within one 4f setup and using adjacent pixel groups of the same liquid-crystal spatial light modulator (LC SLM) for the two polarizations has the advantages that only a single dual-layer LC SLM is required and that a robust and compact setup was achieved. The shaping capabilities of the presented design were optimized by finding the best parameters for the setup through numerical calculations to adjust the frequency distributions for a broad spectrum of 740 - 880 nm. Instead of using a Wollaston prism as in previous designs, a thin-film polarizer (TFP) is utilized to generate and recombine the two orthogonally polarized beams. Artifacts such as angular dispersion and phase distortions along the beam profile which arise when a Wollaston prism is used were discussed. Furthermore, it was shown by ray-tracing simulations that in combination with a telescope and the 4f setup, a significant deformation of the beam profile would be present when using a Wollaston prism since a separation of the incoming and outgoing beam in height is needed. The ray-tracing simulations also showed that most optical aberrations of the setup are canceled out when the incoming and outgoing beams propagate in the exact same plane by inverting the beam paths. This was realized by employing a TFP in the so-called crossed-polarizer arrangement which has also the advantage that the polarization-dependent efficiencies of the TFP and the other optics are automatically compensated and that a high extinction ratio in the order of 15000:1 is reached. Chromatic aberrations are, however, not compensated by the crossed-polarizer arrangement. The ray-tracing simulations confirmed that these chromatic aberrations are mainly caused by the telescope and not by the cylindrical lens of the 4f setup. Nevertheless, in the experimentally used wavelength range of 780 - 816 nm, only minor distortions of the beam profile were observed, which were thus considered to be negligible in the presented setup. The software implementation of the pulse shaper was reviewed in Chapter 5 of this thesis. In order to perform various experiments, five different parameterizations, accounting for the extended shaping capabilities of a vector-field shaper, were developed. The Pixel Basis, the Spectral Basis, and the Spectral Taylor Basis can generally be used in combination with an optimization algorithm and are therefore well suited for quantum control experiments. For multidimensional spectroscopy, the Polarized Four-Pulse Basis was established. With this parameterization pulse sequences with up to four subpulses can be created. The polarization state of each subpulse can be specified and the relative intensity, phase, and temporal delay between consecutive subpulses can be controlled. In addition, different software programs were introduced in Chapter 5 which are required to perform the experiments conducted in this work. The experimental results were presented in Chapter 6. The frequency distribution across the LC SLM was measured proving that the optimal frequency distribution was realized experimentally. Furthermore, the excellent performance of the TFP was verified. In general, satellite pulses are emitted from the TFP due to multiple internal reflections. Various measurements demonstrated that these pulses are temporally separated by at least 4.05 ps from the main pulse and that they have vanishing intensity. The phase stability between the two arms of the presented common-path setup σ = 28.3 mrad (λ/222) over 60 minutes. To further improve this stability over very long measurement times, an on-the-fly phase reduction and stabilization (OPRAS) routine utilizing the pulse shaper itself was developed. This routine automatically produces a compressed pulse with a minimized relative phase between the two polarization components. A phase stability of σ = 31.9 mrad (λ/197) over nearly 24 hours was measured by employing OPRAS. Various pulse sequences exceeding the capabilities of conventional pulse shapers were generated and characterized. The experimental results proved that shaped pulses with arbitrary phase, amplitude, and polarization states can be created. In all cases very high agreement between the target parameters and the experimental data was achieved. For the future use of the setup also possible modifications were suggested. These are not strictly required, but all of them could further improve the performance and flexibility of the setup. Firstly, it was illustrated how a "dual-output" of the setup can be realized. With this modification it would be possible to use the main intensity of the shaped pulse for an experiment while using a small fraction to characterize the pulse or to perform OPRAS simultaneously. Secondly, the basic idea of replacing the telescope by focusing mirrors in order to eliminate the chromatic aberrations was presented. Regarding the different parameterizations for vector-field shaping, some modifications increasing the flexibility of the implemented bases and the realization of a von Neumann Basis for the presented setup were proposed. In future experiments, the vector-field shaper will be used in conjunction with a photoemission electron microscope (PEEM). This approach combines the temporal resolution provided by ultrashort laser pulses with the high spatial resolution gained by electron microscopy in order to perform two-dimensional spectroscopy and coherent control on nanostructures with polarization-shaped femtosecond laser pulses. In combination with other chiral-sensitive experimental setups implemented earlier in our group, the vector-field shaper opens up new perspectives for chiral femtochemistry and chiral control. The designed vector-field shaper meets all requirements to generate high-precision polarization-shaped multipulse sequences. These can be used to perform numerous polarization-sensitive experiments. Employing the OPRAS routine, a quasi-infinitely long phase stability is achieved and complex and elaborated long-term measurements can be carried out. The fact that OPRAS demands no additional hardware and that only a single dual-layer LC SLM and inexpensive optics are required allows the building of a vector-field shaper at comparatively low costs. We hope that with the detailed insights into the optical design process as well as into the software implementation given in this thesis, vector-field shaping will become a standard technique just as conventional pulse shaping in the upcoming years.}, subject = {Ultrakurzer Lichtimpuls}, language = {en} } @phdthesis{Vaeth2016, author = {V{\"a}th, Stefan Kilian}, title = {On the Role of Spin States in Organic Semiconductor Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141894}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The present work addressed the influence of spins on fundamental processes in organic semiconductors. In most cases, the role of spins in the conversion of sun light into electricity was of particular interest. However, also the reversed process, an electric current creating luminescence, was investigated by means of spin sensitive measurements. In this work, many material systems were probed with a variety of innovative detection techniques based on electron paramagnetic resonance spectroscopy. More precisely, the observable could be customized which resulted in the experimental techniques photoluminescence detected magnetic resonance (PLDMR), electrically detected magnetic resonance (EDMR), and electroluminescence detected magnetic resonance (ELDMR). Besides the commonly used continuous wave EPR spectroscopy, this selection of measurement methods yielded an access to almost all intermediate steps occurring in organic semiconductors during the conversion of light into electricity and vice versa. Special attention was paid to the fact that all results were applicable to realistic working conditions of the investigated devices, i.e. room temperature application and realistic illumination conditions.}, subject = {Organischer Halbleiter}, language = {en} }