@article{ThalSmetakHayashietal.2022, author = {Thal, Serge C. and Smetak, Manuel and Hayashi, Kentaro and F{\"o}rster, Carola Y.}, title = {Hemorrhagic cerebral insults and secondary Takotsubo syndrome: findings in a novel in vitro model using human blood samples}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911557}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288305}, year = {2022}, abstract = {Intracranial hemorrhage results in devastating forms of cerebral damage. Frequently, these results also present with cardiac dysfunction ranging from ECG changes to Takotsubo syndrome (TTS). This suggests that intracranial bleeding due to subarachnoid hemorrhage (SAH) disrupts the neuro-cardiac axis leading to neurogenic stress cardiomyopathy (NSC) of different degrees. Following this notion, SAH and secondary TTS could be directly linked, thus contributing to poor outcomes. We set out to test if blood circulation is the driver of the brain-heart axis by investigating serum samples of TTS patients. We present a novel in vitro model combining SAH and secondary TTS to mimic the effects of blood or serum, respectively, on blood-brain barrier (BBB) integrity using in vitro monolayers of an established murine model. We consistently demonstrated decreased monolayer integrity and confirmed reduced Claudin-5 and Occludin levels by RT-qPCR and Western blot and morphological reorganization of actin filaments in endothelial cells. Both tight junction proteins show a time-dependent reduction. Our findings highlight a faster and more prominent disintegration of BBB in the presence of TTS and support the importance of the bloodstream as a causal link between intracerebral bleeding and cardiac dysfunction. This may represent potential targets for future therapeutic inventions in SAH and TTS.}, language = {en} } @article{KraftSchuhmann2022, author = {Kraft, Peter and Schuhmann, Michael K.}, title = {Cellular and molecular targets in acute ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288294}, year = {2022}, abstract = {No abstract available}, language = {en} } @article{GreiteStoermerGueleretal.2022, author = {Greite, Robert and St{\"o}rmer, Johanna and Gueler, Faikah and Khalikov, Rasul and Haverich, Axel and K{\"u}hn, Christian and Madrahimov, Nodir and Natanov, Ruslan}, title = {Different acute kidney injury patterns after renal ischemia reperfusion injury and extracorporeal membrane oxygenation in mice}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911000}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288282}, year = {2022}, abstract = {The use of extracorporeal membrane oxygenation (ECMO) is associated with acute kidney injury (AKI) in thoracic organ transplantation. However, multiple other factors contribute to AKI development after these procedures such as renal ischemia-reperfusion injury (IRI) due to hypo-perfusion of the kidney during surgery. In this study, we aimed to explore the kidney injury patterns in mouse models of ECMO and renal IRI. Kidneys of C57BL/6 mice were examined after moderate (35 min) and severe (45 min) unilateral transient renal pedicle clamping and 2 h of veno-venous ECMO. Renal injury markers, neutrophil infiltration, tubular transport function, pro-inflammatory cytokines, and renal heme oxygenase-1 (HO-1) expression were determined by immunofluorescence and qPCR. Both procedures caused AKI, but with different injury patterns. Severe neutrophil infiltration of the kidney was evident after renal IRI, but not following ECMO. Tubular transport function was severely impaired after renal IRI, but preserved in the ECMO group. Both procedures caused upregulation of pro-inflammatory cytokines in the renal tissue, but with different time kinetics. After ECMO, but not IRI, HO-1 was strongly induced in tubular cells indicating contact with hemolysis-derived proteins. After IRI, HO-1 was expressed on infiltrating myeloid cells in the tubulo-interstitial space. In conclusion, renal IRI and ECMO both caused AKI, but kidney damage after renal IRI was more pronounced including severe neutrophil infiltration and tubular transport impairment. Enhanced HO-1 expression in tubular cells after ECMO encourages limitation of hemolysis as a therapeutic approach to reduce ECMO-associated AKI.}, language = {en} } @article{GmachBathePetersTeluguetal.2022, author = {Gmach, Philipp and Bathe-Peters, Marc and Telugu, Narasimha and Miller, Duncan C. and Annibale, Paolo}, title = {Fluorescence spectroscopy of low-level endogenous β-adrenergic receptor expression at the plasma membrane of differentiating human iPSC-derived cardiomyocytes}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms231810405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288277}, year = {2022}, abstract = {The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the β\(_1\)- and β\(_2\)-adrenergic receptors (β\(_{1/2}\)-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of β-ARs in adult CMs.}, language = {en} } @article{BieberSchuhmannBellutetal.2022, author = {Bieber, Michael and Schuhmann, Michael K. and Bellut, Maximilian and Stegner, David and Heinze, Katrin G. and Pham, Mirko and Nieswandt, Bernhard and Stoll, Guido}, title = {Blockade of platelet glycoprotein Ibα augments neuroprotection in Orai2-deficient mice during middle cerebral artery occlusion}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286038}, year = {2022}, abstract = {During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte-platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2\(^{-/-}\)) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα-von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2\(^{-/-}\) mice. During ischemia-reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2\(^{-/-}\) mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke.}, language = {en} } @article{FischerThiesAwadetal.2022, author = {Fischer, Dania and Thies, Fabian and Awad, Omar and Brat, Camilla and Meybohm, Patrick and Baer, Patrick C. and M{\"u}ller, Markus M. and Urbschat, Anja and Maier, Thorsten J. and Zacharowski, Kai and Roos, Jessica}, title = {Red blood cell-derived microparticles exert no cancer promoting effects on colorectal cancer cells in vitro}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286018}, year = {2022}, abstract = {The biomedical consequences of allogeneic blood transfusions and the possible pathomechanisms of transfusion-related morbidity and mortality are still not entirely understood. In retrospective studies, allogeneic transfusion was associated with increased rates of cancer recurrence, metastasis and death in patients with colorectal cancer. However, correlation does not imply causation. The purpose of this study was to elucidate this empirical observation further in order to address insecurity among patients and clinicians. We focused on the in vitro effect of microparticles derived from red blood cell units (RMPs). We incubated different colon carcinoma cells with RMPs and analyzed their effects on growth, invasion, migration and tumor marker expression. Furthermore, effects on Wnt, Akt and ERK signaling were explored. Our results show RMPs do not seem to affect functional and phenotypic characteristics of different colon carcinoma cells and did not induce or inhibit Wnt, Akt or ERK signaling, albeit in cell culture models lacking tumor microenvironment. Allogeneic blood transfusions are associated with poor prognosis, but RMPs do not seem to convey tumor-enhancing effects. Most likely, the circumstances that necessitate the transfusion, such as preoperative anemia, tumor stage, perioperative blood loss and extension of surgery, take center stage.}, language = {en} } @article{DjelićBorozanDimitrijevićSrećkovićetal.2022, author = {Djelić, Ninoslav and Borozan, Sunčica and Dimitrijević-Srećković, Vesna and Pajović, Nevena and Mirilović, Milorad and Stopper, Helga and Stanimirović, Zoran}, title = {Oxidative stress and DNA damage in peripheral blood mononuclear cells from normal, obese, prediabetic and diabetic persons exposed to thyroid hormone in vitro}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285988}, year = {2022}, abstract = {Diabetes, a chronic group of medical disorders characterized byhyperglycemia, has become a global pandemic. Some hormones may influence the course and outcome of diabetes, especially if they potentiate the formation of reactive oxygen species (ROS). There is a close relationship between thyroid disorders and diabetes. The main objective of this investigation was to find out whether peripheral blood mononuclear cells (PBMCs) are more prone to DNA damage by triiodothyronine (T\(_3\)) (0.1, 1 and 10 μM) at various stages of progression through diabetes (obese, prediabetics, and type 2 diabetes mellitus—T2DM persons). In addition, some biochemical parameters of oxidative stress (catalase-CAT, thiobarbituric acid reactive substances—TBARS) and lactate dehydrogenase (LDH) were evaluated. PBMCs from prediabetic and diabetic patients exhibited increased sensitivity for T\(_3\) regarding elevated level of DNA damage, inhibition of catalase, and increase of TBARS and LDH. PBMCs from obese patients reacted in the same manner, except for DNA damage. The results of this study should contribute to a better understanding of the role of thyroid hormones in the progression of T2DM.}, language = {en} } @article{ShityakovNagaiErguenetal.2022, author = {Shityakov, Sergey and Nagai, Michiaki and Erg{\"u}n, S{\"u}leyman and Braunger, Barbara M. and F{\"o}rster, Carola Y.}, title = {The protective effects of neurotrophins and microRNA in diabetic retinopathy, nephropathy and heart failure via regulating endothelial function}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {8}, issn = {2218-273X}, doi = {10.3390/biom12081113}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285966}, year = {2022}, abstract = {Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.}, language = {en} } @article{SalvadorKesslerDomroeseetal.2022, author = {Salvador, Ellaine and Kessler, Almuth F. and Domr{\"o}se, Dominik and H{\"o}rmann, Julia and Schaeffer, Clara and Giniunaite, Aiste and Burek, Malgorzata and Tempel-Brami, Catherine and Voloshin, Tali and Volodin, Alexandra and Zeidan, Adel and Giladi, Moshe and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and F{\"o}rster, Carola Y. and Hagemann, Carsten}, title = {Tumor Treating Fields (TTFields) reversibly permeabilize the blood-brain barrier in vitro and in vivo}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {10}, issn = {2218-273X}, doi = {10.3390/biom12101348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288057}, year = {2022}, abstract = {Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood-brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB's integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100-300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy.}, language = {en} } @article{NazzalHowariYaslametal.2022, author = {Nazzal, Yousef and Howari, Fares M. and Yaslam, Aya and Iqbal, Jibran and Maloukh, Lina and Ambika, Lakshmi Kesari and Al-Taani, Ahmed A. and Ali, Ijaz and Othman, Eman M. and Jamal, Arshad and Naseem, Muhammad}, title = {A methodological review of tools that assess dust microbiomes, metatranscriptomes and the particulate chemistry of indoor dust}, series = {Atmosphere}, volume = {13}, journal = {Atmosphere}, number = {8}, issn = {2073-4433}, doi = {10.3390/atmos13081276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285957}, year = {2022}, abstract = {Indoor house dust is a blend of organic and inorganic materials, upon which diverse microbial communities such as viruses, bacteria and fungi reside. Adequate moisture in the indoor environment helps microbial communities multiply fast. The outdoor air and materials that are brought into the buildings by airflow, sandstorms, animals pets and house occupants endow the indoor dust particles with extra features that impact human health. Assessment of the health effects of indoor dust particles, the type of indoor microbial inoculants and the secreted enzymes by indoor insects as allergens merit detailed investigation. Here, we discuss the applications of next generation sequencing (NGS) technology which is used to assess microbial diversity and abundance of the indoor dust environments. Likewise, the applications of NGS are discussed to monitor the gene expression profiles of indoor human occupants or their surrogate cellular models when exposed to aqueous solution of collected indoor dust samples. We also highlight the detection methods of dust allergens and analytical procedures that quantify the chemical nature of indoor particulate matter with a potential impact on human health. Our review is thus unique in advocating the applications of interdisciplinary approaches that comprehensively assess the health effects due to bad air quality in built environments.}, language = {en} }