@phdthesis{Winnerlein2020, author = {Winnerlein, Martin}, title = {Molecular Beam Epitaxy and Characterization of the Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\)}, doi = {10.25972/OPUS-21166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The subject of this thesis is the fabrication and characterization of magnetic topological insulator layers of (V,Bi,Sb)\(_2\)Te\(_3\) exhibiting the quantum anomalous Hall effect. A major task was the experimental realization of the quantum anomalous Hall effect, which is only observed in layers with very specific structural, electronic and magnetic properties. These properties and their influence on the quantum anomalous Hall effect are analyzed in detail. First, the optimal conditions for the growth of pure Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\) crystal layers and the resulting structural quality are studied. The crystalline quality of Bi\(_2\)Te\(_3\) improves significantly at higher growth temperatures resulting in a small mosaicity-tilt and reduced twinning defects. The optimal growth temperature is determined as 260\(^{\circ}\)C, low enough to avoid desorption while maintaining a high crystalline quality. The crystalline quality of Sb\(_2\)Te\(_3\) is less dependent on the growth temperature. Temperatures below 230\(^{\circ}\)C are necessary to avoid significant material desorption, though. Especially for the nucleation on Si(111)-H, a low sticking coefficient is observed preventing the coalescence of islands into a homogeneous layer. The influence of the substrate type, miscut and annealing sequence on the growth of Bi\(_2\)Te\(_3\) layers is investigated. The alignment of the layer changes depending on the miscut angle and annealing sequence: Typically, layer planes align parallel to the Si(111) planes. This can enhance the twin suppression due to transfer of the stacking order from the substrate to the layer at step edges, but results in a step bunched layer morphology. For specific substrate preparations, however, the layer planes are observed to align parallel to the surface plane. This alignment avoids displacement at the step edges, which would cause anti-phase domains. This results in narrow Bragg peaks in XRD rocking curve scans due to long-range order in the absence of anti-phase domains. Furthermore, the use of rough Fe:InP(111):B substrates leads to a strong reduction of twinning defects and a significantly reduced mosaicity-twist due to the smaller lattice mismatch. Next, the magnetically doped mixed compound V\(_z\)(Bi\(_{1-x}\)Sb\(_x\))\(_{2-z}\)Te\(_3\) is studied in order to realize the quantum anomalous Hall effect. The addition of V and Bi to Sb\(_2\)Te\(_3\) leads to efficient nucleation on the Si(111)-H surface and a closed, homogeneous layer. Magneto-transport measurements of layers reveal a finite anomalous Hall resistivity significantly below the von Klitzing constant. The observation of the quantum anomalous Hall effect requires the complete suppression of parasitic bulklike conduction due to defect induced carriers. This can be achieved by optimizing the thickness, composition and growth conditions of the layers. The growth temperature is observed to strongly influence the structural quality. Elevated temperatures result in bigger islands, improved crystallographic orientation and reduced twinning. On the other hand, desorption of primarily Sb is observed, affecting the thickness, composition and reproducibility of the layers. At 190\(^{\circ}\)C, desorption is avoided enabling precise control of layer thickness and composition of the quaternary compound while maintaining a high structural quality. It is especially important to optimize the Bi/Sb ratio in the (V,Bi,Sb)\(_2\)Te\(_3\) layers, since by alloying n-type Bi\(_2\)Te\(_3\) and p-type Sb\(_2\)Te\(_3\) charge neutrality is achieved at a specific mixing ratio. This is necessary to shift the Fermi level into the magnetic exchange gap and fully suppress the bulk conduction. The Sb content x furthermore influences the in-plane lattice constant a significantly. This is utilized to accurately determine x even for thin films below 10 nm thickness required for the quantum anomalous Hall effect. Furthermore, x strongly influences the surface morphology: with increasing x the island size decreases and the RMS roughness increases by up to a factor of 4 between x = 0 and x = 1. A series of samples with x varied between 0.56-0.95 is grown, while carefully maintaining a constant thickness of 9 nm and a doping concentration of 2 at.\% V. Magneto-transport measurements reveal the charge neutral point around x = 0.86 at 4.2 K. The maximum of the anomalous Hall resistivity of 0.44 h/e\(^2\) is observed at x = 0.77 close to charge neutrality. Reducing the measurement temperature to 50 mK significantly increases the anomalous Hall resistivity. Several samples in a narrow range of x between 0.76-0.79 show the quantum anomalous Hall effect with the Hall resistivity reaching the von Klitzing constant and a vanishing longitudinal resistivity. Having realized the quantum anomalous Hall effect as the first group in Europe, this breakthrough enabled us to study the electronic and magnetic properties of the samples in close collaborations with other groups. In collaboration with the Physikalisch-Technische Bundesanstalt high-precision measurements were conducted with detailed error analysis yielding a relative de- viation from the von Klitzing constant of (0.17 \(\pm\) 0.25) * 10\(^{-6}\). This is published as the smallest, most precise value at that time, proving the high quality of the provided samples. This result paves the way for the application of magnetic topological insulators as zero-field resistance standards. Non-local magneto-transport measurements were conducted at 15 mK in close collaboration with the transport group in EP3. The results prove that transport happens through chiral edge channels. The detailed analysis of small anomalies in transport measurements reveals instabilities in the magnetic phase even at 15 mK. Their time dependent nature indicates the presence of superparamagnetic contributions in the nominally ferromagnetic phase. Next, the influence of the capping layer and the substrate type on structural properties and the impact on the quantum anomalous Hall effect is investigated. To this end, a layer was grown on a semi-insulating Fe:InP(111)B substrate using the previously optimized growth conditions. The crystalline quality is improved significantly with the mosaicity twist reduced from 5.4\(^{\circ}\) to 1.0\(^{\circ}\). Furthermore, a layer without protective capping layer was grown on Si and studied after providing sufficient time for degradation. The uncapped layer on Si shows perfect quantization, while the layer on InP deviates by about 5\%. This may be caused by the higher crystalline quality, but variations in e.g. Sb content cannot be ruled out as the cause. Overall, the quantum anomalous Hall effect seems robust against changes in substrate and capping layer with only little deviations. Furthermore, the dependence of the quantum anomalous Hall effect on the thickness of the layers is investigated. Between 5-8 nm thickness the material typically transitions from a 2D topological insulator with hybridized top and bottom surface states to a 3D topological insulator. A set of samples with 6 nm, 8 nm, and 9 nm thickness exhibits the quantum anomalous Hall effect, while 5 nm and 15 nm thick layers show significant bulk contributions. The analysis of the longitudinal and Hall conductivity during the reversal of magnetization reveals distinct differences between different thicknesses. The 6 nm thick layer shows scaling consistent with the integer quantum Hall effect, while the 9 nm thick layer shows scaling expected for the topological surface states of a 3D topological insulator. The unique scaling of the 9 nm thick layer is of particular interest as it may be a result of axion electrodynamics in a 3D topological insulator. Subsequently, the influence of V doping on the structural and magnetic properties of the host material is studied systematically. Similarly to Bi alloying, increased V doping seems to flatten the layer surface significantly. With increasing V content, Te bonding partners are observed to increase simultaneously in a 2:3 ratio as expected for V incorporation on group-V sites. The linear contraction of the in-plane and out-of-plane lattice constants with increasing V doping is quantitatively consistent with the incorporation of V\(^{3+}\) ions, possibly mixed with V\(^{4+}\) ions, at the group-V sites. This is consistent with SQUID measurements showing a magnetization of 1.3 \(\mu_B\) per V ion. Finally, magnetically doped topological insulator heterostructures are fabricated and studied in magneto-transport. Trilayer heterostructures with a non-magnetic (Bi,Sb)\(_2\)Te\(_3\) layer sandwiched between two magnetically doped layers are predicted to host the axion insulator state if the two magnetic layers are decoupled and in antiparallel configuration. Magneto-transport measurements of such a trilayer heterostructure with 7 nm undoped (Bi,Sb)\(_2\)Te\(_3\) between 2 nm thick layers doped with 1.5 at.\% V exhibit a zero Hall plateau representing an insulating state. Similar results in the literature were interpreted as axion insulator state, but in the absence of a measurement showing the antiparallel magnetic orientation other explanations for the insulating state cannot be ruled out. Furthermore, heterostructures including a 2 nm thin, highly V doped layer region show an anomalous Hall effect of opposite sign compared to previous samples. A dependency on the thickness and position of the doped layer region is observed, which indicates that scattering at the interfaces causes contributions to the anomalous Hall effect of opposite sign compared to bulk scattering effects. Many interesting phenomena in quantum anomalous Hall insulators as well as axion insulators are still not unambiguously observed. This includes Majorana bound states in quantum anomalous Hall insulator/superconductor hybrid systems and the topological magneto-electric effect in axion insulators. The limited observation temperature of the quantum anomalous Hall effect of below 1 K could be increased in 3D topological insulator/magnetic insulator heterostructures which utilize the magnetic proximity effect. The main achievement of this thesis is the reproducible growth and characterization of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect. The detailed study of the structural requirements of the quantum anomalous Hall effect and the observation of the unique axionic scaling behavior in 3D magnetic topological insulator layers leads to a better understanding of the nature of this new quantum state. The high-precision measurements of the quantum anomalous Hall effect reporting the smallest deviation from the von Klitzing constant are an important step towards the realization of a zero-field quantum resistance standard.}, subject = {Bismutverbindungen}, language = {en} } @phdthesis{Paul2010, author = {Paul, Markus Christian}, title = {Molecular beam epitaxy and properties of magnetite thin films on semiconducting substrates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56044}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {The present thesis is concerned with molecular beam epitaxy of magnetite (Fe3O4) thin films on semiconducting substrates and the characterization of their structural, chemical, electronic, and magnetic properties. Magnetite films could successfully be grown on ZnO substrates with high structural quality and atomically abrupt interfaces. The films are structurally almost completely relaxed exhibiting nearly the same in-plane and out-of-plane lattice constants as in the bulk material. Films are phase-pure and show only small deviations from the ideal stoichiometry at the surface and in some cases at the interface. Growth proceeds via wetting layer plus island mode and results in a domain structure of the films. Upon coalescence of growing islands twin-boundaries (rotational twinning) and anti-phase boundaries are formed. The overall magnetization is nearly bulk-like, but shows a slower approach to saturation, which can be ascribed to the reduced magnetization at anti-phase boundaries. However, the surface magnetization which was probed by x-ray magnetic circular dichroism was significantly decreased and is ascribed to a magnetically inactive layer at the surface. Such a reduced surface magnetization was also observed for films grown on InAs and GaAs. Magnetite could also be grown with nearly ideal iron-oxygen stoichiometry on InAs substrates. However, interfacial reactions of InAs with oxygen occur and result in arsenic oxides and indium enrichment. The grown films are of polycrystalline nature. For the fabrication of Fe3O4/GaAs films, a postoxidation of epitaxial Fe films on GaAs was applied. Growth proceeds by a transformation of the topmost Fe layers into magnetite. Depending on specific growth conditions, an Fe layer of different thickness remains at the interface. The structural properties are improved in comparison with films on InAs, and the resulting films are well oriented along [001] in growth direction. The magnetic properties are influenced by the presence of the Fe interface layer as well. The saturation magnetization is increased and the approach to saturation is faster than for films on the other substrates. We argue that this is connected to a decreased density of anti-phase boundaries because of the special growth method. Interface phases, viz. arsenic and gallium oxides, are quantified and different growth conditions are compared with respect to the interface composition.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Ames2015, author = {Ames, Christopher}, title = {Molecular Beam Epitaxy of 2D and 3D HgTe, a Topological Insulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In the present thesis the MBE growth and sample characterization of HgTe structures is investigated and discussed. Due to the first experimental discovery of the quantum Spin Hall effect (QSHE) in HgTe quantum wells, this material system attains a huge interest in the spintronics society. Because of the long history of growing Hg-based heterostructures here at the Experimentelle Physik III in W{\"u}rzburg, there are very good requirements to analyze this material system more precisely and in new directions. Since in former days only doped HgTe quantum wells were grown, this thesis deals with the MBE growth in the (001) direction of undoped HgTe quantum wells, surface located quantum wells and three dimensional bulk layers. All Hg-based layers were grown on CdTe substrates which generate strain in the layer stack and provide therefore new physical effects. In the same time, the (001) CdTe growth was investigated on n-doped (001) GaAs:Si because the Japanese supplier of CdTe substrates had a supply bottleneck due to the Tohoku earthquake and its aftermath in 2011. After a short introduction of the material system, the experimental techniques were demonstrated and explained explicitly. After that, the experimental part of this thesis is displayed. So, the investigation of the (001) CdTe growth on (001) GaAs:Si is discussed in chapter 4. Firstly, the surface preparation of GaAs:Si by oxide desorption is explored and analyzed. Here, rapid thermal desorption of the GaAs oxide with following cool down in Zn atmosphere provides the best results for the CdTe due to small holes at the surface, while e.g. an atomic flat GaAs buffer deteriorates the CdTe growth quality. The following ZnTe layer supplies the (001) growth direction of the CdTe and exhibits best end results of the CdTe for 30 seconds growth time at a flux ratio of Zn/Te ~ 1/1.2. Without this ZnTe layer, CdTe will grow in the (111) direction. However, the main investigation is here the optimization of the MBE growth of CdTe. The substrate temperature, Cd/Te flux ratio and the growth time has to be adjusted systematically. Therefore, a complex growth process is developed and established. This optimized CdTe growth process results in a RMS roughness of around 2.5 nm and a FWHM value of the HRXRD w-scan of 150 arcsec. Compared to the literature, there is no lower FWHM value traceable for this growth direction. Furthermore, etch pit density measurements show that the surface crystallinity is matchable with the commercial CdTe substrates (around 1x10^4 cm^(-2)). However, this whole process is not completely perfect and offers still room for improvements. The growth of undoped HgTe quantum wells was also a new direction in research in contrast to the previous n-doped grown HgTe quantum wells. Here in chapter 5, the goal of very low carrier densities was achieved and therefore it is now possible to do transport experiments in the n - and p - region by tuning the gate voltage. To achieve this high sample quality, very precise growth of symmetric HgTe QWs and their HRXRD characterization is examined. Here, the quantum well thickness can now determined accurate to under 0.3 nm. Furthermore, the transport analysis of different quantum well thicknesses shows that the carrier density and mobility increase with rising HgTe layer thickness. However, it is found out that the band gap of the HgTe QW closes indirectly at a thickness of 11.6 nm. This is caused by the tensile strained growth on CdTe substrates. Moreover, surface quantum wells are studied. These quantum wells exhibit no or a very thin HgCdTe cap. Though, oxidization and contamination of the surface reduces here the carrier mobility immensely and a HgCdTe layer of around 5 nm provides the pleasing results for transport experiments with superconductors connected to the topological insulator [119]. A completely new achievement is the realization of MBE growth of HgTe quantum wells on CdTe/GaAs:Si substrates. This is attended by the optimization of the CdTe growth on GaAs:Si. It exposes that HgTe quantum wells grown in-situ on optimized CdTe/GaAs:Si show very nice transport data with clear Hall plateaus, SdH oscillations, low carrier densities and carrier mobilities up to 500 000 cm^2/Vs. Furthermore, a new oxide etching process is developed and analyzed which should serve as an alternative to the standard HCl process which generates volcano defects at some time. However, during the testing time the result does not differ in Nomarski, HRXRD, AFM and transport measurements. Here, long-time tests or etching and mounting in nitrogen atmosphere may provide new elaborate results. The main focus of this thesis is on the MBE growth and standard characterization of HgTe bulk layers and is discussed in chapter 6. Due to the tensile strained growth on lattice mismatched CdTe, HgTe bulk opens up a band gap of around 22 meV at the G-point and exhibits therefore its topological surface states. The analysis of surface condition, roughness, crystalline quality, carrier density and mobility via Nomarski, AFM, XPS, HRXRD and transport measurements is therefore included in this work. Layer thickness dependence of carrier density and mobility is identified for bulk layer grown directly on CdTe substrates. So, there is no clear correlation visible between HgTe layer thickness and carrier density or mobility. So, the carrier density is almost constant around 1x10^11 cm^(-2) at 0 V gate voltage. The carrier mobility of these bulk samples however scatters between 5 000 and 60 000 cm^2/Vs almost randomly. Further experiments should be made for a clearer understanding and therefore the avoidance of unusable bad samples.But, other topological insulator materials show much higher carrier densities and lower mobility values. For example, Bi2Se3 exhibits just density values around 1019 cm^(-2) and mobility values clearly below 5000 cm2/Vs. The carrier density however depends much on lithography and surface treatment after growth. Furthermore, the relaxation behavior and critical thickness of HgTe grown on CdTe is determined and is in very good agreement with theoretical prediction (d_c = 155 nm). The embedding of the HgTe bulk layer between HgCdTe layers created a further huge improvement. Similar to the quantum well structures the carrier mobility increases immensely while the carrier density levels at around 1x10^11 cm^(-2) at 0 V gate voltage as well. Additionally, the relaxation behavior and critical thickness of these barrier layers has to be determined. HgCdTe grown on commercial CdTe shows a behavior as predicted except the critical thickness which is slightly higher than expected (d_c = 850 nm). Otherwise, the relaxation of HgCdTe grown on CdTe/GaAs:Si occurs in two parts. The layer is fully strained up to 250 nm. Between 250 nm and 725 nm the HgCdTe film starts to relax randomly up to 10 \%. The relaxation behavior for thicknesses larger than 725 nm occurs than linearly to the inverse layer thickness. A explanation is given due to rough interface conditions and crystalline defects of the CdTe/GaAs:Si compared to the commercial CdTe substrate. HRXRD and AFM data support this statement. Another point is that the HgCdTe barriers protect the active HgTe layer and because of the high carrier mobilities the Hall measurements provide new transport data which have to be interpreted more in detail in the future. In addition, HgTe bulk samples show very interesting transport data by gating the sample from the top and the back. It is now possible to manipulate the carrier densities of the top and bottom surface states almost separately. The back gate consisting of the n-doped GaAs substrate and the thick insulating CdTe buffer can tune the carrier density for Delta(n) ~ 3x10^11 cm^(-2). This is sufficient to tune the Fermi energy from the p-type into the n-type region [138]. In this thesis it is shown that strained HgTe bulk layers exhibit superior transport data by embedding between HgCdTe barrier layers. The n-doped GaAs can here serve as a back gate. Furthermore, MBE growth of high crystalline, undoped HgTe quantum wells shows also new and extended transport output. Finally, it is notable that due to the investigated CdTe growth on GaAs the Hg-based heterostructure MBE growth is partially independent from commercial suppliers.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Scheffler2023, author = {Scheffler, Lukas}, title = {Molecular beam epitaxy of the half-Heusler antiferromagnet CuMnSb}, doi = {10.25972/OPUS-32283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322839}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work presents a newly developed method for the epitaxial growth of the half-Heusler antiferromagnet CuMnSb. All necessary process steps, from buffer growth to the deposition of a protective layer, are presented in detail. Using structural, electrical, and magnetic characterization, the material parameters of the epitaxial CuMnSb layers are investigated. The successful growth of CuMnSb by molecular beam epitaxy is demonstrated on InAs (001), GaSb (001), and InP (001) substrates. While CuMnSb can be grown pseudomorphically on InAs and GaSb, the significant lattice mismatch for growth on InP leads to relaxation already at low film thicknesses. Due to the lower conductivity of GaSb compared to InAs, GaSb substrates are particularly suitable for the fabrication of CuMnSb layers for lateral electrical transport experiments. However, by growing a high-resistive ZnTe interlayer below the CuMnSb layer, lateral transport experiments on CuMnSb layers grown on InAs can also be realized. Protective layers of Ru and Al2O3 have proven to be suitable for protecting the CuMnSb layers from the environment. Structural characterization by high resolution X-ray diffraction (full width at half maximum of 7.7 ′′ of the rocking curve) and atomic force microscopy (root mean square surface roughness of 0.14 nm) reveals an outstanding crystal quality of the epitaxial CuMnSb layers. The half-Heusler crystal structure is confirmed by scanning transmission electron microscopy and the stoichiometric material composition by Rutherford backscattering spectrometry. In line with the high crystal quality, a new minimum value of the residual resistance of CuMnSb (𝜌0 = 35 μΩ ⋅ cm) could be measured utilizing basic electrical transport experiments. An elaborate study of epitaxial CuMnSb grown on GaSb reveals a dependence of the vertical lattice parameter on the Mn/Sb flux ratio. This characteristic enables the growth of tensile, unstrained, and compressive strained CuMnSb layers on a single substrate material. Additionally, it is shown that the N{\´e}el temperature has a maximum of 62 K at stoichiometric material composition and thus can be utilized as a selection tool for stoichiometric CuMnSb samples. Mn-related defects are believed to be the driving force for these observations. The magnetic characterization of the epitaxial CuMnSb films is performed by superconducting quantum interference device magnetometry. Magnetic behavior comparable to the bulk material is found, however, an additional complex magnetic phase appears in thin CuMnSb films and/or at low magnetic fields, which has not been previously reported for CuMnSb. This magnetic phase is believed to be localized at the CuMnSb surface and exhibits both superparamagnetic and spin-glass-like behavior. The exchange bias effect of CuMnSb is investigated in combination with different in- and out-of-plane ferromagnets. It is shown that the exchange bias effect can only be observed in combination with in-plane ferromagnets. Finally, the first attempts at the growth of fully epitaxial CuMnSb/NiMnSb heterostructures are presented. Both magnetic and structural studies by secondary-ion mass spectrometry indicate the interdiffusion of Cu and Ni atoms between the two half-Heusler layers, however, an exchange bias effect can be observed for the CuMnSb/NiMnSb heterostructures. Whether this exchange bias effect originates from exchange interaction between the CuMnSb and NiMnSb layers, or from ferromagnetic inclusions in the antiferromagnetic layer can not be conclusively identified.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Michalska2013, author = {Michalska, Marta}, title = {Molecular Imaging of atherosclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73243}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Atherosklerose ist eine aktive und progressive Erkrankung, bei der vaskul{\"a}re Adh{\"a}sionsmolek{\"u}le wie VCAM-1 eine entscheidende Rolle durch Steuerung der Rekrutierung von Immunzellen in den fr{\"u}hen und fortgeschrittenen Plaques spielen. Ein zielgerichteter Einsatz von VCAM-1-Molek{\"u}len mit spezifischen Kontrastmitteln ist daher eine M{\"o}glichkeit, die VCAM-1-Expression zu kontrollieren, Plaquewachstum ab einem fr{\"u}hen Zeitpunkt zu visualisieren und eine fr{\"u}he Pr{\"a}vention von Atherosklerose vor Beginn der Thrombusbildung zu etablieren. Des Weiteren bietet die nichtinvasive Magnetresonanz (MR)-Bildgebung den Vorteil der Kombination molekularer und morphologischer Daten. Sie erm{\"o}glicht, mithilfe von entwickelten VCAM-1-markierten Eisenoxidpartikeln, den spezifischen Nachweis entz{\"u}ndlicher Prozesse w{\"a}hrend der Atherosklerose. Diese Arbeit belegt, dass mit dem VCAM-1-Konzept eine vielversprechende Herangehensweise gefunden wurde und dass das, mit spezifischen superparamagnetischen Eisenoxid (USPIO) konjugierte VCAM-1-Peptid, gegen{\"u}ber unspezifischer USPIOs ein erh{\"o}htes Potenzial bei der Untersuchung der Atherosklerose in sich tr{\"a}gt. Im ersten Teil der Arbeit konnte im Mausmodell gezeigt werden, dass gerade das VCAM-1-Molek{\"u}l ein sinnvoller Ansatzpunkt zur Darstellung und Bildgebung von Atherosklerose ist, da in der fr{\"u}hen Phase der Entz{\"u}ndung die vaskul{\"a}ren Zelladh{\"a}sionsmolek{\"u}le {\"u}berexprimiert und auch kontinuierlich, w{\"a}hrend der fortschreitenden Plaquebildung, hochreguliert werden. Weiterhin beschreibt diese Arbeit die Funktionst{\"u}chtigkeit und das Verm{\"o}gen des neu gestalteten USPIO Kontrastmittels mit dem zyklischen Peptid, in seiner Spezialisierung auf die VCAM-1 Erkennung. Experimentelle Studien mit ultra-Hochfeld-MRT erm{\"o}glichten weitere ex vivo und in vivo Nachweise der eingesetzten USPIO-VCAM-1-Partikel innerhalb der Region um die Aortenwurzel in fr{\"u}hen und fortgeschrittenen atherosklerotischen Plaques von 12 und 30 Wochen alten Apolipoprotein E-defizienten (ApoE-/-) M{\"a}usen. Mit ihrer Kombination aus Histologie und Elektronenmikroskopie zeigt diese Studie zum ersten Mal die Verteilung von VCAM-1-markierten USPIO Partikeln nicht nur in luminalem Bereich der Plaques, sondern auch in tieferen Bereichen der medialen Muskelzellen. Dieser spezifische und sensitive Nachweis der fr{\"u}hen und fortgeschrittenen Stadien der Plaquebildung bringt auf molekularer Ebene neue M{\"o}glichkeiten zur Fr{\"u}herkennung von atherosklerotischen Plaques vor dem Entstehen von 8 Rupturen. Im Gegensatz zum USPIO-VCAM-1-Kontrastmittel scheiterten unspezifische USPIO Partikel an der Identifikation fr{\"u}her Plaqueformen und begrenzten die Visualisierung von Atherosklerose auf fortgeschrittene Stadien in ApoE-/- M{\"a}usen.}, subject = {VCAM}, language = {en} } @phdthesis{Schott2004, author = {Schott, Gisela Marieluise}, title = {Molekularstrahlepitaxie und Charakterisierung von (Ga,Mn)As Halbleiterschichten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13470}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In der Spintronik bestehen große Bem{\"u}hungen Halbleiter und ferromagnetische Materialien zu kombinieren, um die Vorteile der hoch spezialisierten Mikroelektronik mit denen der modernen magnetischen Speichertechnologie zu verbinden. In vielen Bereichen der Elektronik wird bereits der III-V Halbleiter GaAs eingesetzt und ferromagnetisches (Ga,Mn)As k{\"o}nnte in die vorhandenen optischen und elektronischen Bauteile integriert werden. Deshalb ist eine intensive Erforschung der kristallinen Qualit{\"a}t, der elektrischen und magnetischen Eigenschaften von (Ga,Mn)As-Legierungsschichten von besonderem Interesse. Wegen der niedrigen L{\"o}slichkeit der Mangan-Atome in GaAs, muss (Ga,Mn)As außerhalb des thermodynamischen Gleichgewichtes mit Niedertemperatur-Molekularstrahl-Epitaxie hergestellt werden, um eine ausreichend hohe Konzentration an magnetischen Ionen zu erreichen. Dieses Niedertemperatur-Wachstum von Galliumarseniden verursacht Schwierigkeiten, da unerw{\"u}nschte Defekte eingebaut werden k{\"o}nnen. Die Art der Defekte und die Anzahl ist abh{\"a}ngig von den Wachstumsparametern. Vor allem das {\"u}bersch{\"u}ssige Arsen beeinflusst neben dem Mangan-Gehalt die Gitterkonstante und f{\"u}hrt zu einer starken elektrischen und magnetischen Kompensation des (Ga,Mn)As Materials. Abh{\"a}ngig von den Wachstumsparametern wurden Eichkurven zur Kalibrierung des Mangan-Gehaltes aus R{\"o}ntgenbeugungsmessungen, d. h. aus der (Ga,Mn)As-Gitterkonstanten bestimmt. Um ein besseres Verst{\"a}ndnis {\"u}ber die Einfl{\"u}sse der Wachstumsparameter neben dem Mangan-Gehalt auf die Gitterkonstante zu bekommen, wurden Probenserien gewachsen und mit R{\"o}ntgenbeugung und Sekund{\"a}rionen-Massenspektroskopie untersucht. Es wurde festgestellt, dass der Mangan-Gehalt, unabh{\"a}ngig von den Wachstumsparametern, allein vom Mangan-Fluss bestimmt wird. Die Gitterkonstante hingegen zeigte eine Abh{\"a}ngigkeit von den Wachstumsparametern, d. h. von dem eingebauten {\"u}bersch{\"u}ssigen Arsen in das (Ga,Mn)As-Gitter. Im weiteren wurden temperaturabh{\"a}ngige laterale Leitf{\"a}higkeitsmessungen an verschiedenen (Ga,Mn)As-Einzelschichten durchgef{\"u}hrt. Es ergab sich eine Abh{\"a}ngigkeit nicht nur von dem Mangan-Gehalt, sondern auch von den Wachstumsparametern. Neben den Leitf{\"a}higkeitsmessungen wurden mit Kapazit{\"a}ts-Messungen die Ladungstr{\"a}gerkonzentrationen an verschiedenen (Ga,Mn)As-Schichten bestimmt. Es konnten Wachstumsbedingungen gefunden werden, bei der mit einem Mangan-Gehalt von 6\% eine Ladungstr{\"a}gerkonzentration von 2 · 10^(21) cm^(-3) erreicht wurde. Diese Schichten konnten reproduzierbar mit einer Curie-Temperatur von 70 K bei einer Schichtdicke von 70 nm hergestellt werden. Mit ex-situ Tempern konnte die Curie-Temperatur auf 140 K erh{\"o}ht werden. Neben (Ga,Mn)As-Einzelschichten wurden auch verschiedene (GaAs/MnAs)- {\"U}bergitterstrukturen gewachsen und mit R{\"o}ntgenbeugung charakterisiert. Ziel was es, {\"U}bergitter herzustellen mit einem hohen mittleren Mangan-Gehalt, indem die GaAs-Schichten m{\"o}glichst d{\"u}nn und die MnAs-Submonolagen m{\"o}glichst dick gewachsen wurden. D{\"u}nnere GaAs-Schichten als 10 ML Dicke f{\"u}hrten unabh{\"a}ngig von der Dicke der MnAs-Submonolage und den Wachstumsparametern zu polykristallinem Wachstum. Die dickste MnAs-Submonolage, die in einer {\"U}bergitterstruktur erreicht wurde, betrug 0.38 ML. {\"U}bergitterstrukturen mit nominell sehr hohem Mangan-Gehalt zeigen eine reduzierte Intensit{\"a}t der {\"U}bergitterreflexe, was auf eine Diffusion der Mangan-Atome hindeutet. Der experimentelle Wert der Curie-Temperatur von (Ga,Mn)As scheint durch die starke Kompensation des Materials limitiert zu sein. Theoretische Berechnungen auf der Grundlage des ladungstr{\"a}gerinduzierten Ferromagnetismus besagen eine Erh{\"o}hung der Curie-Temperatur mit Zunahme der Mangan-Atome auf Gallium-Gitterpl{\"a}tzen und der L{\"o}cherkonzentration proportional [Mn_Ga] · p^(1/3). Zun{\"a}chst wurden LT-GaAs:C-Schichten mit den Wachstumsbedingungen der LT-(Ga,Mn)As-Schichten gewachsen, um bei diesen Wachstumsbedingungen die elektrische Aktivierung der Kohlenstoffatome zu bestimmen. Es konnte eine L{\"o}cherkonzentration von 5 · 10^19 cm^(-3) verwirklicht werden. Aufgrund der erfolgreichen p-Dotierung von LT-GaAs:C wurden (Ga,Mn)As-Einzelschichten zus{\"a}tzlich mit Kohlenstoff p-dotiert. Abh{\"a}ngig von den Wachstumsbedingungen konnte eine Erh{\"o}hung der Ladungstr{\"a}gerkonzentration im Vergleich zu den (Ga,Mn)As-Schichten erreicht werden. Trotzdem ergaben magnetische Messungen f{\"u}r alle (Ga,Mn)As:C-Schichten eine Abnahme der Curie-Temperatur. Der Einfluss der Kohlenstoff-Dotierung auf die Gitterkonstante, die elektrische Leitf{\"a}higkeit und die Magnetisierung ließ auf einen ver{\"a}nderten Einbau der Mangan-Atome verursacht durch die Kohlenstoff-Dotierung schließen.}, subject = {Galliumarsenid}, language = {de} } @phdthesis{Strauss2018, author = {Strauß, Micha Johannes}, title = {Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen f{\"u}r AlGaAs Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159024}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Erforschung von Quantenpunkten mit ihren quantisierten, atom{\"a}hnlichen Zust{\"a}nden, bietet eine Vielzahl von M{\"o}glichkeiten auf dem Weg zum Quantencomputer und f{\"u}r Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden k{\"o}nnen. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass G{\"u}ten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und T{\"u}rmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor f{\"u}r diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatort{\"u}rmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der T{\"u}rmchen. Dar{\"u}ber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatort{\"u}rmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es m{\"o}glich sein, ein Resonatort{\"u}rmchen direkt {\"u}ber dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung f{\"u}r die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der H{\"a}lfte des angestrebten T{\"u}rmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel {\"u}ber den Quantenpunkten, Resonatort{\"u}rmchen zielgenau auf die Quantenpunkte prozessiert werden k{\"o}nnen. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. F{\"u}r ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe m{\"o}glichst defektfrei {\"u}berwachsen werden konnte, die Struktur des Lochgitters aber nicht zerst{\"o}rt wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum n{\"a}chsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung f{\"u}r eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 \% der Quantenpunkte innerhalb von 50 nm und 60 \% innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte M{\"o}glichkeit, diese in Halbleiterresonatoren einbinden zu k{\"o}nnen, machen sie auch interessant f{\"u}r die Anwendung im Telekommunikationsbereich. Um f{\"u}r Glasfasernetze Anwendung zu finden, muss jedoch die Wellenl{\"a}nge auf den Bereich von 1300 nm oder 1550 nm {\"u}bertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenl{\"a}nge von 1300nm. Eine fu ̈r andere Bauteile sowie f{\"u}r Laserdioden bereits h{\"a}ufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von {\"u}ber 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenl{\"a}ngen gr{\"o}ßer 1300 nm emittieren. So ist es nun m{\"o}glich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenl{\"a}nge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen f{\"u}r 1300nm zu realisieren.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Reitzenstein2004, author = {Reitzenstein, Stephan}, title = {Monolithische Halbleiternanostrukturen als ballistische Verst{\"a}rker und logische Gatter}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12177}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Rahmen dieser Arbeit wurden monolithische Halbleiternanostrukturen hinsichtlich neuartiger nanoelektronischer Transporteffekte untersucht. Hierbei wurden gezielt der ballistische Charakter des Ladungstransportes in mesoskopischen Strukturen sowie die kapazitive Kopplung einzelner Strukturbereiche ausgenutzt, um ballistische Verst{\"a}rkerelemente und logische Gatter zu realisieren. Die untersuchten Nanostrukturen basieren auf dem zweidimensionalen Elektronengas modulationsdotierter GaAs/AlGaAs-Heterostrukturen und wurden {\"u}ber Elektronenstrahl-Lithographie sowie nasschemische {\"A}tztechniken realisiert. Somit entstanden niederdimensionale Leiter mit Kanalbreiten von wenigen 10 nm, deren Leitwert {\"u}ber planare seitliche Gates elektrisch kontrolliert werden kann. Bei den Transportuntersuchungen, die zum Teil im stark nichtlinearen Transportbereich und bei Temperaturen bis hin zu 300 K durchgef{\"u}hrt wurden, stellte sich das Konzept verzweigter Kanalstrukturen als vielversprechend hinsichtlich der Anwendung f{\"u}r eine neuartige Nanoelektronik heraus. So kann eine im Folgenden als Y-Transistor bezeichnete, verzweigte Kanalstruktur in Abh{\"a}ngigkeit der {\"a}ußeren Beschaltung als Differenzverst{\"a}rker, invertierender Verst{\"a}rker, bistabiles Schaltelement oder aber auch als logisches Gatter eingesetzt werden. Zudem er{\"o}ffnet der Y-Transistor einen experimentellen Zugang zu den nichtklassischen Eigenschaften nanometrischer Kapazit{\"a}ten, die sich von denen rein geometrisch definierter Kapazit{\"a}ten aufgrund der endlichen Zustandsdichte erheblich unterscheiden k{\"o}nnen. F{\"u}r ballistische Y-Verzweigungen tritt zudem ein neuartiger Gleichrichtungseffekt auf, der in Kombination mit den verst{\"a}rkenden Eigenschaften von Y-Transistoren dazu genutzt wurde, kompakte logische Gatter sowie einen ballistischen Halb-Addierer zu realisieren.}, subject = {Transistor}, language = {de} } @phdthesis{Fuchs2014, author = {Fuchs, Peter}, title = {Monolithische Quantenkaskadenlaser mit monomodiger und weit abstimmbarer Emission}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109432}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Ausgehend von mittels Molekularstrahlepitaxie im InGaAs/InAlAs/InP Materialsystem gewachsenen Lasermedien wurden monochromatische Quantenkaskadenlaser f{\"u}r die GasSensorik mit Emission im mittleren Infrarot entworfen, hergestellt und charakterisiert. Vorrangige Ziele waren hierbei die Entwicklung von leistungsstarken monomodigen Lasern im langwelligen Spektralbereich um 14 µm, sowie von Bauteilen mit weiter und schneller spektraler Abstimmbarkeit. F{\"u}r den Entwurf der Laserstege wurde zun{\"a}chst die zeitliche Entwicklung der Temperaturverteilung f{\"u}r verschiedene Varianten von Wellenleitern sowohl im gepulsten als auch im kontinuierlichen Betrieb simuliert. Anhand der berechneten thermischen Bauteilwiderst{\"a}nde konnten so geeignete Prozessparameter f{\"u}r die Herstellung der Laserstrukturen ermittelt werden Zur Herstellung von monochromatischen DFB-Lasern auf Basis eines MesaWellenleiters mit Seitenwandgittern wurde ein Prozess entwickelt, der sich - im Vergleichzu g{\"a}ngigen Verfahren zur Strukturierung von DFB-Gittern - durch eine stark reduzierte Anzahl an Verfahrenschritten und eine schnelle und einfache Durchf{\"u}hrbarkeit auszeichnet. F{\"u}r Laser mit 4 mm L{\"a}nge und 14 µm mittlerer Breite wurde eine Spitzenleistung {\"u}ber 200 mW bei einer externen Effizienz von 330 mW/A und einer Schwellstromdichte von 2,1 kA/cm^2 bei Raumtemperatur bestimmt. DFB-Laser um 14 µm, welche - durch die große Wellenl{\"a}nge bedingt - h{\"o}here Schwellstromdichten aufweisen, wurden dagegen auf Basis von nasschemisch ge{\"a}tzten Doppelkanal-Wellenleitern mit in die Oberseite des Steges ge{\"a}tzten Gittern und dickem Gold auf den Stegflanken hergestellt, um eine bessere laterale W{\"a}rmeabfuhr zu erreichen. Basierend auf der Analyse des Strahlprofils und des Emissionsspektrums war trotz der großen Stegbreite ausschließlich Betrieb auf der Grundmode zu beobachten. So konnte eine Spitzenleistung von 810 mW bei einer Schwellstromdichte von 4,3 kA/cm^2 bei Raumtemperatur erreicht werden. Um eine gr{\"o}ßere spektrale Abstimmbarkeit zu erreichen als dies mit DFB-Lasern m{\"o}glich ist, wurde ein Lasertyp auf Basis von zwei gekoppelten Fabry-P erot Kavit{\"a}ten entworfen, hergestellt und untersucht. Mit diesem Konzept konnte {\"u}ber eine geringe Stromvariation ein Umschalten zwischen verschiedenen Resonanzen erreicht werden, was bei konstanter Temperatur der W{\"a}rmesenke um Raumtemperatur einen Abstimmbereich von 5,2 cm^-1 erm{\"o}glichte. Unter Einbeziehung einer Variation der Temperatur der W{\"a}rmesenke konnte monomodige Emission in einem Spektralbereich von 52 cm^-1 erreicht und die Tauglichkeit der Laser f{\"u}r die Gas-Sensorik anhand einer Absorptionsmessung an Ammoniak demonstriert werden. Da die monomodige Spitzenleistung dieser Laser jedoch konzeptbedingt auf wenige mW beschr{\"a}nkt war, wurde f{\"u}r den Einsatz weit abstimmbarer Laser in der Spurengasanalytik im letzten Teil der Arbeit ein anderer Lasertyp mit flachge{\"a}tztem Bragg-Reflektor entwickelt. Durch sorgf{\"a}ltige Wahl der Gitterparameter und ein spezielles Puls-Schema wurde eine {\"u}ber 30 cm^-1 quasi-kontinuierlich abstimmbare, monomodige Emission erreicht. Die Stabilit{\"a}t und die spektrale Reinheit des Laserlichts mit einer Seitenmodunterdr{\"u}ckung von mehr als 30 dB konnte anhand von zeitaufgel{\"o}sten Messungen des Abstimmvorgangs und durch ein Absorptionsexperiment mit Ethen belegt werden. Die erzielte spektrale Aufl{\"o}sung war durch die Messelektronik begrenzt und betrug 0,0073 cm^-1. Zudem ergab sich auch die M{\"o}glichkeit einer Analyse des thermischen {\"U}bersprechens, welche einen vernachl{\"a}ssigbaren Einfluss f{\"u}r den Pulsbetrieb der Laser zeigte und eine moderate Erw{\"a}rmung benachbarter Segmente um 10\% des f{\"u}r das vors{\"a}tzlich beheizte Segment gemessenen Wertes. Des Weiteren konnte dank der M{\"o}glichkeit zur unabh{\"a}ngigen Strominjektion in verschiedene Sektionen die Temperaturabh{\"a}ngigkeit von Verst{\"a}rkung und Absorption im Resonator untersucht werden. Herausstechende Eigenschaften dieser Laser wie die Verringerung der gepulsten Chirprate im Vergleich zu DFB-Lasern um den Faktor 3 konnten anhand von systematischen Untersuchungen mit einer Vielzahl von Bauteilen analysiert und auf die zeitlicheTemperaturentwicklung bzw. die r{\"a}umliche Temperaturverteilung im Lasersteg zur{\"u}ckgef{\"u}hrt werden. Die optische Spitzenleistung von 600 mW und externe Effizienzen bis 300mW/A sollten auch den Einsatz in der Spurengasanalyse erlauben, die hohe Geschwindigkeit mit der die Emissionswellenl{\"a}nge variiert werden kann, {\"u}berdies die Untersuchung der Reaktionskinetik in der Gasphase.}, subject = {Quantenkaskadenlaser}, language = {de} } @phdthesis{Naehle2011, author = {N{\"a}hle, Lars}, title = {Monomodige und weit abstimmbare Halbleiterlaser im GaSb-Materialsystem im Wellenl{\"a}ngenbereich von 3,0 - 3,4 μm}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70538}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Ein Ziel der Arbeit war die Entwicklung spektral monomodiger DFB-Lasern im Wellenl{\"a}ngenbereich von 3,0-3,4µm. Diese sollten auf spezielle Anwendungen in der Absorptionsspektroskopie an Kohlenwasserstoffen gezielt angepasst werden. Hierf{\"u}r wurden zwei auf GaSb-Material basierende Lasertypen untersucht - Interbandkaskadenlaser (ICL) und Diodenlaser mit quin{\"a}ren AlGaInAsSb-Barrieren- und Wellenleiter-Schichten. F{\"u}r das ICL-Material wurde ein DFB-Prozess basierend auf vertikalen Seitengittern entwickelt. Dieser Ansatz erm{\"o}glichte monomodigen Laserbetrieb bei Realisierung der Laser mit Kopplungsgitter in nur einem {\"A}tzschritt und ohne epitaktischen {\"U}berwachstumsschritt. Maximal m{\"o}gliche Betriebstemperaturen von ~0°C f{\"u}r die auf dem verf{\"u}gbaren epitaktischen Material entwickelten Laser wurden bestimmt. Eine Diskussion der thermischen Eigenschaften der Laser deckte Gr{\"u}nde f{\"u}r die Limitierung der Betriebstemperatur auf. M{\"o}glichkeiten zur Optimierung der Leistungsf{\"a}higkeit und Steigerung der Betriebstemperatur beim ICL-Ansatz wurden hierauf basierend vorgestellt. Als kritischster Parameter wurde hier die epitaxiebestimmte Temperaturstabilit{\"a}t der Laserschwelle ausgemacht. Weitere Entwicklungen umfassten die Herstellung von DFB-Lasern mit dem erw{\"a}hnten Diodenlasermaterial mit quin{\"a}ren Barrieren. Es kam eine Prozessierung der Bauteile ohne {\"U}berwachstum unter Verwendung von lateralen Metallgittern zur Modenselektion zum Einsatz. Die Bestimmung optischer Parameter zur Entwicklung von Lasern mit guter DFB-Ausbeute wurde f{\"u}r das Epitaxiematerial mit quin{\"a}ren Barrieren >3,0µm von Wellenleiter-Simulationen unterst{\"u}tzt. Die Definition der Gitterstrukturen wurde auf niedrige Absorptionsverluste optimiert. So hergestellte Laser zeigten exzellente Eigenschaften mit maximalen Betriebstemperaturen im Dauerstrichbetrieb von >50°C und spektral monomodiger Emission um 2,95µm mit Seitenmodenunterdr{\"u}ckungen (SMSR) bis 50dB. Diesem Konzept entsprechend wurden DFB-Laser speziell f{\"u}r die Acetylen-Detektion bei Wellenl{\"a}ngen von 3,03µm und 3,06µm entwickelt. Die f{\"u}r ~3,0µm entwickelte und erfolgreich angewendete DFB-Prozessierung wurde daraufhin auf den Wellenl{\"a}ngenbereich bis 3,4µm angepasst. Ein Prozesslauf mit verbesserter W{\"a}rmeabfuhr, ohne die Verwendung eines Polymers, wurde entwickelt. Es konnten DFB-Laser hergestellt werden, die fast den gesamten Wellenl{\"a}ngenbereich von 3,3-3,4µm abdeckten. Maximale Betriebstemperaturen dieser Laser lagen bei >20°C in Dauerstrichbetrieb bei ausgezeichneten spektralen Eigenschaften (SMSR 45dB). Spezielle Bauteile im Bereich 3,34-3,38µm, u.a. f{\"u}r die Detektion von Methan, Ethan und Propan, wurden entwickelt. Die in dieser Arbeit auf Diodenlasermaterial mit quin{\"a}ren Barrieren entwickelten DFB-Laser definieren f{\"u}r den gesamten Wellenl{\"a}ngenbereich von 2,8-3,4µm den aktuellen Stand der Technik f{\"u}r monomodige Laseremission durch direkte strahlende {\"U}berg{\"a}nge. Sie stellen außerdem f{\"u}r den Wellenl{\"a}ngenbereich von 3,02-3,41µm die einzigen ver{\"o}ffentlichten DFB-Laser in cw-Betrieb bei Raumtemperatur dar. Eine maximale monomodige Emissionswellenl{\"a}nge f{\"u}r Diodenlaser von 3412,1nm wurde erreicht. Ein weiteres Ziel der Arbeit war die Entwicklung weit abstimmbarer Laser von 3,3-3,4µm zur Erm{\"o}glichung erweiterter Anwendungen in der Kohlenwasserstoff-Gassensorik. Hierf{\"u}r wurde ein Konzept zweisegmentiger Laser mit bin{\"a}ren, {\"u}berlagerten Gittern verwendet. F{\"u}r diese sogenannten BSG-Laser konnte durch Simulationen unterst{\"u}tzt der Einfluss des kritischen Parameters der Phase der Bragg-Moden an den Facetten untersucht werden. Ein dementsprechend phasenoptimiertes Design der Gitterstrukturen wurde in den Segmenten der Laser angewendet. Simulationen des Durchstimmverhaltens der Laser wurden diskutiert und Einsch{\"a}tzungen {\"u}ber das reale Verhalten in hergestellten Bauteilen gegeben. Die entwickelten Laser wiesen Emission in bis zu vier ansteuerbaren, monomodigen Wellenl{\"a}ngenkan{\"a}len auf. Sie zeigten ein den Simulationen entsprechendes, sehr gutes Durchstimmverhalten in den Kan{\"a}len (bis zu ~30nm). Die Entwicklung eines bestimmten Lasers in dieser Arbeit war speziell auf die industrielle Anwendung in einem Sensorsystem mit monomodigen Emissionen um 3333nm und 3357nm ausgelegt. F{\"u}r diese Wellenl{\"a}ngenkan{\"a}le wurden spektrale Messungen mit hohem Dynamikbereich gemacht. Mit SMSR bis 45dB war eine hervorragende Anwendbarkeit in einem Sensorsystem gew{\"a}hrleistet. Der Aufbau mit nur zwei Lasersegmenten garantiert eine einfache Ansteuerung ohne komplexe Elektronik. Die in dieser Arbeit entwickelten weit abstimmbaren Laser stellen die bisher langwelligsten, monolithisch hergestellten, weit abstimmbaren Laser dar. Sie sind außerdem die bislang einzigen zweisegmentigen BSG-Laser, die in durch simultane Stromver{\"a}nderung durchstimmbaren Wellenl{\"a}ngenkan{\"a}len ein Abstimmverhalten mit konstant hoher Seitenmodenunterdr{\"u}ckung und ohne Modenspr{\"u}nge zeigen.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Oechsner2011, author = {Oechsner, Markus}, title = {Morphologische und funktionelle 1H-Magnetresonanztomographie der menschlichen Lunge bei 0.2 und 1.5 Tesla}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66942}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Das Ziel dieser Arbeit war es, Methoden und Techniken f{\"u}r die morphologische und funktionelle Bildgebung der menschlichen Lunge mittels Kernspintomographie bei Feldst{\"a}rken von 0,2 Tesla und 1,5 Tesla zu entwickeln und zu optimieren. Bei 0,2 Tesla wurde mittels der gemessenen Relaxationszeiten T1 und T2* eine 2D und eine 3D FLASH Sequenz zur Untersuchung der Lungenmorphologie optimiert. Sauerstoffgest{\"u}tzte Messungen der Relaxationszeiten T1 und T2* sowie eine SpinLabeling Sequenz liefern funktionelle Informationen {\"u}ber den Sauerstofftransfer und die Perfusion der Lungen. Bei 1,5 Tesla wurde die Lungenperfusion mittels MR-Kontrastmittel mit einer 2D und einer 3D Sequenz unter Verwendung der Pr{\"a}bolus Technik quantifiziert. Zudem wurden zwei MR-Navigationstechniken entwickelt, die es erm{\"o}glichen Lungenuntersuchungen unter freier Atmung durchzuf{\"u}hren und aus den Daten artefaktfreie Bilder zu rekonstruieren. Diese Techniken k{\"o}nnen in verschiedenste Sequenzen f{\"u}r die Lungenbildgebung implementiert werden, ohne dass die Messzeit dadurch signifikant verl{\"a}ngert wird.}, subject = {NMR-Bildgebung}, language = {de} } @phdthesis{Weber2011, author = {Weber, Daniel}, title = {Morphologische und funktionelle MRT-Infarktcharakterisierung und Entwicklung einer diffusionsgewichteten MRT-Methode}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diffusionstensorbildgebung im Vergleich zu anderen Parametermethoden f{\"u}r die Infarktcharakterisierung Ziel dieses Teils der Arbeit war die Kl{\"a}rung der Frage, welches Potential verschiedene MR-Parametersequenzen bei der Charakterisierung eines myokardialen Infarkts sowohl im akuten als auch im chronischen Fall haben. Dazu wurde eine Studie mit akut und chronisch infarzierten Rattenherzen durchgef{\"u}hrt. Untersucht wurden die Parameter T1, T2 und T2* sowie die aus der Diffusionstensorbildgebung berechneten Parameter ADC, FA, cs, cp und cl . Es zeigte sich, dass es kein Analogon zum bei einer cerebralen Isch{\"a}mie bekannten Mismatch-Konzept gibt. Weder im akuten noch im chronischen war Fall eine ausgewiesene Differenz im diagnostizierten Infarktareal zwischen verschiedenen Sequenzen feststellbar. Alles in allem eignen sich zur detaillierten Charakterisierung der Infarktnarbe am besten eine T2*- oder eine Diffusionstensorsequenz. Die T2*-Sequenz liefert optisch das aufschlussreichere Bild, die aufwendigere Diffusionstensorsequenz dagegen bietet aufgrund der vielfachen Darstellungsm{\"o}glichkeiten im Postprocessing ein Mehr an Information und zeigt dazu eine Ver{\"a}nderung der Narbe im Zeitverlauf. Oxygenierungsmessung am M{\"a}useherz in vivo Die Charakterisierung einer Infarktnarbe kann auch {\"u}ber die Darstellung morphologischer Strukturen hinaus erfolgen. Die Oxygenierung ist ein komplexer Parameter, der funktionelle Auskunft {\"u}ber die Vaskularisierung und Viabilit{\"a}t des Gewebes geben kann. Zugang zu diesem Parameter erh{\"a}lt man {\"u}ber T2*-Messungen, da der Parameter T2* sensitiv auf chemisch gebundenen Sauerstoff reagiert. Hier wurden der Einfluss von reiner Sauerstoffatmung im Gegensatz zu normaler Raumluftatmung auf die Oxygenierung bei gesunden und infarzierten M{\"a}usen untersucht. Die Messungen wurden trotz der Schwierigkeiten, die durch die Bewegung durch Atmung und Herzschlag entstehen, in vivo bei 17,6 Tesla implementiert und durchgef{\"u}hrt. Die Aufl{\"o}sung war ausreichend, um auch nach Infarkt extrem ausged{\"u}nnte Myokardw{\"a}nde gut aufl{\"o}sen und charakterisieren zu k{\"o}nnen. Der Effekt auf das Oxygenierungslevel ist stark unterschiedlich zwischen normalen und infarzierten Herzen, woraus auf eine noch nicht weit fortgeschrittene Revaskularisierung der Narbe eine Woche nach Infarzierung geschlossen werden kann. Die Methode wurde dar{\"u}ber hinaus an einem 7,0 Tesla-Magneten zur Verwendung an Ratten implementiert und auf das im Gegensatz zur Maus ver{\"a}nderte Atmungsverhalten der Ratte angepasst. Zum einen kann dadurch der Einfluss des hohen Magnetfeldes auf die Oxygenierungsmessung untersucht werden, zum anderen ist das Herz als zu untersuchendes Objekt bei der Ratte gr{\"o}ßer. Diffusionswichtung mittels Hole-Burning Die in dieser Arbeit zur Charakterisierung des Herzens verwendete Diffusionsmethode kann im Grenzfall von kurzen T2-Relaxationszeiten an ihre Grenzen stoßen: Bei den verwendeten starken Magnetfeldern klingt das messbare Signal aufgrund der Relaxationszeit T2 oft sehr schnell ab. Daher wurde eine Methode entwickelt, die einen v{\"o}llig neuen Ansatz zur diffusionsgewichteten Bildgebung verfolgt, bei dem die Informationen {\"u}ber die Diffusion unabh{\"a}ngig von der limitierenden T2-Zeit gewonnen werden k{\"o}nnen. Die sog. Hole-Burning-Diffusionssequenz verwendet in einem Vorexperiment lediglich die Longitudinalmagnetisierung zur Diffusionswichtung. Das Signal wird dann mit einer schnellen Auslesesequenz akquiriert. Bei der Pr{\"a}paration werden zun{\"a}chst auf Subvoxel-Niveau Streifen "gebrannt", d.h. die Magnetisierung wird dort ges{\"a}ttigt. Bis zur n{\"a}chsten S{\"a}ttigung ist das Verhalten der Magnetisierung abh{\"a}ngig von der T1-Relaxation in diesem Bereich und vom Diffusionsverhalten. Durch rasches Wiederholen des selektiven Pulszugs wird schließlich eine Gleichgewichtsmagnetisierung erreicht, die von der Diffusionskonstanten D und der T1-Relaxationszeit abh{\"a}ngt. Im Rahmen dieser Arbeit wurden die Abh{\"a}ngigkeiten verschiedener Sequenzparameter untersucht und diese mittels Simulationen optimiert. Außerdem wurde die Sequenz an einem Scanner implementiert und erste Experimente damit durchgef{\"u}hrt. Mit Hilfe von Simulationen konnten dazu Lookup-Tabellen generiert werden, mit denen in bestimmten Bereichen (insbesondere bei nicht zu kurzen T1-Relaxationszeiten) sowohl die Diffusionskonstante D als auch die T1-Relaxationszeit quantifiziert werden konnte.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Schmitt2013, author = {Schmitt, Peter}, title = {MR imaging of tumors: Approaches for functional and fast morphological characterization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135967}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The subject of this work was to develop, implement, optimize and apply methods for quantitative MR imaging of tumors. In the context of functional and physiological characterization, this implied transferring techniques established in tumor model research to human subjects and assessing their feasibility for use in patients. In the context of the morphologic assessment and parameter imaging of tumors, novel concepts and techniques were developed, which facilitated the simultaneous quantification of multiple MR parameters, the generation of "synthetic" MR images with various contrasts, and the fast single-shot acquisition of purely T2-weighted images.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Heinrich2022, author = {Heinrich, Robert}, title = {Multi-species gas detection based on an external-cavity quantum cascade laser spectrometer in the mid-infrared fingerprint region}, doi = {10.25972/OPUS-26864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Laser spectroscopic gas sensing has been applied for decades for several applications as atmospheric monitoring, industrial combustion gas analysis or fundamental research. The availability of new laser sources in the mid-infrared opens the spectral fingerprint range to the technology where multiple molecules possess their fundamental ro-vibrational absorption features that allow very sensitive detection and accurate discrimination of the species. The increasing maturity of quantum cascade lasers that cover this highly interesting spectral range motivated this research to gain fundamental knowledge about the spectra of hydrocarbon gases in pure composition and in complex mixtures as they occur in the petro-chemical industry. The long-term target of developing accurate and fast hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in this industry. This thesis aims to contribute to a higher accuracy and more comprehensive understanding of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet unavailable high resolution and high accuracy reference spectra of the respective gases, the investigation of their spectral behavior in mixtures due to collisional broadening of their transitions and the verification of the feasibility to quantitatively discriminate the spectra when several overlapping species are simultaneously measured in gas mixtures. To achieve this knowledge a new laboratory environment was planned and built up to allow for the supply of the individual gases and their arbitrary mixing. The main element was the development of a broadly tunable external-cavity quantum cascade laser based spectrometer to record the required spectra. This also included the development of a new measurement method to obtain highly resolved and nearly gap-less spectral coverage as well as a sophisticated signal post-processing that was crucial to achieve the high accuracy of the measurements. The spectroscopic setup was used for a thorough investigation of the spectra of the first seven alkanes as of their mixtures. Measurements were realized that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4 for long-time averaging of the acquired spectra. These spectral measurements accomplish a quality that compares to state-of-the art spectral databases and revealed so far undocumented details of several of the investigated gases that have not been measured with this high resolution before at the chosen measurement conditions. The results demonstrate the first laser spectroscopic discrimination of a seven component gas mixture with absolute accuracies below 0.5 vol.\% in the mid-infrared provided that a sufficiently broad spectral range is covered in the measurements. Remaining challenges for obtaining improved spectral models of the gases and limitations of the measurement accuracy and technology are discussed.}, subject = {Quantenkaskadenlaser}, language = {en} } @phdthesis{Meyer2012, author = {Meyer, Jochen}, title = {Muon performance aspects and measurement of the inclusive ZZ production cross section through the four lepton final state with the ATLAS experiment at the LHC}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78793}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The "Large Hadron Collider" (LHC) is currently the most powerful particle accelerator. It provides particle collisions at a center of mass energy in the Tera-electronvolt range, which had never been reached in a laboratory before. Thereby a new era in high energy particle physics has began. Now it is possible to test one of the most precise theories in physics, the Standard Model of particle physics, at these high energies. The purpose is particularly served by four large experiments installed at the LHC, namely "A Toroidal LHC ApparatuS" (ATLAS), the "Compact-Muon-Solenoid" (CMS), the "Large Hadron Collider beauty" (LHCb) and "A Large Ion Collider Experiment" (ALICE). Besides exploring the high energy behavior of the well-established portions of the Standard Model, one of the main objectives is to find the Higgs boson included in the model, but not discovered by any preceding effort. It is of tremendous importance since fermions and heavy electroweak gauge bosons acquire mass because of this boson. Although the success of the Standard Model in describing nature is already undisputed, there are some flaws due to observations inexplicable within this theory only. Therefore searches for physics beyond the Standard Model are promoted at the LHC experiments as well. In order to achieve the defined goals, crucial aspects are firstly precise measurements, to verify Standard Model predictions in detail, and secondly an evaluation of as much information as accessible by the detectors, to recognize new phenomena as soon as possible for subsequent optimizations. Both challenges are only possible with a superior understanding of the detectors. An inevitable contribution to attain this knowledge is a realistic simulation, partially requiring new implementation techniques to describe the very complex instrumentation. The research presented here is performed under the patronage of the ATLAS collaboration with a special focus on measurements done with muon spectrometer. Thus a first central issue is the performance of the spectrometer in terms of physics objects that are recognized by the device, the compatibility of data and the existing simulation as well as its improvement and finally the extension of the acceptance region. Once the excellent behavior and comprehension of the muon spectrometer is demonstrated, a second part addresses one physics use case of reconstructed muons. The electroweak force is part of the Standard Model and causes the interaction of heavy electroweak gauge bosons with fermions as well as their self-interaction. In proton-proton collisions such gauge bosons are produced. However, they decay immediately into a pair of fermions. In case of the Z boson, which is one of the gauge bosons, oppositely charged fermions of the same generation, including muons, emerge. The various decay modes are determined precisely at particle accelerators other than the LHC. However, the associated production of two Z bosons is measured less exactly at those facilities because of a very low cross section. The corresponding results acquired with the ATLAS experiment exceed all previous measurements in terms of statistics and accuracy. They are reported in this thesis as obtained from the observation of events with four charged leptons. The enhancement of the signal yield based on the extension of the muon spectrometer acceptance is especially emphasized as well as alternative methods to estimate background events. Furthermore, the impact on the probing of couplings of three Z bosons and intersection with the search for the Standard Model Higgs boson are pointed out.}, subject = {ATLAS }, language = {en} } @phdthesis{Richter2003, author = {Richter, Georg}, title = {Nachweis der elektrischen Spin-Injektion in II-VI-Halbleiter mittels Messung des elektrischen Widerstandes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10911}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die bisherigen Ergebnisse der elektrischen Spininjektion in Halbleiter im diffusivem Regime werden mit dem Modell von Schmidt et. al gut beschrieben. Eine Folgerung aus diesem Modell ist, dass n-dotierte, verd{\"u}nnte magnetische Halbleiter ("diluted magnetic semiconductors", DMS) als Injektor-Materialien f{\"u}r die elektrische Spininjektion in Halbleiter gut geeignet sind. Im Jahr 1999 wurde dar{\"u}ber hinaus die elektrische Injektion von einem DMS in einem nicht magnetisch dotierten Halbleiter ("non magnetic semiconductors", NMS) mit optischen Mitteln nachgewiesen. Die elektrischen Eigenschaften des Metall-Halbleiter-Kontaktes vom Materialsystem n-(Be,Zn,Mn)Se - n-(Be,Zn)Se wurden untersucht und optimiert, wobei spezifische Kontakwiderst{\"a}nde von bis zu ca. 2 10^-3 Ohm cm^2 bei 4 K erreicht wurden. Der Kontakt zwischen n-(Be,Zn,Mn)Se und n-(Be,Zn)Se ist unkritisch, weil der auftretende Leitungsband-Offset lediglich 40 meV betr{\"a}gt. Die Spininjektionsmessungen wurden an Bauteilen mit einem adaptiertem Design der Transmission-Line Messungen ("TLM") durchgef{\"u}hrt. Bei diesem Materialsystem wurde am Gesamtbauteil ein positiver Magnetowiderstand von bis zu 25 \% detektiert. Da sowohl der intrinsische Magnetowiderstand der einzelnen Halbleiterschichten negativ bzw. konstant war, als auch kein besonderes Magnetowiderstandsverhalten an der Metall-Halbleiter-Grenzschicht festgestellt werden konnte, kann dieser Magnetowiderstand als erster elektrischer Nachweis einer Spininjektion in einen Halbleiter angesehen werden. Die bei geringeren Temperaturen (300 mK und 2 K) bereits bei kleineren B-Feldern eintretende S{\"a}ttigung des Widerstandes ist dar{\"u}berhinaus mit der Temparaturabh{\"a}ngigkeit der Zeeman-Aufspaltung des DMS in Einklang zu bringen. Eine systematische Untersuchung dieses "Large Magnetoresistance" Effektes von der Dotierung der beteiligten Halbleiter zeigt hingegen ein komplexeres Bild auf. Es scheint ein optimales Dotierregime, sowohl f{\"u}r den DMS als auch f{\"u}r den NMS zu geben. H{\"o}here oder geringere Dotierung reduzieren die relative Gr{\"o}ße des positiven Magnetowiderstandes. Auch bei stark unterschiedlich dotierten DMS- und NMS-Schichten tritt eine (partielle) Unterdr{\"u}ckung des Magnetowiderstandes auf, in {\"U}bereinstimmung mit dem Modell. Dies l{\"a}sst den Schluss zu, dass neben einer, der Spininjektion abtr{\"a}glichen, großen Differenz der Ladungstr{\"a}gerdichten, evtl. auch die Bandstrukturen der beteiligten Halbleiter f{\"u}r die Spininjektionseffekte von Bedeutung ist. Um die elektrische Spininjektion auch in der technologisch wichtigen Familie der III/V Halbleiter etablieren zu k{\"o}nnen, wurde die elektrische Spininjektion von n-(Cd,Mn)Se in n-InAs untersucht. Basierend auf den Prozessschritten "Elektronenstrahlbelichtung" und "nasschemisches {\"A}tzen" wurde eine {\"A}tztechnologie entwickelt und optimiert, bei der die {\"A}tzraten {\"u}ber die zuvor durchgef{\"u}hrte EBL kontrollierbar eingestellt werden k{\"o}nnen. Mesas mit Breiten von bis zu 12 nm konnten damit hergestellt werden. Untersuchungen zur elektrischen Spininjektion von (Cd,Mn)Se in InAs wurden mit Stromtransport senkrecht zur Schichtstruktur durchgef{\"u}hrt. Erste Messungen deuten bei niedrigen Magnetfeldern (B< 1,5 T) auf eine {\"a}hnliche Abh{\"a}ngigkeit des Gesamtwiderstand vom externen Feld hin wie im Materialsystem (Be,Zn,Mn)Se - (Be,Zn)Se. Allerdings tritt bei h{\"o}heren Feldern ein stark negativer Magnetowiderstand des Gesamtbauteils auf, der qualitativ einen {\"a}hnlichen Verlauf zeigt wie die (Cd,Mn)Se-Schicht allein. Da die I/U Kennlininen des Gesamtbauteils Nichtlinearit{\"a}ten aufweisen, k{\"o}nnen Tunneleffekte an einer oder mehrerer Barrieren eine wichtige Rolle spielen. Ob durch diese Tunneleffekte eine elektrische Spinijektion induziert wird, kann noch nicht abschließend gekl{\"a}rt werden. W{\"u}nschenswert ist daher eine weitere Charakterisierung der Einzelschichten. Ein weiteres Ziel ist, in Verbindung mit den oben angef{\"u}hrten technologischen Vorbereitungen, eine durch Nanostrukturierung erm{\"o}glichte, delokale Messung des Magnetowiderstand. Durch dieses Messverfahren k{\"o}nnten etwaige Tunnel-Effekte an der Metall-DMS Schicht zwanglos von denen an der DMS-NMS Grenzschicht getrennt werden.}, subject = {Zwei-Sechs-Halbleiter}, language = {de} } @phdthesis{Mueller2009, author = {M{\"u}ller, Christian Robert}, title = {Nanoelektronische Feldeffekt-Transistoren und Quantenpunktspeicher auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39948}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit Elektronentransport in nanostrukturierten Bauelementen auf Halbleiterbasis, wobei im Speziellen deren Transistor- und Speichereigenschaften untersucht werden. Grundlage f{\"u}r die Bauelemente stellt eine modulationsdotierte GaAs/AlGaAs Heterostruktur dar, die mittels Elektronenstrahllithographie und nasschemischen {\"A}tzverfahren strukturiert wird. Auf Grund der Bandverbiegung bildet sich in der N{\"a}he des Hetero{\"u}bergangs ein zweidimensionales Elektronengas (2DEG) aus, das als leitf{\"a}hige Schicht in den Strukturen dient. Im Rahmen der Arbeit werden die Transporteigenschaften f{\"u}r unterschiedliche Bauelementdesigns untersucht, wobei die laterale Ausdehnung der Bauelemente wenige 10 nm betr{\"a}gt. Die Charakterisierung des Elektronentransports erfolgt sowohl im linearen als auch nichtlinearen Transportregime f{\"u}r tiefe Temperaturen (T = 4.2 K) bis hin zu Raumtemperatur. Das erste experimentelle Kapitel besch{\"a}ftigt sich mit dem Entwurf und der Charakterisierung von statischen Speicherzellen mit integriertem Floating Gate. Bei den hierf{\"u}r hergestellten Bauelementen befindet sich eine Schicht selbstorganisierter Quantenpunkte (QDs) in direkter N{\"a}he zum 2DEG. Der Abstand zwischen 2DEG und QDs ist kleiner als die Abschirml{\"a}nge im Halbleitermaterial, wodurch die QDs als Floating Gate dienen und Informationen elektrisch gespeichert werden k{\"o}nnen. Die Speicherzellen wurden in Form von Quantendraht-Transistoren (QWTs) und Y-Schaltern (YBSs) realisiert und bez{\"u}glich der Speicherf{\"a}higkeit der QDs sowohl bei tiefen Temperaturen als auch bei Raumtemperatur untersucht. Im zweiten experimentellen Kapitel dieser Arbeit wird ein neues, auf dem Feldeffekt beruhendes, Transistordesign vorgestellt. Die hierf{\"u}r hergestellten Heterostrukturen besitzen ein 2DEG, das sich zwischen 33 nm und 80 nm unterhalb der Oberfl{\"a}che der Heterostruktur befindet. Mittels in die Oberfl{\"a}che der Heterostruktur ge{\"a}tzter Gr{\"a}ben wird eine Isolation zwischen den leitf{\"a}higen Regionen der Bauelemente geschaffen. Das einfache Design der sogenannten Three-Terminal Junctions (TTJs), in Verbindung mit dem oberfl{\"a}chennahen 2DEG, erm{\"o}glicht die monolithische Realisierung von integrierten logischen Gattern. Durch eine ausf{\"u}hrliche Betrachtung des Transistorverhaltens der TTJs k{\"o}nnen sowohl Subthreshold Swings kleiner als das thermische Limit klassischer Feldeffekt-Transistoren als auch Hochfrequenzfunktionalit{\"a}t demonstriert werden.}, subject = {Galliumarsenid}, language = {de} } @phdthesis{Muehlbauer2015, author = {M{\"u}hlbauer, Mathias Josef}, title = {Nanolithography on Mercury Telluride}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Topological insulators belong to a new quantum state of matter that is currently one of the most recognized research fields in condensed matter physics. Strained bulk HgTe and HgTe/HgCdTe quantum well structures are currently one of few topological insulator material systems suitable to be studied in transport experiments. In addition HgTe quantum wells provide excellent requirements for the conduction of spintronic experiments. A fundamental requirement for most experiments, however, is to reliably pattern these heterostructures into advanced nano-devices. Nano-lithography on this material system proves to be challenging because of inherent temperature limitations, its high reactivity with various metals and due to its properties as a topological insulator. The current work gives an insight into why many established semiconductor lithography processes cannot be easily transferred to HgTe while providing alternative solutions. The presented developments include novel ohmic contacts, the prevention of metal sidewalls and redeposition fences in combination with low temperature (80 °C) lithography and an adapted hardmask lithography process utilizing a sacrificial layer. In addition we demonstrate high resolution low energy (2.5 kV) electron beam lithography and present an alternative airbridge gating technique. The feasibility of nano-structures on HgTe quantum wells is exemplarily verified in two separate transport experiments. We are first to realize physically etched quantum point contacts in HgTe/HgCdTe high mobility 2DEGs and to prove their controllability via external top-gate electrodes. So far quantum point contacts have not been reported in TI materials. However, these constrictions are part of many proposals to probe the nature of the helical quantum spin Hall edge channels and are suggested as injector and detector devices for spin polarized currents. To confirm their functionality we performed four-terminal measurements of the point contact conductance as a function of external gate voltage. Our measurements clearly exhibit quantized conductance steps in 2e2/h, which is a fundamental characteristic of quantum point contacts. Furthermore we conducted measurements on the formation and control of collimated electron beams, a key feature to realize an all electrical spin-optic device. In a second study several of the newly developed lithography techniques were implemented to produce arrays of nano-wires on inverted and non-inverted HgTe quantum well samples. These devices were used in order to probe and compare the weak antilocalization (WAL) in these structures as a function of magnetic field and temperature. Our measurements reveal that the WAL is almost an order of magnitude larger in inverted samples. This observation is attributed to the Dirac-like dispersion of the energy bands in HgTe quantum wells. The described lithography has already been successfully implemented and adapted in several published studies. All processes have been optimized to guarantee a minimum effect on the heterostructure's properties and the sample surface, which is especially important for probing the topological surface states of strained HgTe bulk layers. Our developments therefore serve as a base for continuous progress to further establish HgTe as a topological insulator and give access to new experiments.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Schoemig2004, author = {Sch{\"o}mig, Herbert Richard}, title = {Nanooptik an breitbandl{\"u}ckigen Halbleiter-Nanostrukturen f{\"u}r die Spintronik und Optoelektronik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126558}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungstr{\"a}gerspins und den Mn-Spins aus. F{\"u}r ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verh{\"a}lt. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde f{\"u}r die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierf{\"u}r ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Pr{\"a}paration einer lichtundurchl{\"a}ssigen Metallmaske auf der Probenoberfl{\"a}che, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzukl{\"a}ren. Sowohl die Temperatur- als auch die Magnetfeldabh{\"a}ngigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird m{\"o}glich durch die Pr{\"a}paration von ferromagnetischen Strukturen auf der Halbleiteroberfl{\"a}che. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, k{\"o}nnen auf mesoskopischer L{\"a}ngenskala eine Verbiegung der Spinb{\"a}nder in einem Quantenfilm bewirken. Dies gilt insbesondere f{\"u}r einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verst{\"a}rkerfunktion der Mn-Spins liegen hier n{\"a}mlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen f{\"u}r Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Gr{\"o}ßenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsaufl{\"o}sung demonstrieren tats{\"a}chlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzust{\"a}nde im Quantenfilm und erlauben zudem einen R{\"u}ckschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungstr{\"a}ger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufkl{\"a}rung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfl{\"a}che erf{\"u}llt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tats{\"a}chlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien g{\"a}nzlich andere Abh{\"a}ngigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies erm{\"o}glichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche f{\"u}r die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandf{\"u}lleffekt und die Bildung von Multiexzitonen.}, subject = {Cadmiumselenid}, language = {de} } @phdthesis{Schoemig2004, author = {Sch{\"o}mig, Herbert Richard}, title = {Nanooptik an breitbandl{\"u}ckigen Halbleiter-Nanostrukturen f{\"u}r die Spintronik und Optoelektronik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15188}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungstr{\"a}gerspins und den Mn-Spins aus. F{\"u}r ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verh{\"a}lt. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde f{\"u}r die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierf{\"u}r ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Pr{\"a}paration einer lichtundurchl{\"a}ssigen Metallmaske auf der Probenoberfl{\"a}che, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzukl{\"a}ren. Sowohl die Temperatur- als auch die Magnetfeldabh{\"a}ngigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird m{\"o}glich durch die Pr{\"a}paration von ferromagnetischen Strukturen auf der Halbleiteroberfl{\"a}che. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, k{\"o}nnen auf mesoskopischer L{\"a}ngenskala eine Verbiegung der Spinb{\"a}nder in einem Quantenfilm bewirken. Dies gilt insbesondere f{\"u}r einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verst{\"a}rkerfunktion der Mn-Spins liegen hier n{\"a}mlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen f{\"u}r Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Gr{\"o}ßenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsaufl{\"o}sung demonstrieren tats{\"a}chlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzust{\"a}nde im Quantenfilm und erlauben zudem einen R{\"u}ckschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungstr{\"a}ger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufkl{\"a}rung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfl{\"a}che erf{\"u}llt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tats{\"a}chlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien g{\"a}nzlich andere Abh{\"a}ngigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies erm{\"o}glichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche f{\"u}r die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandf{\"u}lleffekt und die Bildung von Multiexzitonen.}, subject = {Cadmiumselenid}, language = {de} }