@phdthesis{Weber2011, author = {Weber, Daniel}, title = {Morphologische und funktionelle MRT-Infarktcharakterisierung und Entwicklung einer diffusionsgewichteten MRT-Methode}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diffusionstensorbildgebung im Vergleich zu anderen Parametermethoden f{\"u}r die Infarktcharakterisierung Ziel dieses Teils der Arbeit war die Kl{\"a}rung der Frage, welches Potential verschiedene MR-Parametersequenzen bei der Charakterisierung eines myokardialen Infarkts sowohl im akuten als auch im chronischen Fall haben. Dazu wurde eine Studie mit akut und chronisch infarzierten Rattenherzen durchgef{\"u}hrt. Untersucht wurden die Parameter T1, T2 und T2* sowie die aus der Diffusionstensorbildgebung berechneten Parameter ADC, FA, cs, cp und cl . Es zeigte sich, dass es kein Analogon zum bei einer cerebralen Isch{\"a}mie bekannten Mismatch-Konzept gibt. Weder im akuten noch im chronischen war Fall eine ausgewiesene Differenz im diagnostizierten Infarktareal zwischen verschiedenen Sequenzen feststellbar. Alles in allem eignen sich zur detaillierten Charakterisierung der Infarktnarbe am besten eine T2*- oder eine Diffusionstensorsequenz. Die T2*-Sequenz liefert optisch das aufschlussreichere Bild, die aufwendigere Diffusionstensorsequenz dagegen bietet aufgrund der vielfachen Darstellungsm{\"o}glichkeiten im Postprocessing ein Mehr an Information und zeigt dazu eine Ver{\"a}nderung der Narbe im Zeitverlauf. Oxygenierungsmessung am M{\"a}useherz in vivo Die Charakterisierung einer Infarktnarbe kann auch {\"u}ber die Darstellung morphologischer Strukturen hinaus erfolgen. Die Oxygenierung ist ein komplexer Parameter, der funktionelle Auskunft {\"u}ber die Vaskularisierung und Viabilit{\"a}t des Gewebes geben kann. Zugang zu diesem Parameter erh{\"a}lt man {\"u}ber T2*-Messungen, da der Parameter T2* sensitiv auf chemisch gebundenen Sauerstoff reagiert. Hier wurden der Einfluss von reiner Sauerstoffatmung im Gegensatz zu normaler Raumluftatmung auf die Oxygenierung bei gesunden und infarzierten M{\"a}usen untersucht. Die Messungen wurden trotz der Schwierigkeiten, die durch die Bewegung durch Atmung und Herzschlag entstehen, in vivo bei 17,6 Tesla implementiert und durchgef{\"u}hrt. Die Aufl{\"o}sung war ausreichend, um auch nach Infarkt extrem ausged{\"u}nnte Myokardw{\"a}nde gut aufl{\"o}sen und charakterisieren zu k{\"o}nnen. Der Effekt auf das Oxygenierungslevel ist stark unterschiedlich zwischen normalen und infarzierten Herzen, woraus auf eine noch nicht weit fortgeschrittene Revaskularisierung der Narbe eine Woche nach Infarzierung geschlossen werden kann. Die Methode wurde dar{\"u}ber hinaus an einem 7,0 Tesla-Magneten zur Verwendung an Ratten implementiert und auf das im Gegensatz zur Maus ver{\"a}nderte Atmungsverhalten der Ratte angepasst. Zum einen kann dadurch der Einfluss des hohen Magnetfeldes auf die Oxygenierungsmessung untersucht werden, zum anderen ist das Herz als zu untersuchendes Objekt bei der Ratte gr{\"o}ßer. Diffusionswichtung mittels Hole-Burning Die in dieser Arbeit zur Charakterisierung des Herzens verwendete Diffusionsmethode kann im Grenzfall von kurzen T2-Relaxationszeiten an ihre Grenzen stoßen: Bei den verwendeten starken Magnetfeldern klingt das messbare Signal aufgrund der Relaxationszeit T2 oft sehr schnell ab. Daher wurde eine Methode entwickelt, die einen v{\"o}llig neuen Ansatz zur diffusionsgewichteten Bildgebung verfolgt, bei dem die Informationen {\"u}ber die Diffusion unabh{\"a}ngig von der limitierenden T2-Zeit gewonnen werden k{\"o}nnen. Die sog. Hole-Burning-Diffusionssequenz verwendet in einem Vorexperiment lediglich die Longitudinalmagnetisierung zur Diffusionswichtung. Das Signal wird dann mit einer schnellen Auslesesequenz akquiriert. Bei der Pr{\"a}paration werden zun{\"a}chst auf Subvoxel-Niveau Streifen "gebrannt", d.h. die Magnetisierung wird dort ges{\"a}ttigt. Bis zur n{\"a}chsten S{\"a}ttigung ist das Verhalten der Magnetisierung abh{\"a}ngig von der T1-Relaxation in diesem Bereich und vom Diffusionsverhalten. Durch rasches Wiederholen des selektiven Pulszugs wird schließlich eine Gleichgewichtsmagnetisierung erreicht, die von der Diffusionskonstanten D und der T1-Relaxationszeit abh{\"a}ngt. Im Rahmen dieser Arbeit wurden die Abh{\"a}ngigkeiten verschiedener Sequenzparameter untersucht und diese mittels Simulationen optimiert. Außerdem wurde die Sequenz an einem Scanner implementiert und erste Experimente damit durchgef{\"u}hrt. Mit Hilfe von Simulationen konnten dazu Lookup-Tabellen generiert werden, mit denen in bestimmten Bereichen (insbesondere bei nicht zu kurzen T1-Relaxationszeiten) sowohl die Diffusionskonstante D als auch die T1-Relaxationszeit quantifiziert werden konnte.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Schmitt2013, author = {Schmitt, Peter}, title = {MR imaging of tumors: Approaches for functional and fast morphological characterization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135967}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The subject of this work was to develop, implement, optimize and apply methods for quantitative MR imaging of tumors. In the context of functional and physiological characterization, this implied transferring techniques established in tumor model research to human subjects and assessing their feasibility for use in patients. In the context of the morphologic assessment and parameter imaging of tumors, novel concepts and techniques were developed, which facilitated the simultaneous quantification of multiple MR parameters, the generation of "synthetic" MR images with various contrasts, and the fast single-shot acquisition of purely T2-weighted images.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Heinrich2022, author = {Heinrich, Robert}, title = {Multi-species gas detection based on an external-cavity quantum cascade laser spectrometer in the mid-infrared fingerprint region}, doi = {10.25972/OPUS-26864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268640}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Laser spectroscopic gas sensing has been applied for decades for several applications as atmospheric monitoring, industrial combustion gas analysis or fundamental research. The availability of new laser sources in the mid-infrared opens the spectral fingerprint range to the technology where multiple molecules possess their fundamental ro-vibrational absorption features that allow very sensitive detection and accurate discrimination of the species. The increasing maturity of quantum cascade lasers that cover this highly interesting spectral range motivated this research to gain fundamental knowledge about the spectra of hydrocarbon gases in pure composition and in complex mixtures as they occur in the petro-chemical industry. The long-term target of developing accurate and fast hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in this industry. This thesis aims to contribute to a higher accuracy and more comprehensive understanding of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet unavailable high resolution and high accuracy reference spectra of the respective gases, the investigation of their spectral behavior in mixtures due to collisional broadening of their transitions and the verification of the feasibility to quantitatively discriminate the spectra when several overlapping species are simultaneously measured in gas mixtures. To achieve this knowledge a new laboratory environment was planned and built up to allow for the supply of the individual gases and their arbitrary mixing. The main element was the development of a broadly tunable external-cavity quantum cascade laser based spectrometer to record the required spectra. This also included the development of a new measurement method to obtain highly resolved and nearly gap-less spectral coverage as well as a sophisticated signal post-processing that was crucial to achieve the high accuracy of the measurements. The spectroscopic setup was used for a thorough investigation of the spectra of the first seven alkanes as of their mixtures. Measurements were realized that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4 for long-time averaging of the acquired spectra. These spectral measurements accomplish a quality that compares to state-of-the art spectral databases and revealed so far undocumented details of several of the investigated gases that have not been measured with this high resolution before at the chosen measurement conditions. The results demonstrate the first laser spectroscopic discrimination of a seven component gas mixture with absolute accuracies below 0.5 vol.\% in the mid-infrared provided that a sufficiently broad spectral range is covered in the measurements. Remaining challenges for obtaining improved spectral models of the gases and limitations of the measurement accuracy and technology are discussed.}, subject = {Quantenkaskadenlaser}, language = {en} } @phdthesis{Meyer2012, author = {Meyer, Jochen}, title = {Muon performance aspects and measurement of the inclusive ZZ production cross section through the four lepton final state with the ATLAS experiment at the LHC}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78793}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The "Large Hadron Collider" (LHC) is currently the most powerful particle accelerator. It provides particle collisions at a center of mass energy in the Tera-electronvolt range, which had never been reached in a laboratory before. Thereby a new era in high energy particle physics has began. Now it is possible to test one of the most precise theories in physics, the Standard Model of particle physics, at these high energies. The purpose is particularly served by four large experiments installed at the LHC, namely "A Toroidal LHC ApparatuS" (ATLAS), the "Compact-Muon-Solenoid" (CMS), the "Large Hadron Collider beauty" (LHCb) and "A Large Ion Collider Experiment" (ALICE). Besides exploring the high energy behavior of the well-established portions of the Standard Model, one of the main objectives is to find the Higgs boson included in the model, but not discovered by any preceding effort. It is of tremendous importance since fermions and heavy electroweak gauge bosons acquire mass because of this boson. Although the success of the Standard Model in describing nature is already undisputed, there are some flaws due to observations inexplicable within this theory only. Therefore searches for physics beyond the Standard Model are promoted at the LHC experiments as well. In order to achieve the defined goals, crucial aspects are firstly precise measurements, to verify Standard Model predictions in detail, and secondly an evaluation of as much information as accessible by the detectors, to recognize new phenomena as soon as possible for subsequent optimizations. Both challenges are only possible with a superior understanding of the detectors. An inevitable contribution to attain this knowledge is a realistic simulation, partially requiring new implementation techniques to describe the very complex instrumentation. The research presented here is performed under the patronage of the ATLAS collaboration with a special focus on measurements done with muon spectrometer. Thus a first central issue is the performance of the spectrometer in terms of physics objects that are recognized by the device, the compatibility of data and the existing simulation as well as its improvement and finally the extension of the acceptance region. Once the excellent behavior and comprehension of the muon spectrometer is demonstrated, a second part addresses one physics use case of reconstructed muons. The electroweak force is part of the Standard Model and causes the interaction of heavy electroweak gauge bosons with fermions as well as their self-interaction. In proton-proton collisions such gauge bosons are produced. However, they decay immediately into a pair of fermions. In case of the Z boson, which is one of the gauge bosons, oppositely charged fermions of the same generation, including muons, emerge. The various decay modes are determined precisely at particle accelerators other than the LHC. However, the associated production of two Z bosons is measured less exactly at those facilities because of a very low cross section. The corresponding results acquired with the ATLAS experiment exceed all previous measurements in terms of statistics and accuracy. They are reported in this thesis as obtained from the observation of events with four charged leptons. The enhancement of the signal yield based on the extension of the muon spectrometer acceptance is especially emphasized as well as alternative methods to estimate background events. Furthermore, the impact on the probing of couplings of three Z bosons and intersection with the search for the Standard Model Higgs boson are pointed out.}, subject = {ATLAS }, language = {en} } @phdthesis{Richter2003, author = {Richter, Georg}, title = {Nachweis der elektrischen Spin-Injektion in II-VI-Halbleiter mittels Messung des elektrischen Widerstandes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10911}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die bisherigen Ergebnisse der elektrischen Spininjektion in Halbleiter im diffusivem Regime werden mit dem Modell von Schmidt et. al gut beschrieben. Eine Folgerung aus diesem Modell ist, dass n-dotierte, verd{\"u}nnte magnetische Halbleiter ("diluted magnetic semiconductors", DMS) als Injektor-Materialien f{\"u}r die elektrische Spininjektion in Halbleiter gut geeignet sind. Im Jahr 1999 wurde dar{\"u}ber hinaus die elektrische Injektion von einem DMS in einem nicht magnetisch dotierten Halbleiter ("non magnetic semiconductors", NMS) mit optischen Mitteln nachgewiesen. Die elektrischen Eigenschaften des Metall-Halbleiter-Kontaktes vom Materialsystem n-(Be,Zn,Mn)Se - n-(Be,Zn)Se wurden untersucht und optimiert, wobei spezifische Kontakwiderst{\"a}nde von bis zu ca. 2 10^-3 Ohm cm^2 bei 4 K erreicht wurden. Der Kontakt zwischen n-(Be,Zn,Mn)Se und n-(Be,Zn)Se ist unkritisch, weil der auftretende Leitungsband-Offset lediglich 40 meV betr{\"a}gt. Die Spininjektionsmessungen wurden an Bauteilen mit einem adaptiertem Design der Transmission-Line Messungen ("TLM") durchgef{\"u}hrt. Bei diesem Materialsystem wurde am Gesamtbauteil ein positiver Magnetowiderstand von bis zu 25 \% detektiert. Da sowohl der intrinsische Magnetowiderstand der einzelnen Halbleiterschichten negativ bzw. konstant war, als auch kein besonderes Magnetowiderstandsverhalten an der Metall-Halbleiter-Grenzschicht festgestellt werden konnte, kann dieser Magnetowiderstand als erster elektrischer Nachweis einer Spininjektion in einen Halbleiter angesehen werden. Die bei geringeren Temperaturen (300 mK und 2 K) bereits bei kleineren B-Feldern eintretende S{\"a}ttigung des Widerstandes ist dar{\"u}berhinaus mit der Temparaturabh{\"a}ngigkeit der Zeeman-Aufspaltung des DMS in Einklang zu bringen. Eine systematische Untersuchung dieses "Large Magnetoresistance" Effektes von der Dotierung der beteiligten Halbleiter zeigt hingegen ein komplexeres Bild auf. Es scheint ein optimales Dotierregime, sowohl f{\"u}r den DMS als auch f{\"u}r den NMS zu geben. H{\"o}here oder geringere Dotierung reduzieren die relative Gr{\"o}ße des positiven Magnetowiderstandes. Auch bei stark unterschiedlich dotierten DMS- und NMS-Schichten tritt eine (partielle) Unterdr{\"u}ckung des Magnetowiderstandes auf, in {\"U}bereinstimmung mit dem Modell. Dies l{\"a}sst den Schluss zu, dass neben einer, der Spininjektion abtr{\"a}glichen, großen Differenz der Ladungstr{\"a}gerdichten, evtl. auch die Bandstrukturen der beteiligten Halbleiter f{\"u}r die Spininjektionseffekte von Bedeutung ist. Um die elektrische Spininjektion auch in der technologisch wichtigen Familie der III/V Halbleiter etablieren zu k{\"o}nnen, wurde die elektrische Spininjektion von n-(Cd,Mn)Se in n-InAs untersucht. Basierend auf den Prozessschritten "Elektronenstrahlbelichtung" und "nasschemisches {\"A}tzen" wurde eine {\"A}tztechnologie entwickelt und optimiert, bei der die {\"A}tzraten {\"u}ber die zuvor durchgef{\"u}hrte EBL kontrollierbar eingestellt werden k{\"o}nnen. Mesas mit Breiten von bis zu 12 nm konnten damit hergestellt werden. Untersuchungen zur elektrischen Spininjektion von (Cd,Mn)Se in InAs wurden mit Stromtransport senkrecht zur Schichtstruktur durchgef{\"u}hrt. Erste Messungen deuten bei niedrigen Magnetfeldern (B< 1,5 T) auf eine {\"a}hnliche Abh{\"a}ngigkeit des Gesamtwiderstand vom externen Feld hin wie im Materialsystem (Be,Zn,Mn)Se - (Be,Zn)Se. Allerdings tritt bei h{\"o}heren Feldern ein stark negativer Magnetowiderstand des Gesamtbauteils auf, der qualitativ einen {\"a}hnlichen Verlauf zeigt wie die (Cd,Mn)Se-Schicht allein. Da die I/U Kennlininen des Gesamtbauteils Nichtlinearit{\"a}ten aufweisen, k{\"o}nnen Tunneleffekte an einer oder mehrerer Barrieren eine wichtige Rolle spielen. Ob durch diese Tunneleffekte eine elektrische Spinijektion induziert wird, kann noch nicht abschließend gekl{\"a}rt werden. W{\"u}nschenswert ist daher eine weitere Charakterisierung der Einzelschichten. Ein weiteres Ziel ist, in Verbindung mit den oben angef{\"u}hrten technologischen Vorbereitungen, eine durch Nanostrukturierung erm{\"o}glichte, delokale Messung des Magnetowiderstand. Durch dieses Messverfahren k{\"o}nnten etwaige Tunnel-Effekte an der Metall-DMS Schicht zwanglos von denen an der DMS-NMS Grenzschicht getrennt werden.}, subject = {Zwei-Sechs-Halbleiter}, language = {de} } @phdthesis{Mueller2009, author = {M{\"u}ller, Christian Robert}, title = {Nanoelektronische Feldeffekt-Transistoren und Quantenpunktspeicher auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39948}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit Elektronentransport in nanostrukturierten Bauelementen auf Halbleiterbasis, wobei im Speziellen deren Transistor- und Speichereigenschaften untersucht werden. Grundlage f{\"u}r die Bauelemente stellt eine modulationsdotierte GaAs/AlGaAs Heterostruktur dar, die mittels Elektronenstrahllithographie und nasschemischen {\"A}tzverfahren strukturiert wird. Auf Grund der Bandverbiegung bildet sich in der N{\"a}he des Hetero{\"u}bergangs ein zweidimensionales Elektronengas (2DEG) aus, das als leitf{\"a}hige Schicht in den Strukturen dient. Im Rahmen der Arbeit werden die Transporteigenschaften f{\"u}r unterschiedliche Bauelementdesigns untersucht, wobei die laterale Ausdehnung der Bauelemente wenige 10 nm betr{\"a}gt. Die Charakterisierung des Elektronentransports erfolgt sowohl im linearen als auch nichtlinearen Transportregime f{\"u}r tiefe Temperaturen (T = 4.2 K) bis hin zu Raumtemperatur. Das erste experimentelle Kapitel besch{\"a}ftigt sich mit dem Entwurf und der Charakterisierung von statischen Speicherzellen mit integriertem Floating Gate. Bei den hierf{\"u}r hergestellten Bauelementen befindet sich eine Schicht selbstorganisierter Quantenpunkte (QDs) in direkter N{\"a}he zum 2DEG. Der Abstand zwischen 2DEG und QDs ist kleiner als die Abschirml{\"a}nge im Halbleitermaterial, wodurch die QDs als Floating Gate dienen und Informationen elektrisch gespeichert werden k{\"o}nnen. Die Speicherzellen wurden in Form von Quantendraht-Transistoren (QWTs) und Y-Schaltern (YBSs) realisiert und bez{\"u}glich der Speicherf{\"a}higkeit der QDs sowohl bei tiefen Temperaturen als auch bei Raumtemperatur untersucht. Im zweiten experimentellen Kapitel dieser Arbeit wird ein neues, auf dem Feldeffekt beruhendes, Transistordesign vorgestellt. Die hierf{\"u}r hergestellten Heterostrukturen besitzen ein 2DEG, das sich zwischen 33 nm und 80 nm unterhalb der Oberfl{\"a}che der Heterostruktur befindet. Mittels in die Oberfl{\"a}che der Heterostruktur ge{\"a}tzter Gr{\"a}ben wird eine Isolation zwischen den leitf{\"a}higen Regionen der Bauelemente geschaffen. Das einfache Design der sogenannten Three-Terminal Junctions (TTJs), in Verbindung mit dem oberfl{\"a}chennahen 2DEG, erm{\"o}glicht die monolithische Realisierung von integrierten logischen Gattern. Durch eine ausf{\"u}hrliche Betrachtung des Transistorverhaltens der TTJs k{\"o}nnen sowohl Subthreshold Swings kleiner als das thermische Limit klassischer Feldeffekt-Transistoren als auch Hochfrequenzfunktionalit{\"a}t demonstriert werden.}, subject = {Galliumarsenid}, language = {de} } @phdthesis{Muehlbauer2015, author = {M{\"u}hlbauer, Mathias Josef}, title = {Nanolithography on Mercury Telluride}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Topological insulators belong to a new quantum state of matter that is currently one of the most recognized research fields in condensed matter physics. Strained bulk HgTe and HgTe/HgCdTe quantum well structures are currently one of few topological insulator material systems suitable to be studied in transport experiments. In addition HgTe quantum wells provide excellent requirements for the conduction of spintronic experiments. A fundamental requirement for most experiments, however, is to reliably pattern these heterostructures into advanced nano-devices. Nano-lithography on this material system proves to be challenging because of inherent temperature limitations, its high reactivity with various metals and due to its properties as a topological insulator. The current work gives an insight into why many established semiconductor lithography processes cannot be easily transferred to HgTe while providing alternative solutions. The presented developments include novel ohmic contacts, the prevention of metal sidewalls and redeposition fences in combination with low temperature (80 °C) lithography and an adapted hardmask lithography process utilizing a sacrificial layer. In addition we demonstrate high resolution low energy (2.5 kV) electron beam lithography and present an alternative airbridge gating technique. The feasibility of nano-structures on HgTe quantum wells is exemplarily verified in two separate transport experiments. We are first to realize physically etched quantum point contacts in HgTe/HgCdTe high mobility 2DEGs and to prove their controllability via external top-gate electrodes. So far quantum point contacts have not been reported in TI materials. However, these constrictions are part of many proposals to probe the nature of the helical quantum spin Hall edge channels and are suggested as injector and detector devices for spin polarized currents. To confirm their functionality we performed four-terminal measurements of the point contact conductance as a function of external gate voltage. Our measurements clearly exhibit quantized conductance steps in 2e2/h, which is a fundamental characteristic of quantum point contacts. Furthermore we conducted measurements on the formation and control of collimated electron beams, a key feature to realize an all electrical spin-optic device. In a second study several of the newly developed lithography techniques were implemented to produce arrays of nano-wires on inverted and non-inverted HgTe quantum well samples. These devices were used in order to probe and compare the weak antilocalization (WAL) in these structures as a function of magnetic field and temperature. Our measurements reveal that the WAL is almost an order of magnitude larger in inverted samples. This observation is attributed to the Dirac-like dispersion of the energy bands in HgTe quantum wells. The described lithography has already been successfully implemented and adapted in several published studies. All processes have been optimized to guarantee a minimum effect on the heterostructure's properties and the sample surface, which is especially important for probing the topological surface states of strained HgTe bulk layers. Our developments therefore serve as a base for continuous progress to further establish HgTe as a topological insulator and give access to new experiments.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Schoemig2004, author = {Sch{\"o}mig, Herbert Richard}, title = {Nanooptik an breitbandl{\"u}ckigen Halbleiter-Nanostrukturen f{\"u}r die Spintronik und Optoelektronik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126558}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungstr{\"a}gerspins und den Mn-Spins aus. F{\"u}r ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verh{\"a}lt. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde f{\"u}r die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierf{\"u}r ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Pr{\"a}paration einer lichtundurchl{\"a}ssigen Metallmaske auf der Probenoberfl{\"a}che, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzukl{\"a}ren. Sowohl die Temperatur- als auch die Magnetfeldabh{\"a}ngigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird m{\"o}glich durch die Pr{\"a}paration von ferromagnetischen Strukturen auf der Halbleiteroberfl{\"a}che. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, k{\"o}nnen auf mesoskopischer L{\"a}ngenskala eine Verbiegung der Spinb{\"a}nder in einem Quantenfilm bewirken. Dies gilt insbesondere f{\"u}r einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verst{\"a}rkerfunktion der Mn-Spins liegen hier n{\"a}mlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen f{\"u}r Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Gr{\"o}ßenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsaufl{\"o}sung demonstrieren tats{\"a}chlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzust{\"a}nde im Quantenfilm und erlauben zudem einen R{\"u}ckschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungstr{\"a}ger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufkl{\"a}rung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfl{\"a}che erf{\"u}llt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tats{\"a}chlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien g{\"a}nzlich andere Abh{\"a}ngigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies erm{\"o}glichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche f{\"u}r die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandf{\"u}lleffekt und die Bildung von Multiexzitonen.}, subject = {Cadmiumselenid}, language = {de} } @phdthesis{Schoemig2004, author = {Sch{\"o}mig, Herbert Richard}, title = {Nanooptik an breitbandl{\"u}ckigen Halbleiter-Nanostrukturen f{\"u}r die Spintronik und Optoelektronik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15188}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungstr{\"a}gerspins und den Mn-Spins aus. F{\"u}r ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verh{\"a}lt. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde f{\"u}r die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierf{\"u}r ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Pr{\"a}paration einer lichtundurchl{\"a}ssigen Metallmaske auf der Probenoberfl{\"a}che, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzukl{\"a}ren. Sowohl die Temperatur- als auch die Magnetfeldabh{\"a}ngigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird m{\"o}glich durch die Pr{\"a}paration von ferromagnetischen Strukturen auf der Halbleiteroberfl{\"a}che. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, k{\"o}nnen auf mesoskopischer L{\"a}ngenskala eine Verbiegung der Spinb{\"a}nder in einem Quantenfilm bewirken. Dies gilt insbesondere f{\"u}r einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verst{\"a}rkerfunktion der Mn-Spins liegen hier n{\"a}mlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen f{\"u}r Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Gr{\"o}ßenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsaufl{\"o}sung demonstrieren tats{\"a}chlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzust{\"a}nde im Quantenfilm und erlauben zudem einen R{\"u}ckschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungstr{\"a}ger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufkl{\"a}rung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfl{\"a}che erf{\"u}llt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tats{\"a}chlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien g{\"a}nzlich andere Abh{\"a}ngigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies erm{\"o}glichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche f{\"u}r die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandf{\"u}lleffekt und die Bildung von Multiexzitonen.}, subject = {Cadmiumselenid}, language = {de} } @phdthesis{Bach2004, author = {Bach, Lars}, title = {Neuartige nanostrukturierte Halbleiterlaser und Mikroringresonatoren auf InP-Basis f{\"u}r Wellenl{\"a}ngenmultiplexsysteme in der optischen Nachrichten{\"u}bertragung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9474}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Zusammenfassung Diese Arbeit besch{\"a}ftigt sich mit der Herstellung und Untersuchung von neuartigen nanostrukturierten Halbleiterbauelementen. Es wird gezeigt, dass durch den Einsatz von optischer und hochaufl{\"o}sender Elektronenstrahl- und Ionenstrahllithographie verschiedene optoelektronische Bauelemente (Laser und Filter) definiert werden k{\"o}nnen. Die Kombination dieser Definitionsprozesse mit speziellen nass- und trockenchemischen {\"A}tzverfahren erlaubt die Herstellung von Bauelementen mit sehr hoher Genauigkeit, Reproduzierbarkeit und monolithischer Integrationsf{\"a}higkeit mit verschiedensten Geometrien und Bereichen innerhalb der Bauelemente. Die Grundlagen zum Verst{\"a}ndnis der Funktionsweise und der Hochfrequenzeigenschaften der einzelnen Resonatorarten, Gitterstrukturen und der Laser mit diesen Gitterstrukturen sind in Kapitel 2 zusammen gefasst. Nach einer kurzen Abhandlung des Laserprinzips und des Aufbaus einer Laserdiode, werden die statischen und dynamischen Kenngr{\"o}ßen und Prozesse in den Lasern ausf{\"u}hrlich vorgestellt. Besonderes Augenmerk gilt dabei den dynamischen Grundlagen und der Erl{\"a}uterung eines zus{\"a}tzlichen Wechselwirkungsprinzips, genannt „Detuned Loading", im Laser und die sich daraus ergebenden neuen Eigenschaften. Die Auswirkungen der Resonatorgeometrien und Gitterstrukturen auf die spektralen Eigenschaften der Laser sind Bestandteil des zweiten Teiles von Kapitel 2. In Kapitel 3 werden die technologischen Prozesse zur Herstellung der verschiedensten pr{\"a}sentierten Bauelemente im Detail vorgestellt. Die Vorstellung der Charakterisierungsmethoden und der verwendeten Messpl{\"a}tze schließen dieses Kapitel ab. Kapitel 4 besch{\"a}ftigt sich ausschließlich mit den elektrischen und spektralen Eigenschaften der einzel- und gekoppelten Quadrat-Resonator-Lasern. Kapitel 5 besch{\"a}ftigt sich mit monomodige DFB- oder DBR-Lasern f{\"u}r Wellenl{\"a}ngenmultiplexsysteme im Wellenl{\"a}ngenbereich um 1.55 µm, als Einzelkomponenten oder in Arrays, die eine exakt einstellbarere Wellenl{\"a}nge und hoher Modenstabilit{\"a}t aufweisen. Durch die Verwendung des DBR-Prinzips kann eine signifikante Verbesserung der statischen und dynamischen Eigenschaften gegen{\"u}ber dem DFB-Prinzip erreicht werden. Die Verbesserungen der statischen Eigenschaften beruhen haupts{\"a}chlich auf der r{\"a}umlichen Trennung von Verst{\"a}rkungs- und Gitterbereich im Fall des DBR-Lasers und der damit verbundenen Erh{\"o}hung der Reflexion des R{\"u}ckfacettenbereiches. Die Trennung bewirkt eine Reduktion der Absorption im Verst{\"a}rkungsbereich, keine gitterimplantationsbedingten Erh{\"o}hung der internen Absorption wie im DFB-Fall, und damit eine Erh{\"o}hung der Effizienz was sich wiederum in einer geringern W{\"a}rmeproduktion {\"a}ußert. Aufgrund der aufgef{\"u}hrten Ursachen ist es m{\"o}glich durch Gr{\"o}ßenoptimierung der jeweiligen Bereiche Schwellenstr{\"o}me von 8 mA, Effizienzen von 0.375 W/A, Ausgangsleistungen bis zu 70 mW, Betriebsbereiche bis zum 12fachen des Schwellenstromes, Verschiebungen der Wellenl{\"a}nge mit dem Betriebsstrom von 0.01 nm/mA, eine thermische Belastbarkeiten bis zu 120°C und Seitenmodenunterdr{\"u}ckungen bis zu 67 dB durch das DBR-Laserprinzip zu realisieren. In Kapitel 6 wird ein neues Konzept eines hochfrequenzoptimierten Lasers vorgestellt. Das Prinzip des „Detuned Loading" ist sehr sensitiv auf die Phasenlage der umlaufenden Welle im Laser und auf die Lage der Hauptmode auf der Reflexionsfunktion des Gitters. Da eine Phasen{\"a}nderung von 2\&\#61552;\&\#61472;einer L{\"a}ngen{\"a}nderung von einigen 100 nm entspricht und dies außerhalb der Herstellungstoleranz liegt, ist eine gezielte Kontrolle dieses Prinzips im DBR-Laser nicht m{\"o}glich. Dies f{\"u}hrte zu einer Weiterentwicklung des DBR-Lasers in einem Laser der einer Phasenkontrolle erm{\"o}glicht, genannt CCIG-Laser. Dieser Laser besteht aus einer Lasersektion, einer zentralen Gittersektion und einer angeschlossenen Phasensektion. Durch Strominjektion in die Phasensektion ist es m{\"o}glich {\"u}ber eine {\"A}nderung des Brechungsindexes eine gezielte Einstellung der Phasenlage zu gew{\"a}hrleisten. Die Phasensektion hat keine Auswirkungen auf die statischen elektrischen und spektralen Eigenschaften der Laser. Diese sind sehr gut mit denen der DBR-Laser vergleichbar. Damit war es m{\"o}glich durch einen CCIG-Laser mit Sektionsgr{\"o}ßen von 500 µm f{\"u}r jede Sektion eine Steigerung der Bandbreite auf einen Rekordwert von 37 GHz, dass entspricht einem Steigerungsfaktor von 4.5 gegen{\"u}ber Fabry-Perot-Lasern gleicher L{\"a}nge, zu steigern.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Gutjahr2019, author = {Gutjahr, Fabian Tobias}, title = {Neue Methoden der physiologischen Magnet-Resonanz-Tomographie: Modellbasierte T1-Messungen und Darstellung von chemischem Austausch mit positivem Kontrast}, doi = {10.25972/OPUS-16106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161061}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ziel dieser Arbeit war es, neue quantitative Messmethoden am Kleintier, insbesondere die Perfusionsmessung am M{\"a}useherz, zu etablieren. Hierf{\"u}r wurde eine retrospektiv getriggerte T1-Messmethode entwickelt. Da bei retrospektiven Methoden keine vollst{\"a}ndige Abtastung garantiert werden kann, wurde ein Verfahren gefunden, das mit Hilfe von Vorwissen {\"u}ber das gemessene Modell sehr effizient die fehlenden Daten interpolieren kann. Mit Hilfe dieser Technik werden dynamische T1-Messungen mit hoher r{\"a}umlicher und zeitlicher Aufl{\"o}sung m{\"o}glich. Dank der hohen Genauigkeit der T1-Messmethode l{\"a}sst sich diese f{\"u}r die nichtinvasive Perfusionsmessung am M{\"a}useherz mittels der FAIR-ASL-Technik nutzen. Da auf Grund der retrospektiven Triggerung Daten an allen Positionen im Herzzyklus akquiriert werden, konnten T1- und Perfusionskarten nach der Messung zu beliebigen Punkten im Herzzyklus rekonstruiert werden. Es bietet sich an, Techniken, die f{\"u}r die myokardiale Perfusion angewandt werden, auch f{\"u}r die Nierenperfusionsmessung zu verwenden, da die Niere in ihrer Rinde (Cortex) eine {\"a}hnlich hohe Perfusion aufweist wie das Myokard. Gleichzeitig f{\"u}hren Nierenerkrankungen oftmals zu schlechter Kontrastmittelvertr{\"a}glichkeit, da diese bei Niereninsuffizienz u.U. zu lange im K{\"o}rper verweilen und die Niere weiter sch{\"a}digen. Auch deshalb sind die kontrastmittelfreien Spin-Labeling-Methoden hier interessant. Die FAIR-ASL-Technik ist jedoch an M{\"a}usen in koronaler Ansicht f{\"u}r die Niere schlecht geeignet auf Grund des geringen Unterschieds zwischen dem markierten und dem Vergleichsexperiment. Als L{\"o}sung f{\"u}r dieses Problem wurde vorgeschlagen, die Markierungsschicht senkrecht zur Messschicht zu orientieren. Hiermit konnte die Sensitivit{\"a}t gesteigert und gleichzeitig die Variabilit{\"a}t der Methode deutlich verringert werden. Mit Hilfe von kontrastmittelgest{\"u}tzten Messungen konnten auch das regionale Blutvolumen und das Extrazellularvolumen bestimmt werden. In den letzten Jahren hat das Interesse an Extrazellularvolumenmessungen zugenommen, da das Extrazellularvolumen stellvertretend f{\"u}r diffuse Fibrose gemessen werden kann, die bis dahin nichtinvasiven Methoden nicht zug{\"a}nglich war. Die bisher in der Literatur verwendeten Quantifizierungsmethoden missachten den Einfluss, den das H{\"a}matokrit auf den ECV-Wert hat. Es wurde eine neue Korrektur vorgeschlagen, die allerdings zus{\"a}tzlich zur ECV-Messung auch eine RBV-Messung ben{\"o}tigt. Durch gleichzeitige Messung beider Volumenanteile konnte auch erstmals das Extrazellulare-Extravaskul{\"a}re-Volumen bestimmt werden. Eine g{\"a}nzlich andere kontrastmittelbasierte Methode in der MRT ist die Messung des chemischen Austauschs. Hierbei wirkt das Kontrastmittel nicht direkt beschleunigend auf die Relaxation, sondern der Effekt des Kontrastmittels wird gezielt durch HF-Pulse an- und ausgeschaltet. Durch den chemischen Austausch kann die Auswirkung der HF-Pulse akkumuliert werden. Bislang wurde bei solchen Messungen ein negativer Kontrast erzeugt, der ohne zus{\"a}tzliche Vergleichsmessungen schwer detektierbar war. Im letzten Teil dieser Arbeit konnte eine neue Methode zur Messung des chemischen Austauschs gezeigt werden, die entgegen der aus der Literatur bekannten Methoden nicht S{\"a}ttigung, sondern Anregung {\"u}bertr{\"a}gt. Diese {\"A}nderung erlaubt es, einen echten positiven chemischen Austausch-Kontrast zu erzeugen, der nicht zwingend ein Vergleichsbild ben{\"o}tigt. Gleichzeitig erm{\"o}glicht die Technik, dadurch dass Anregung {\"u}bertragen wird, die Phase der Anregung zu kontrollieren und nutzen. Eine m{\"o}gliche Anwendung ist die Unterscheidung verschiedener Substanzen in einer Messung. In der Summe wurden im Rahmen dieser Arbeit verschiedene robuste Methoden eta- bliert, die die M{\"o}glichkeiten der quantitativen physiologischen MRT erweitern.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Gram2023, author = {Gram, Maximilian}, title = {Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich}, doi = {10.25972/OPUS-32255}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zus{\"a}tzlich die M{\"o}glichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und k{\"o}nnen grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einf{\"u}hrung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz f{\"u}r die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem pr{\"a}klinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking {\"u}bertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Winter2018, author = {Winter, Patrick}, title = {Neue Methoden zur Quantitativen Kardiovaskul{\"a}ren MR-Bildgebung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174023}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Herzkreislauferkrankungen stellen die h{\"a}ufigsten Todesursachen in den Industrienationen dar. Die Entwicklung nichtinvasiver Bildgebungstechniken mit Hilfe der Magnetresonanz-Tomografie (MRT) ist daher von großer Bedeutung, um diese Erkrankungen fr{\"u}hzeitig zu erkennen und um die Entstehungsmechanismen zu erforschen. In den letzten Jahren erwiesen sich dabei genetisch modifzierte Mausmodelle als sehr wertvoll, da sich durch diese neue Bildgebungsmethoden entwickeln lassen und sich der Krankheitsverlauf im Zeitraffer beobachten l{\"a}sst. Ein große Herausforderung der murinen MRT-Bildgebung sind die die hohen Herzraten und die schnelle Atmung. Diese erfordern eine Synchronisation der Messung mit dem Herzschlag und der Atmung des Tieres mit Hilfe von Herz- und Atemsignalen. Konventionelle Bildgebungstechniken verwenden zur Synchronisation mit dem Herzschlag EKG Sonden, diese sind jedoch insbesondere bei hohen Feldst{\"a}rken (>3 T) sehr st{\"o}ranf{\"a}llig. In dieser Arbeit wurden daher neue Bildgebungsmethoden entwickelt, die keine externen Herz- und Atemsonden ben{\"o}tigen, sondern das MRT-Signal selbst zur Bewegungssynychronisation verwenden. Mit Hilfe dieser Technik gelang die Entwicklung neuer Methoden zur Flussbildgebung und der 3D-Bildgebung, mit denen sich das arterielle System der Maus qualitativ und quantitativ erfassen l{\"a}sst, sowie einer neuen Methode zur Quantisierung der longitudinalen Relaxationszeit T1 im murinen Herzen. Die in dieser Arbeit entwickelten Methoden erm{\"o}glichen robustere Messungen des Herzkreislaufsystems. Im letzten Kapitel konnte dar{\"u}ber hinaus gezeigt werden dass sich die entwickelten Bildgebungstechniken in der Maus auch auf die humane Bildgebung {\"u}bertragen lassen.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Benkert2015, author = {Benkert, Thomas}, title = {Neue Steady-State-Techniken in der Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115381}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die bSSFP-Sequenz kombiniert kurze Akquisitionszeiten mit einem hohen Signal-zu-Rausch-Verh{\"a}ltnis, was sie zu einer vielversprechenden Bildgebungsmethode macht. Im klinischen Alltag ist diese Technik jedoch bisher - abgesehen von vereinzelten Anwendungen - kaum etabliert. Die Hauptgr{\"u}nde hierf{\"u}r sind Signalausl{\"o}schungen in Form von Bandingartefakten sowie der erzielte T2/T1-gewichtete Mischkontrast. Das Ziel dieser Dissertation war die Entwicklung von Methoden zur L{\"o}sung der beiden genannten Limitationen, um so eine umfassendere Verwendung von bSSFP f{\"u}r die MR-Diagnostik zu erm{\"o}glichen. Magnetfeldinhomogenit{\"a}ten, die im Wesentlichen durch Suszeptibilit{\"a}tsunterschiede oder Imperfektionen seitens der Scannerhardware hervorgerufen werden, {\"a}ußern sich bei der bSSFP-Bildgebung in Form von Bandingartefakten. Mit DYPR-SSFP (DYnamically Phase-cycled Radial bSSFP) wurde ein Verfahren vorgestellt, um diese Signalausl{\"o}schungen effizient zu entfernen. W{\"a}hrend f{\"u}r bereits existierende Methoden mehrere separate bSSFP-Bilder akquiriert und anschließend kombiniert werden m{\"u}ssen, ist f{\"u}r die Bandingentfernung mittels DYPR-SSFP lediglich die Aufnahme eines einzelnen Bildes notwendig. Dies wird durch die neuartige Kombination eines dynamischen Phasenzyklus mit einer radialen Trajektorie mit quasizuf{\"a}lligem Abtastschema erm{\"o}glicht. Die notwendigen Bestandteile k{\"o}nnen mit geringem Aufwand implementiert werden. Des Weiteren ist kein spezielles Rekonstruktionsschema notwendig, was die breite Anwendbarkeit des entwickelten Ansatzes erm{\"o}glicht. Konventionelle Methoden zur Entfernung von Bandingartefakten werden sowohl bez{\"u}glich ihrer Robustheit als auch bez{\"u}glich der notwendigen Messzeit {\"u}bertroffen. Um die Anwendbarkeit von DYPR-SSFP auch jenseits der gew{\"o}hnlichen Bildgebung zu demonstrieren, wurde die Methode mit der Fett-Wasser-Separation kombiniert. Basierend auf der Dixon-Technik konnten so hochaufgel{\"o}ste Fett- sowie Wasserbilder erzeugt werden. Aufgrund der Bewegungsinsensitiv{\"a}t der zugrunde liegenden radialen Trajektorie konnten die Messungen unter freier Atmung durchgef{\"u}hrt werden, ohne dass nennenswerte Beeintr{\"a}chtigungen der Bildqualit{\"a}t auftraten. Die erzielten Ergebnisse am Abdomen zeigten weder Fehlzuordnungen von Fett- und Wasserpixeln noch verbleibende Bandingartefakte. Ein Nachteil der gew{\"o}hnlichen Dixon-basierten Fett-Wasser-Separation ist es, dass mehrere separate Bilder zu verschiedenen Echozeiten ben{\"o}tigt werden. Dies f{\"u}hrt zu einer entsprechenden Verl{\"a}ngerung der zugeh{\"o}rigen Messzeit. Abhilfe schafft hier die Verwendung einer Multiecho-Sequenz. Wie gezeigt werden konnte, erm{\"o}glicht eine derartige Kombination die robuste, bandingfreie Fett-Wasser-Separation in klinisch akzeptablen Messzeiten. DYPR-SSFP erlaubt die Entfernung von Bandingartefakten selbst bei starken Magnetfeldinhomogenit{\"a}ten. Dennoch ist es m{\"o}glich, dass Signalausl{\"o}schungen aufgrund des Effekts der Intravoxeldephasierung verbleiben. Dieses Problem tritt prim{\"a}r bei der Bildgebung von Implantaten oder am Ultrahochfeld auf. Als Abhilfe hierf{\"u}r wurde die Kombination von DYPR-SSFP mit der sogenannten z-Shim-Technik untersucht, was die Entfernung dieser Artefakte auf Kosten einer erh{\"o}hten Messzeit erm{\"o}glichte. Die mit DYPR-SSFP akquirierten radialen Projektionen weisen aufgrund des angewendeten dynamischen Phasenzyklus leicht verschiedene Signallevel und Phasen auf. Diese Tatsache zeigt sich durch inkoh{\"a}rente Bildartefakte, die sich jedoch durch eine Erh{\"o}hung der Projektionsanzahl effektiv reduzieren lassen. Folglich bietet es sich in diesem Kontext an, Anwendungen zu w{\"a}hlen, bei denen bereits intrinsisch eine verh{\"a}ltnism{\"a}ßig hohe Anzahl von Projektionen ben{\"o}tigt wird. Hierbei hat sich gezeigt, dass neben der hochaufgel{\"o}sten Bildgebung die Wahl einer 3D radialen Trajektorie eine aussichtsreiche Kombination darstellt. Die in der vorliegenden Arbeit vorgestellte 3D DYPR-SSFP-Technik erlaubte so die isotrope bandingfreie bSSFP-Bildgebung, wobei die Messzeit im Vergleich zu einer gew{\"o}hnlichen bSSFP-Akquisition konstant gehalten werden konnte. Verbleibende, durch den dynamischen Phasenzyklus hervorgerufene Artefakte konnten effektiv mit einem Rauschunterdr{\"u}ckungsalgorithmus reduziert werden. Anhand Probandenmessungen wurde gezeigt, dass 3D DYPR-SSFP einen aussichtsreichen Kandidaten f{\"u}r die Bildgebung von Hirnnerven sowie des Bewegungsapparats darstellt. W{\"a}hrend die DYPR-SSFP-Methode sowie die darauf beruhenden Weiterentwicklungen effiziente L{\"o}sungen f{\"u}r das Problem der Bandingartefakte bei der bSSFP-Bildgebung darstellen, adressiert die vorgestellte RA-TOSSI-Technik (RAdial T-One sensitive and insensitive Steady-State Imaging) das Problem des bSSFP-Mischkontrasts. Die M{\"o}glichkeit der Generierung von T2-Kontrasten basierend auf der bSSFP-Sequenz konnte bereits in vorausgehenden Arbeiten gezeigt werden. Hierbei wurde die Tatsache ausgenutzt, dass der T1-Anteil des Signalverlaufs nach Beginn einer bSSFP-Akquisition durch das Einf{\"u}gen von Inversionspulsen in ungleichm{\"a}ßigen Abst{\"a}nden aufgehoben werden kann. Ein so akquiriertes Bild weist folglich einen reinen, klinisch relevanten T2-Kontrast auf. Die im Rahmen dieser Arbeit vorgestellte Methode basiert auf dem gleichen Prinzip, jedoch wurde anstelle einer gew{\"o}hnlichen kartesischen Trajektorie eine radiale Trajektorie in Kombination mit einer KWIC-Filter-Rekonstruktion verwendet. Somit k{\"o}nnen bei gleichbleibender oder sogar verbesserter Bildqualit{\"a}t aus einem einzelnen, mit RA-TOSSI akquirierten Datensatz verschiedene T2-Wichtungen als auch gew{\"o}hnliche T2/T1-Wichtungen generiert werden. Mittels Variation der Anzahl der eingef{\"u}gten Inversionspulse konnte ferner gezeigt werden, dass es neben den besagten Wichtungen m{\"o}glich ist, zus{\"a}tzliche Kontraste zu generieren, bei denen verschiedene Substanzen im Bild ausgel{\"o}scht sind. Diese Substanzen k{\"o}nnen am Beispiel der Gehirnbildgebung Fett, graue Masse, weiße Masse oder CSF umfassen und zeichnen sich neben den reinen T2-Kontrasten durch eine {\"a}hnlich hohe klinische Relevanz aus. Die m{\"o}gliche Bedeutung der vorgestellten Methode f{\"u}r die klinische Verwendung wurde durch Messungen an einer Gehirntumorpatientin demonstriert. Zusammenfassend l{\"a}sst sich sagen, dass die im Rahmen dieser Dissertation entwickelten Techniken einen wertvollen Beitrag zur L{\"o}sung der eingangs beschriebenen Probleme der bSSFP-Bildgebung darstellen. Mit DYPR-SSFP akquirierte Bilder sind bereits mit bestehender, kommerzieller Rekonstruktionssoftware direkt am Scanner rekonstruierbar. Die Software f{\"u}r die Rekonstruktion von RA-TOSSI-Datens{\"a}tzen wurde f{\"u}r Siemens Scanner implementiert. Folglich sind beide Methoden f{\"u}r klinische Studien einsetzbar, was gleichzeitig den Ausblick dieser Arbeit darstellt.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Baerwald2013, author = {Baerwald, Philipp}, title = {Neutrinos from gamma-ray bursts, and the multi-messenger connection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85333}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In this work, we take a look at the connection of gamma-ray bursts (GRBs) and ultra-high-energy cosmic rays (UHECR) as well as the possibilities how to verify this connection. The currently most promising approach is based on the detection of high-energy neutrinos, which are associated with the acceleration of cosmic rays. We detail how the prompt gamma-ray emission is connected to the prediction of a neutrino signal. We focus on the interactions of photons and protons in this regard. At the example of the current ANTARES GRB neutrino analysis, we show the differences between numerical predictions and older analytical methods. Moreover, we discuss the possibilities how cosmic ray particles can escape from GRBs, assuming that UHECR are entirely made up of protons. For this, we compare the commonly assumed neutron escape model with a new component of direct proton escape. Additionally, we will show that the different components, which contribute to the cosmic ray flux, strongly depend on the burst parameters, and test the applicability on some chosen GRBs. In a further step, we continue with the considerations regarding the connection of GRBs and UHECR by connecting the GRB source model with the cosmic ray observations using a simple cosmic ray propagation code. We test if it is possible to achieve the observed cosmic ray energy densities with our simple model and what the consequences are regarding the prompt GRB neutrino flux predictions as well as the cosmogenic neutrinos. Furthermore, we consider the question of neutrino lifetime and how it affects the prompt GRB neutrino flux predictions. In a final chapter, we show that it is possible to apply the basic source model with photohadronic interactions to other types of sources, using the example of the microquasar Cygnus X-3.}, subject = {Neutrino}, language = {en} } @phdthesis{Purea2008, author = {Purea, Edmund Armin}, title = {New Methods and Applications in Nuclear Magnetic Resonance Microscopy using small RF Coils}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31066}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Nuclear magnetic resonance (NMR) imaging is a well-established imaging technique. If the achieved spatial resolution is below 100 um, it is usually denoted as magnetic resonance microscopy (MRM). The spatial resolution limit is on the order of a few um. As a downside, high resolution imaging is usually time-consuming and technological requirements are very sumptuous. Furthermore, miniaturization of the radiofrequency (RF) coil leading to a so-called microcoil is necessary; it also brings along detrimental effects. Therefore, there is a high potential for optimizing present MRM methods. Hence it is the aim of this work to improve and further develop present methods in MRM with focus on the RF coil and to apply those methods on new biological applications. All experiments were conducted on a Bruker 17.6 T system with a maximum gradient strength of 1 T/m and four RF receiver channels. Minimizing the RF coil dimensions, leads to increased artefacts due to differences in magnetic susceptibility of the coil wire and surrounding air. Susceptibility matching by immersing the coil in FC-43 is the most common approach that fulfills the requirements of most applications. However, hardly any alternatives are known for cases where usage of FC-43 is not feasible due to its specific disadvantages. Two alternative substances (bromotricholoromethane and Fomblin Y25) were presented and their usability was checked by susceptibility determination and demonstration experiments after shimming under practical conditions. In a typical MRM microcoil experiment, the sample volume is significantly smaller than the maximum volume usable for imaging. This mismatch has been optimized in order to increase the experiment efficiency by increasing the number of probe coils and samples used. A four-channel probehead consisting of four individual solenoid coils suited for cellular imaging of Xenopus laevis oocytes was designed, allowing simultaneous acquisition from four samples. All coils were well isolated and allowed quantitative image acquisition with the same spatial resolution as in single coil operation. This method has also been applied in other studies for increased efficiency: using X. laevis oocytes as a single cell model, the effect of chemical fixation on intracellular NMR relaxation times T1 and T2 and on diffusion was studied for the first time. Significant reduction of relaxation times was found in all cell compartments; after reimmersion in buffer, values return close to the initial values, but there were small but statistically significant differences due to residual formaldehyde. Embryos of the same species have been studied morphologically in different developmental stages. Wild type embryos were compared to embryos that had experienced variations in protein levels of chromosomal proteins HMGN and H1A. Significant differences were found between wild type and HMGN-modified embryos, while no difference was observed between wild type and H1-modified embryos. These results were concordant with results obtained from light microscopy and histology. The technique of molecular imaging was also performed on X. laevis embryos. Commercially available antibodies coupled to ultrasmall superparamagnetic iron oxide (USPIO) dextrane coated particles (MACS) served as a specific probe detectable by MRM, the aim being the detection of tissue specific contrast variations. Initially, the relaxivity of MACS was studied and compared to Resovist and VSOP particles. The iron concentration was determined quantitatively by using a general theoretical approach and results were compared to values obtained from mass spectroscopy. After incubation with MACS antibodies, intraembryonal relaxation times were determined in different regions of the embryo. These values allowed determination of local iron oxide particle concentrations, and specific binding could be distinguished from unspecific binding. Although applications in this work were focused on X. laevis oocytes and embryos, 3D-imaging on a beewolf head was also carried out in order to visualize the postpharyngeal gland. Additionally, an isolated beewolf antenna was imaged with a spatial resolution of (8 um)^3 for depiction of the antennal glands by using a microcoil that was specially designed for this sample. The experiments carried out in this work show that commercially available MRM systems can be significantly optimized by using small sample-adapted RF coils and by parallel operation of multiple coils, by which the sample throughput and thus time-efficiency is increased. With this optimized setup, practical use was demonstrated in a number of new biological applications.}, subject = {Magnetische Resonanz}, language = {en} } @phdthesis{Raghuraman2020, author = {Raghuraman, Sairamesh}, title = {New RF coil arrays for Static and Dynamic Musculoskeletal Magnetic Resonance Imaging}, doi = {10.25972/OPUS-20416}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204165}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Magnetic Resonance Imaging at field strengths up to 3 T, has become a default diagnostic modality for a variety of disorders and injuries, due to multiple reasons ranging from its non-invasive nature to the possibility of obtaining high resolution images of internal organs and soft tissues. Despite tremendous advances, MR imaging of certain anatomical regions and applications present specific challenges to be overcome. One such application is MR Musculo-Skeletal Imaging. This work addresses a few difficult areas within MSK imaging from the hardware perspective, with coil solutions for dynamic imaging of knee and high field imaging of hand. Starting with a brief introduction to MR physics, different types of RF coils are introduced in chapter 1, followed by sections on design of birdcage coils, phased arrays and their characterization in chapter 2. Measurements, calculations and simulations, done during the course of this work, have been added to this chapter to give a quantitative feel of the concepts explained. Chapter 3 deals with the construction of a phased array receiver for dynamic imaging of knee of a large animal model, i.e. minipig, at 1.5 T. Starting with details on the various aspects of an application that need to be considered when an MR RF array is designed, the chapter details the complex geometry of the region of interest in a minipig and reasons that necessitate a high density array. The sizes of the individual elements that constitute the array have been arrived at by studying the ratio of unloaded to loaded Q factors and choosing a size that provides the best ratio but still maintains a uniform SNR throughout the movement of the knee. To have a minimum weight and to allow mechanical movement of the knee, the Preamplifiers were located in a separate box. A movement device was constructed to achieve adjustable periodic movement of the knee of the anesthetized animal. The constructed array has been characterized for its SNR and compared with an existing product coil to show the improvement. The movement device was also characterized for its reproducibility. High resolution static images with anatomical details marked have been presented. The 1/g maps show the accelerations possible with the array. Snapshots of obtained dynamic images trace the cruciate ligaments through a cycle of movement of the animal's knee. The hardware combination of a high density phased array and a movement device designed for a minipig's knee was used as a 'reference' and extended in chapter 4 for a human knee. In principle the challenges are similar for dynamic imaging of a human knee with regards to optimization of the elements, the associated electronics and the construction of the movement device. The size of the elements were optimized considering the field penetration / sensitivity required for the internal tissues. They were distributed around the curvature of the knee keeping in mind the acceleration required for dynamic imaging and the direction of the movement. The constructed movement device allows a periodic motion of the lower half of the leg, with the knee placed within the coil, enabling visualization of the tissues inside, while the leg is in motion. Imaging has been performed using dynamic interleaved acquisition sequence where higher effective TR and flip angles are achieved due to a combination of interleaving and segmentation of the sequence. The movement device has been characterized for its reproducibility while the SNR distribution of the constructed RF array has been compared with that of a commercially available standard 8 channel array. The results show the improvement in SNR and acceleration with the constructed geometry. High resolution static images, dynamic snapshots and the 3D segmentation of the obtained images prove the usefulness of the complete package provided in the design, for performing dynamic imaging at a clinically relevant field strength. A simple study is performed in chapter 5 to understand the effects of changes in overlap for coil configurations with different loads and at different frequencies. The noise levels of individual channels and the correlation between them are plotted against subtle changes in overlap, at 64 and 123 MHz. SNR for every overlap setup is also measured and plotted. Results show that achieving critical overlap is crucial to obtain the best possible SNR in those coil setups where the load offered by the sample is low. Chapter 6 of the thesis work deals with coil design for high field imaging of hand and wrists at 7 T, with an aim to achieve ultra high resolution imaging. At this field strength due to the increase in dielectric effects and the resulting decrease in homogeneity, whole body transmit coils are impractical and this has led engineers to design local transmit coils, for specific anatomies. While transmit or transceive arrays are usually preferred, to mitigate SAR effects, the spatial resolution obtained is limited. It is shown that a solution to this, with regards to hand imaging, can be a single volume transmit coil, along with high density receive arrays optimized for different regions of the hand. The use of a phased array for reception provides an increased SNR / penetration under high resolution. A volume transmit coil could pose issues in homogeneity at 7 T, but the specific anatomy of hand and wrist, with comparatively less water content, limits dielectric effects to have homogeneous B_1+ profile over the hand. To this effect, a bandpass birdcage and a 12 channel receive array are designed and characterized. Images of very high spatial resolution (0.16 x 0.16 x 0.16 mm3) with internal tissues marked are presented. In vivo 1/g maps show that an acceleration of up to 3 is possible and the EM simulation results presented show the uniform field along with SAR hotspots in the hand. To reduce the stress created due to the 'superman' position of imaging, provisions in the form of a holder and a hand rest have been designed and presented. Factors that contributed to the stability of the presented design are also listed, which would help future designs of receive arrays at high field strengths. In conclusion, the coils and related hardware presented in this thesis address the following two aspects of MSK imaging: Dynamic imaging of knee and High resolution imaging of hand / wrist. The presented hardware addresses specific challenges and provides solutions. It is hoped that these designs are steps in the direction of improving the existing coils to get a better knowledge and understanding of MSK diseases such as Rheumatoid Arthritis and Osteoarthritis. The hardware can aid our study of ligament reconstruction and development. The high density array and transmit coil design for hand / wrist also demonstrates the benefits of the obtained SNR at 7 T while maintaining SAR within limits. This design is a contribution towards optimizing hardware at high field strength, to make it clinically acceptable and approved by regulatory bodies.}, subject = {MRI}, language = {en} } @phdthesis{Schlereth2020, author = {Schlereth, Raimund}, title = {New techniques and improvements in the MBE growth of Hg-containing narrow gap semiconductors}, doi = {10.25972/OPUS-20079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200790}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The subject of this thesis is the growth of Hg\(_{1-x}\)Cd\(_2\)Te layers via molecular beam epitaxy (MBE). This material system gives rise to a number of extraordinary physical phenomena related to its electronic band structure and therefore is of fundamental interest in research. The main results can be divided into three main areas, the implementation of a temperature measurement system based on band edge thermometry (BET), improvements of CdTe virtual substrate growth and the investigation of Hg\(_{1-x}\)Cd\(_2\)Te for different compositions.}, subject = {Halbleiter}, language = {en} } @phdthesis{Langhojer2009, author = {Langhojer, Florian}, title = {New techniques in liquid-phase ultrafast spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39337}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Contents List of Publications 1 Introduction 2 Basic concepts and instrumentation 2.1 Mathematical description of femtosecond laser pulses 2.2 Optical quantities and measurements 2.2.1 Intensity 2.2.2 Absorbance and Beer-Lambert law 2.3 Laser system 2.4 General software framework for scientific data acquisition and simulation 2.4.1 Core components 2.4.2 Program for executing a single measurement sequence 2.4.3 Scan program 2.4.4 Evolutionary algorithm optimization program 2.4.5 Applications of the software framework 2.5 Summary 3 Generation of ultrabroadband femtosecond pulses in the visible 3.1 Nonlinear optics 3.1.1 Nonlinear polarization and frequency conversion 3.1.2 Phase matching 3.2 Optical parametric amplification 3.3 Noncollinear optical parametric amplifier 3.4 Considerations and experimental design of NOPA 3.4.1 Options for broadening the NOPA bandwidth 3.4.2 Experimental setup 3.5 NOPA pulse characterization 3.5.1 Second harmonic generation frequency-resolved optical gating 3.5.2 Transient grating frequency-resolved optical gating 3.6 Compression and shaping methods for NOPA pulses 3.6.1 Grating compressor 3.6.2 Prism compressor 3.6.3 Chirped mirrors 3.6.4 Detuned zero dispersion compressor 3.6.5 Deformable mirror pulse shaper 3.6.6 Liquid crystal pulse shaper 3.7 Liquid crystal pulse shaper 3.7.1 Femtosecond pulse shapers 3.7.2 Experimental design and parameters 3.7.3 Optical setup of the LC pulse shaper 3.7.4 Calibrations of the pulse shaper 3.8 Adaptive pulse compression 3.8.1 Closed loop pulse compression 3.8.2 Open loop pulse compression 3.9 Conclusions 4 Coherent optical two-dimensional spectroscopy 4.1 Introduction 4.2 Theory of third order nonlinear optical spectroscopies 4.2.1 Response function, electric fields, and signal field 4.2.2 Signal detection with spectral interferometry 4.2.3 Evaluation of two-dimensional spectra and phasing 4.2.4 Selection and classification of terms in induced nonlinear polarization 4.2.5 Oscillatory character of measured signal 4.3 Previous experimental implementations 4.4 Inherently phase-stable setup using conventional optics only 4.4.1 Manipulation of pulse pairs as a basis for stability 4.4.2 Experimental setup 4.4.3 Measurement procedure 4.4.4 Data evaluation 4.5 First experimental results 4.5.1 Demonstration of phase stability 4.5.2 2D spectrum of Nile Blue at room temperature 4.6 Summary and outlook 5 Product accumulation for ultrasensitive femtochemistry 5.1 The problem of sensitivity in femtochemistry 5.2 Accumulation for increased sensitivity 5.2.1 Comparison of conventional and accumulative sensitivity 5.2.2 Schematics and illustrative example 5.3 Experimental setup 5.4 Calibration and modeling of accumulation 5.5 Experiments on indocyanine green 5.5.1 Calibration of the setup 5.5.2 Chirped pulse excitation 5.5.3 Adaptive pulse shaping 5.6 Conclusions 6 Ultrafast photoconversion of the green fluorescent protein 6.1 Green fluorescent protein 6.2 Experimental setup for photoconversion of GFP 6.3 Calibration of the setup for GFP 6.3.1 Model for concentration dynamics of involved GFP species 6.3.2 Estimate of sensitivity 6.4 Excitation power study 6.5 Time-resolved two-color experiment 6.6 Time-delayed unshaped 400 nm - shaped 800 nm pulse excitation 6.6.1 Inducing photoconversion with chirped pulses 6.6.2 Photoconversion using third order phase pulses 6.7 Conclusions 7 Applications of the accumulative method to chiral systems 7.1 Introduction 7.2 Chiral asymmetric photochemistry 7.2.1 Continuous-wave circularly polarized light 7.2.2 Controlled asymmetric photochemistry using femtosecond laser pulses 7.3 Sensitive and fast polarimeter 7.3.1 Polarimeter setup 7.3.2 Detected signal I(t) 7.3.3 Angular amplification 7.3.4 Performance of the polarimeter 7.4 Molecular systems and mechanisms for enantioselective quantum control 7.4.1 Binaphthalene derivatives 7.4.2 Photochemical helicene formation 7.4.3 Spiropyran/merocyanine chiroptical molecular switches 7.5 Summary 8 Summary Zusammenfassung Bibliography Acknowledgements}, subject = {Ultrakurzzeitspektroskopie}, language = {en} } @phdthesis{BrandensteinKoeth2010, author = {Brandenstein-K{\"o}th, Bettina}, title = {Nichtlinearer Magnetotransport und memristive Funktionen von nanoelektronischen Bauteilen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53643}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Gegenstand dieser Arbeit sind Transportuntersuchungen an nanoelektronischen Bauelementen, wobei der Schwerpunkt in der Analyse von nichtlinearen Transporteigenschaften hybrider Strukturen stand. Zum Einsatz kamen auf GaAs basierende Heterostrukturen mit zum Beispiel kleinen Metallkontakten, die zu Symmetriebrechungen f{\"u}hren. Die Untersuchungen wurden bei tiefen Temperaturen bis hin zu Raumtemperatur durchgef{\"u}hrt. Es kamen zudem magnetische Felder zum Einsatz. So wurden zum einen der asymmetrische Magnetotransport in Nanostrukturen mit asymmetrischer Gateanordnung unter besonderer Ber{\"u}cksichtigung der Phononstreuung analysiert, zum anderen konnte ein memristiver Effekt in InAs basierenden Strukturen studiert werden. Des Weiteren konnte ein beachtlicher Magnetowiderstand in miniaturisierten CrAu-GaAs Bauelementen beobachtet werden, der das Potential besitzt, als Basis f{\"u}r extrem miniaturisierte Sensoren f{\"u}r den Betrieb bei Raumtemperatur eingesetzt zu werden.}, subject = {Magnetowiderstand}, language = {de} } @phdthesis{Heidemann2008, author = {Heidemann, Robin}, title = {Non-Cartesian Parallel Magnetic Resonance Imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26893}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Besides image contrast, imaging speed is probably the most important consideration in clinical magnetic resonance imaging (MRI). MR scanners currently operate at the limits of potential imaging speed, due to technical and physiological problems associated with rapidly switched gradient systems. Parallel imaging (parallel MRI or pMRI) is a method which allows one to significantly shorten the acquisition time of MR images without changing the contrast behavior of the underlying MR sequence. The accelerated image acquisition in pMRI is accomplished without relying on more powerful technical equipment or exceeding physiological boundaries. Because of these properties, pMRI is currently employed in many clinical routines, and the number of applications where pMRI can be used to accelerate imaging is increasing. However, there is also growing criticism of parallel imaging in certain applications. The primary reason for this is the intrinsic loss in the SNR due to the accelerated acquisition. In addition, other effects can also lead to a reduced image quality. Due to unavoidable inaccuracies in the pMRI reconstruction process, local and global errors may appear in the final reconstructed image. The local errors are visible as noise enhancement, while the global errors result in the so-called fold-over artifacts. The appearance and strength of these negative effects, and thus the image quality, depend upon different factors, such as the parallel imaging method chosen, specific parameters in the method, the sequence chosen, as well as specific sequence parameters. In general, it is not possible to optimize all of these parameters simultaneously for all applications. The application of parallel imaging in can lead to very pronounced image artifacts, i.e. parallel imaging can amplify errors. On the other hand, there are applications such as abdominal MR or MR angiography, in which parallel imaging does not reconstruct images robustly. Thus, the application of parallel imaging leads to errors. In general, the original euphoria surrounding parallel imaging in the clinic has been dampened by these problems. The reliability of the pMRI methods currently implemented is the main criticism. Furthermore, it has not been possible to significantly increase the maximum achievable acceleration with parallel imaging despite major technical advances. An acceleration factor of two is still standard in clinical routine, although the number of independent receiver channels available on most MR systems (which are a basic requirement for the application of pMRI) has increased by a factor of 3-6 in recent years. In this work, a novel and elegant method to address this problem has been demonstrated. The idea behind the work is to combine two methods in a synergistic way, namely non-Cartesian acquisition schemes and parallel imaging. The so-called non-Cartesian acquisition schemes have several advantages over standard Cartesian acquisitions, in that they are often faster and less sensitive to physiological noise. In addition, such acquisition schemes are very robust against fold-over artifacts even in the case of vast undersampling of k-space. Despite the advantages described above, non-Cartesian acquisition schemes are not commonly employed in clinical routines. A reason for that is the complicated reconstruction techniques which are required to convert the non-Cartesian data to a Cartesian grid before the fast Fourier transformation can be employed to arrive at the final MR image. Another reason is that Cartesian acquisitions are routinely accelerated with parallel imaging, which is not applicable for non-Cartesian MR acquisitions due to the long reconstruction times. This negates the speed advantage of non-Cartesian acquisition methods. Through the development of the methods presented in this thesis, reconstruction times for accelerated non-Cartesian acquisitions using parallel imaging now approach those of Cartesian images. In this work, the reliability of such methods has been demonstrated. In addition, it has been shown that higher acceleration factors can be achieved with such techniques than possible with Cartesian imaging. These properties of the techniques presented here lead the way for an implementation of such methods on MR scanners, and thus also offer the possibility for their use in clinical routine. This will lead to shorter examination times for patients as well as more reliable diagnoses.}, subject = {NMR-Bildgebung}, language = {en} } @phdthesis{Wagenpfahl2013, author = {Wagenpfahl, Alexander Johannes}, title = {Numerical simulations on limitations and optimization strategies of organic solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Continuously increasing energy prices have considerably influenced the cost of living over the last decades. At the same time increasingly extreme weather conditions, drought-filled summers as well as autumns and winters with heavier rainfall and worsening storms have been reported. These are possibly the harbingers of the expected approaching global climate change. Considering the depletability of fossil energy sources and a rising distrust in nuclear power, investigations into new and innovative renewable energy sources are necessary to prepare for the coming future. In addition to wind, hydro and biomass technologies, electricity generated by the direct conversion of incident sunlight is one of the most promising approaches. Since the syntheses and detailed studies of organic semiconducting polymers and fullerenes were intensified, a new kind of solar cell fabrication became conceivable. In addition to classical vacuum deposition techniques, organic cells were now also able to be processed from a solution, even on flexible substrates like plastic, fabric or paper. An organic solar cell represents a complex electrical device influenced for instance by light interference for charge carrier generation. Also charge carrier recombination and transport mechanisms are important to its performance. In accordance to Coulomb interaction, this results in a specific distribution of the charge carriers and the electric field, which finally yield the measured current-voltage characteristics. Changes of certain parameters result in a complex response in the investigated device due to interactions between the physical processes. Consequently, it is necessary to find a way to generally predict the response of such a device to temperature changes for example. In this work, a numerical, one-dimensional simulation has been developed based on the drift-diffusion equations for electrons, holes and excitons. The generation and recombination rates of the single species are defined according to a detailed balance approach. The Coulomb interaction between the single charge carriers is considered through the Poisson equation. An analytically non-solvable differential equation system is consequently set-up. With numerical approaches, valid solutions describing the macroscopic processes in organic solar cells can be found. An additional optical simulation is used to determine the spatially resolved charge carrier generation rates due to interference. Concepts regarding organic semiconductors and solar cells are introduced in the first part of this work. All chapters are based on previous ones and logically outline the basic physics, device architectures, models of charge carrier generation and recombination as well as the mathematic and numerical approaches to obtain valid simulation results. In the second part, the simulation is used to elaborate issues of current interest in organic solar cell research. This includes a basic understanding of how the open circuit voltage is generated and which processes limit its value. S-shaped current-voltage characteristics are explained assigning finite surface recombination velocities at metal electrodes piling-up local space charges. The power conversion efficiency is identified as a trade-off between charge carrier accumulation and charge extraction. This leads to an optimum of the power conversion efficiency at moderate to high charge carrier mobilities. Differences between recombination rates determined by different interpretations of identical experimental results are assigned to a spatially inhomogeneous recombination, relevant for almost all low mobility semiconductor devices.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Fischer2011, author = {Fischer, Andr{\´e}}, title = {On the Application of Compressed Sensing to Magnetic Resonance Imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72496}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {This thesis investigated the potential of Compressed Sensing (CS) applied to Magnetic Resonance Imaging (MRI). CS is a novel image reconstruction method that emerged from the field of information theory. The framework of CS was first published in technical reports in 2004 by Cand{\`e}s and Donoho. Two years later, the theory of CS was published in a conference abstract and two papers. Cand{\`e}s and Donoho proved that it is possible, with overwhelming probability, to reconstruct a noise-free sparse signal from incomplete frequency samples (e.g., Fourier coefficients). Hereby, it is assumed a priori that the desired signal for reconstruction is sparse. A signal is considered "sparse" when the number of non-zero elements is significantly smaller than the number of all elements. Sparsity is the most important foundation of CS. When an ideal noise-free signal with few non-zero elements is given, it should be understandably possible to obtain the relevant information from fewer Fourier coefficients than dictated by the Nyquist-Shannon criterion. The theory of CS is based on noise-free sparse signals. As soon as noise is introduced, no exact sparsity can be specified since all elements have signal intensities that are non-zero. However, with the addition of little or moderate noise, an approximate sparsity that can be exploited using the CS framework will still be given. The ability to reconstruct noisy undersampled sparse MRI data using CS has been extensively demonstrated. Although most MR datasets are not sparse in image space, they can be efficiently sparsified by a sparsifying transform. In this thesis, the data are either sparse in the image domain, after Discrete Gradient transformation, or after subtraction of a temporally averaged dataset from the data to be reconstructed (dynamic imaging). The aim of this thesis was to identify possible applications of CS to MRI. Two different algorithms were considered for reconstructing the undersampled sparse data with the CS concept. The Nonlinear Conjugate Gradient based technique with a relaxed data consistency constraint as suggested by Lustig et al. is termed Relaxed DC method. An alternative represents the Gradient or Steepest Descent algorithm with strict data consistency and is, therefore, termed the Strict DC method. Chapter 3 presents simulations illustrating which of these two reconstruction algorithms is best suited to recover undersampled sparse MR datasets. The results lead to the decision for the Strict DC method as reconstruction technique in this thesis. After these simulations, different applications and extensions of CS are demonstrated. Chapter 4 shows how CS benefits spectroscopic 19F imaging at 7 T, allowing a significant reduction of measurement times during in vivo experiments. Furthermore, it allows highly resolved spectroscopic 3D imaging in acceptable measurement times for in vivo applications. Chapter 5 introduces an extension of the Strict DC method called CS-CC (CS on Combined Coils), which allows efficient processing of sparse undersampled multi-coil data. It takes advantage of a concept named "Joint Sparsity", which exploits the fact that all channels of a coil array detect the same sparse object weighted with the coil sensitivity profiles. The practical use of this new algorithm is demonstrated in dynamic radial cardiac imaging. Accurate reconstructions of cardiac motion in free breathing without ECG triggering were obtained for high undersampling factors. An Iterative GRAPPA algorithm is introduced in Chapter 6 that can recover undersampled data from arbitrary (Non-Cartesian) trajectories and works solely in the Cartesian plane. This characteristic makes the proposed Iterative GRAPPA computationally more efficient than SPIRiT. Iterative GRAPPA was developed in a preceding step to combine parallel imaging with CS. Optimal parameters for Iterative GRAPPA (e.g. number of iterations, GRAPPA kernel size) were determined in phantom experiments and verified by retrospectively undersampling and reconstructing a radial cardiac cine dataset. The synergistic combination of the coil-by-coil Strict DC CS method and Iterative GRAPPA called CS-GRAPPA is presented in Chapter 7. CS-GRAPPA allows accurate reconstruction of undersampled data from even higher acceleration factors than each individual method. It is a formulation equivalent to L1-SPIRiT but computationally more efficient. Additionally, a comparison with CS-CC is given. Interestingly, exploiting joint sparsity in CS-CC is slightly more efficient than the proposed CS-GRAPPA, a hybrid of parallel imaging and CS. The last chapter of this thesis concludes the findings presented in this dissertation. Future applications expected to benefit from CS are discussed and possible synergistic combinations with other existing MR methodologies for accelerated imaging are also contemplated.}, subject = {NMR-Tomographie}, language = {en} } @phdthesis{Ruff2013, author = {Ruff, Andreas}, title = {On the importance of electronic correlations in potassium-doped organic semiconductors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83635}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The present thesis is concerned with the impact of alkali metal-doping on the electronic structure of semiconducting organic thin films. The organic molecular systems which have been studied are the polycyclic aromatic hydrocarbons picene, pentacene, and coronene. Motivated by reports about exceptional behavior like superconductivity and electronic correlations of their alkali metal-doped compounds, high quality films fabricated from the above named molecules have been studied. The electronic structure of the pristine materials and their doped compounds has been investigated using photoelectron spectroscopy. Core level and valence band studies of undoped films yield excellent photoemission spectra agreeing with or even outperforming previously reported data from the literature. Alkali metal-doping manifests itself in a uniform manner in the electronic structure for all probed samples: Opposed to reports from the literature about metallicity and even superconductivity in alkali metal-doped picene, pentacene, and coronene, all films exhibit insulating nature with an energy gap of the order of one electron-volt. Remarkably, this is independent of the doping concentration and the type of dopant, i.e., potassium, cesium, or sodium. Based on the interplay between narrow bandwidths in organic semiconductors and sufficiently high on-molecule Coulomb repulsion, the non-metallicity is attributed to the strong influence of electronic correlations leading to the formation of a Mott insulator. In the case of picene, this is consolidated by calculations using a combination of density functional theory and dynamical mean-field theory. Beyond the extensive considerations regarding electronic correlations, further intriguing aspects have been observed. The deposition of thin picene films leads to the formation of a non-equilibrium situation between substrate and film surface. Here, the establishment of a homogeneous chemical potential is hampered due to the only weak van der Waals-interactions between the molecular layers in the films. Consequently, spectral weight is measurable above the reference chemical potential in photoemission. Furthermore, it has been found that the acceptance of additional electrons in pentacene is limited. While picene and coronene are able to host up to three extra electrons, in pentacene the limit is already reached for one electron. Finally, further extrinsic effects, coming along with alkali metal-doping, have been scrutinized. The oxidation of potassium atoms induced by the reaction with molecular oxygen in the residual gas of the ultra-high vacuum system turned out to significantly influence the electronic structure of alkali metal-doped picene and coronene. Moreover, also the applied X-ray and UV irradiation caused a certain impact on the photoemission spectra. Surprisingly, both effects did not play a role in the studies of potassium-doped pentacene.}, subject = {Organischer Halbleiter}, language = {en} } @phdthesis{Vaeth2016, author = {V{\"a}th, Stefan Kilian}, title = {On the Role of Spin States in Organic Semiconductor Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141894}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The present work addressed the influence of spins on fundamental processes in organic semiconductors. In most cases, the role of spins in the conversion of sun light into electricity was of particular interest. However, also the reversed process, an electric current creating luminescence, was investigated by means of spin sensitive measurements. In this work, many material systems were probed with a variety of innovative detection techniques based on electron paramagnetic resonance spectroscopy. More precisely, the observable could be customized which resulted in the experimental techniques photoluminescence detected magnetic resonance (PLDMR), electrically detected magnetic resonance (EDMR), and electroluminescence detected magnetic resonance (ELDMR). Besides the commonly used continuous wave EPR spectroscopy, this selection of measurement methods yielded an access to almost all intermediate steps occurring in organic semiconductors during the conversion of light into electricity and vice versa. Special attention was paid to the fact that all results were applicable to realistic working conditions of the investigated devices, i.e. room temperature application and realistic illumination conditions.}, subject = {Organischer Halbleiter}, language = {en} } @phdthesis{Blumenstein2012, author = {Blumenstein, Christian}, title = {One-Dimensional Electron Liquid at a Surface: Gold Nanowires on Ge(001)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72801}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Selbstorganisierte Nanodr{\"a}hte auf Halbleiteroberfl{\"a}chen erm{\"o}glichen die Untersuchung von Elektronen in niedrigen Dimensionen. Interessanterweise werden die elektronischen Eigenschaften des Systems von dessen Dimensionalit{\"a}t bestimmt, und das noch {\"u}ber das Quasiteilchenbild hinaus. Das quasi-eindimensionale (1D) Regime zeichnet sich durch eine schwache laterale Kopplung zwischen den Ketten aus und erm{\"o}glicht die Ausbildung einer Peierls Instabilit{\"a}t. Durch eine Nesting Bedingung in der Fermi Fl{\"a}che kommt es zu einer Bandr{\"u}ckfaltung und damit zu einem isolierenden Grundzustand. Dies wird begleitet von einer neuen {\"U}berstruktur im Realraum, die mit dem Nestingvektor korrespondiert. In fr{\"u}heren Nanodrahtsystemen wurde ein solcher Effekt gezeigt. Dazu geh ̈oren Indium Ketten auf Si(111) und die Gold rekonstruierten Substrate Si(553) und Si(557). Die Theorie sagt jedoch einen weiteren Zustand voraus, der nur im perfekten 1D Grenzfall existiert und der bei geringster Kopplung mit h{\"o}heren Dimensionen zerst{\"o}rt wird. Dieser Zustand wird Tomonaga-Luttinger Fl{\"u}ssigkeit (TLL) genannt und f{\"u}hrt zu einem Zusammenbruch des Quasiteilchenbildes der Fermi-Fl{\"u}ssigkeit. Hier sind nur noch kollektive Anregungen der Elektronen erlaubt, da die starke laterale Einschr{\"a}nkung zu einer erh{\"o}hten Kopplung zwischen den Teilchen f{\"u}hrt. Dadurch treten interessante Effekte wie Spin-Ladungs-Trennung auf, bei dem sich die Ladung und der Spin eines Elektrons entkoppeln und getrennt voneinander durch den Nanodraht bewegen k{\"o}nnen. Bis heute wurde solch ein seltener Zustand noch nicht an einer Oberfl{\"a}che beobachtet. In dieser Arbeit wird ein neuer Ansatz zur Herstellung von besser definierten 1D Ketten gew{\"a}hlt. Dazu wird die Au-rekonstruierte Ge(001) Nanodraht-Oberfl{\"a}che untersucht. F{\"u}r die Pr{\"a}paration des Substrates wird ein neues Rezept entwickelt, welches eine langreichweitig geordnete Oberfl{\"a}che erzeugt. Um das Wachstum der Nanodr{\"a}hte zu optimieren wird das Wachstums-Phasendiagramm ausgiebig untersucht. Außerdem werden die strukturellen Bausteine der Ketten sehr genau beschrieben. Es ist bemerkenswert, dass ein struktureller Phasen{\"u}bergang der Ketten oberhalb von Raumtemperatur gefunden wird. Aufgrund von spektroskopischen Untersuchungen kann eine Peierls Instabilit{\"a}t als Ursache ausgeschlossen werden. Es handelt sich um einen 3D-Ising-Typ {\"U}bergang an dem das Substrat ebenfalls beteiligt ist. Die Untersuchungen zur elektronischen Struktur der Ketten zeigen zwei deutliche Erkennungsmerkmale einer TLL: Ein potenzgesetzartiger Verlauf der Zustandsdichte und universales Skalenverhalten. Daher wird zum ersten Mal eine TLL an einer Oberfl{\"a}che nachgewiesen, was nun gezielt lokale Untersuchungen und Manipulationen erm{\"o}glicht. Dazu geh{\"o}ren (i) Dotierung mit Alkalimetallen, (ii) die Untersuchung von Kettenenden und (iii) die einstellbare Kopplung zwischen den Ketten durch zus{\"a}tzliche Goldatome. Damit wird ein wichtiger Beitrag zu theoretischen Vorhersagen und Modellen geliefert und somit das Verst{\"a}ndnis korrelierter Elektronen vorangetrieben.}, subject = {Nanodraht}, language = {en} } @phdthesis{Gottscholl2022, author = {Gottscholl, Andreas Paul}, title = {Optical Accessible Spin Defects in Hexagonal Boron Nitride: Identification, Control and Application of the Negatively Charged Boron Vacancy VB-}, doi = {10.25972/OPUS-27432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this work, a bridge was built between the so-far separate fields of spin defects and 2D systems: for the first time, an optically addressable spin defect (VB-) in a van der Waals material (hexagonal boron nitride) was identified and exploited. The results of this thesis are divided into three topics as follows: 1.) Identification of VB-: In the scope of this chapter, the defect ,the negatively charged boron vacancy VB-, is identified and characterized. An initialization and readout of the spin state can be demonstrated optically at room temperature and its spin Hamiltonian contributions can be quantified. 2.) Coherent Control of VB-: A coherent control is required for the defect to be utilized for quantum applications, which}, subject = {Bornitrid}, language = {en} } @phdthesis{Kern2014, author = {Kern, Johannes}, title = {Optical and electrical excitation of nanoantennas with atomic-scale gaps}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Nano-antennas are an emerging concept for the manipulation and control of optical fields at the sub-wavelength scale. In analogy to their radio- and micro-wave counterparts they provide an efficient link between propagating and localized fields. Antennas operating at optical frequencies are typically on the order of a few hundred nanometer in size and are fabricated from noble metals. Upon excitation with an external field the electron gas inside the antenna can respond resonantly, if the dimensions of the antenna are chosen appropriate. Consequently, the resonance wavelength depends on the antenna dimensions. The electron-density oscillation is a hybrid state of electron and photon and is called a localized plasmon resonance. The oscillating currents within the antenna constitute a source for enhanced optical near-fields, which are strongly localized at the metal surface. A particular interesting type of antennas are pairs of metal particles separated by a small insulating gap. For anti-symmetric gap modes charges of opposite sign reside across the gap. The dominating field-components are normal to the metal surface and due to the boundary conditions they are sizable only inside the gap. The attractive Coulomb interaction increases the surface-charge accumulation at the gap and enhanced optical fields occur within the insulating gap. The Coulomb interaction increases with decreasing gap size and extreme localization and strongest intensity enhancement is expected for small gap sizes. In this thesis optical antennas with extremely small gaps, just slightly larger than inter-atomic distances, are investigated by means of optical and electrical excitation. In the case of electrical excitation electron tunneling across the antenna gap is exploited. At the beginning of this thesis little was known about the optical properties of antennas with atomic scale gaps. Standard measurement techniques of field confinement and enhancement involving well-separated source, sample and detector are not applicable at atomic length-scales due to the interaction of the respective elements. Here, an elegant approach has been found. It is based on the fact that for closely-spaced metallic particles the energy splitting of a hybridized mode pair, consisting of symmetric and anti-symmetric mode, provides a direct measure for the Coulomb interaction over the gap. Gap antennas therefore possess an internal ruler which sensitively reports the size of the gap. Upon self-assembly side-by-side aligned nanorods with gap sizes ranging from 2 to 0.5nm could be obtained. These antennas exhibit various symmetric and anti-symmetric modes in the visible range. In order to reveal optical modes of all symmetries a novel scattering setup has been developed and is successfully applied. Careful analysis of the optical spectra and comparison to numerical simulations suggests that extreme field confinement and localization can occur in gaps down to 0.5 nm. This is possibly the limit of plasmonic enhancement since for smaller gaps electron tunneling as well as non-locality of the dielectric function affect plasmonic resonances. The strongly confined and intense optical fields provided by atomic-scale gaps are ideally suited for enhanced light-matter interaction. The interplay of intense optical-frequency fields and static electric fields or currents is of great interest for opto-electronic applications. In this thesis a concept has been developed, which allows for the electrical connection of optical antennas. By means of numerical simulations the concept was first verified for antennas with gap sizes on the order of 25 nm. It could be shown, that by attaching the leads at positions of a field minimum the resonant properties are nearly undisturbed. The resonance wavelengths shift only by a small amount with respect to isolated antennas and the numerically calculated near-field intensity enhancement is about 1000, which is just slightly lower than for an unconnected antenna. The antennas are fabricated from single-crystalline gold and exhibit superior optical and electrical properties. In particular, the conductivity is a factor of 4 larger with respect to multi-crystalline material, the resistance of the gap is as large as 1 TOhm and electric fields of at least 10^8 V/m can be continuously applied without damage. Optical scattering spectra reveal well-pronounced and tunable antenna resonances, which demonstrates the concept of electrically-connected antennas also experimentally. By combining atomic-scale gaps and electrically-connected optical antennas a novel sub-wavelength photon source has been realized. To this end an antenna featuring an atomic scale gap is electrically driven by quantum tunneling across the antenna gap. The optical frequency components of this fluctuating current are efficiently converted to photons by the antenna. Consequently, light generation and control are integrated into a planar single-material nano-structure. Tunneling junctions are realized by positioning gold nanoparticles into the antenna gap, using an atomic force microscope. The presence of a stable tunneling junction between antenna and particle is demonstrated by measuring its distinct current-voltage characteristic. A DC voltage is applied to the junction and photons are generated by inelastically tunneling electrons via the enhanced local density of photonic states provided by the antenna resonance. The polarization of the emitted light is found to be along the antenna axis and the directivity is given by the dipolar antenna mode. By comparing electroluminescence and scattering spectra of different antennas, it has been shown that the spectrum of the generated light is determined by the geometry of the antenna. Moreover, the light generation process is enhanced by two orders of magnitude with respect to a non-resonant structure. The controlled fabrication of the presented single-crystalline structures has not only pushed the frontiers of nano-technology, but the extreme confinement and enhancement of optical fields as well as the light generation by tunneling electrons lays a groundwork for a variety of fundamental studies and applications. Field localization down to the (sub-)nanometer scale is a prerequisite for optical spectroscopy with near-atomic resolution. Indeed, recently first pioneering experiments have achieved molecular resolution exploiting plasmon-enhanced Raman scattering. The small modal volume of antennas with atomic-scale gaps can lead to light-matter interaction in the strong coupling regime. Quantum electro-dynamical effects such as Rabi splitting or oscillations are likely when a single emitter is placed into resonant structures with atomic-scale gaps. The concept of electrically-connected optical antennas is expected to be widely applied within the emerging field of electro-plasmonics. The sub-wavelength photon source developed during this thesis will likely gain attention for future plasmonic nanocircuits. It is envisioned that in such a circuit the optical signal provided by the source is processed at ultrafast speed and nanometer-scales on the chip and is finally converted back into an electronic signal. An integrated optical transistor could be realized by means of photon-assisted tunneling. Moreover, it would be interesting to investigate, if it is possible to imprint the fermionic nature of electrons onto photons in order to realize an electrically-driven source of single photons. Non-classical light sources with the potential for on-chip integration could be built from electrically-connected antennas and are of great interest for quantum communication. To this end single emitters could be placed in the antenna gap or single electron tunneling could be achieved by means of a single-channel quantum point contact or the Coulomb-blockade effect.}, subject = {Nanooptik}, language = {en} } @phdthesis{Margapoti2010, author = {Margapoti, Emanuela}, title = {Optical properties of thermally annealed CdZnSe/ZnSe quantum dots}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52946}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {see: pdf-file}, subject = {Physik}, language = {en} } @phdthesis{Fuchs2015, author = {Fuchs, Franziska}, title = {Optical spectroscopy on silicon vacancy defects in silicon carbide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124071}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {This work sheds light on different aspects of the silicon vacancy in SiC: (1) Defect creation via irradiation is shown both with electrons and neutrons. Optical properties have been determined: the excitation of the vacancy is most efficient at excitation wavelengths between 720nm and 800nm. The PL decay yields a characteristic excited state lifetime of (6.3±0.6)ns. (2) Defect engineering, meaning the controlled creation of vacancies in SiC with varying neutron fluence. The defect density could be engineered over eight orders of magnitude. On the one hand, in the sample with highest emitter density, the huge PL signal could even be enhanced by factor of five via annealing mechanisms. On the other hand, in the low defect density samples, single defects with photostable room temperature NIR emission were doubtlessly proven. Their lifetime of around 7ns confirmed the value of the transient measurement. (3) Also electrical excitation of the defects has been demonstrated in a SiC LED structure. (4) The investigations revealed for the first time that silicon vacancies can even exist SiC nanocrystals down to sizes of about 60 nm. The defects in the nanocrystals show stable PL emission in the NIR and even magnetic resonance in the 600nm fraction. In conclusion, this work ascertains on the one hand basic properties of the silicon vacancy in silicon carbide. On the other hand, proof-of-principle measurements test the potential for various defect-based applications of the vacancy in SiC, and confirm the feasibility of e.g. electrically driven single photon sources or nanosensing applications in the near future.}, subject = {Siliciumcarbid}, language = {en} } @phdthesis{Gorenflot2014, author = {Gorenflot, Julien Fran{\c{c}}ois}, title = {Optical study of the excited states in the semiconducting polymer poly(3-hexylthiophene) for photovoltaic applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116730}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In the course of this dissertation, we have presented the interest of using spectroscopic methods to unravel the physics of polymer semiconductors in photovoltaic applications. Applying photoluminescence and photoinduced absorption spectroscopy to the reference system P3HT:PCBM has enabled us to study the major steps of photocurrent generation in organic bulk heterojunctions, from excitons generation to charges extraction and loss mechanisms and thus to improve the understanding of those mechanisms. The exciton binding energy, is the first obstacle to overcome for photocurrent generation in organic solar cell and the reason for the use of two materials, whose heterojunction act as a driving force for charge separation. We developed an original photoluminescence-detected field-induced exciton quenching method to investigate this energy. Absorption and photoluminescence spectra of pure P3HT show that, while both amorphous and crystalline domains participate in absorption, the energy is then transferred to the crystalline domains, from where the photoluminescence is exclusively originating. The field dependence of this photoluminescence showed that an energy of no less than 420 meV is necessary to split excitons into non photon-emitting species. Comparing those results with energy levels obtained by absorption and photoelectron spectroscopies, confirmed that the formation of those species is only a first step toward dissociation into free charges. Indeed, photoemission spectroscopy and the onset of photocurrent upon increasing the photon energy in a pure P3HT solar cell, concomitantly show that the energy level of a pair of free polarons is located 0.7 eV above the one of the exciton. The comprehensive analysis of those results originating from those different method enable us to draw a global picture of the states and energies involved in free polarons generation in pure material. This work has been widely acknowledged by the scientific community, published in Physical Review B in 2010 [1] and presented in national [2] and international [3] conferences. The spectroscopy of excited states is used to detect the presence of wanted species (charges) and potentially unwanted neutral species upon photoexcitation. As such, it offers us the possibility to qualify the efficiency of charge generation and, if any, identify the competing processes and the generation of unwanted species. In the frame of the European Marie Curie Research Network SolarNType,[4] this possibility was used - in combination with morphological, charge transport and devices characterizationsn - to study a number of new donor:acceptor blends. Thanks to those techniques, we were able to not only quantify the potential of those blends, but also to provide the chemist laboratories with a precious and detailed feedback on the strengths and weakness of the molecules, regarding charge generation, transport and extraction. The detailed study of terrylene-3,4:11,12-bis(dicarboximide) as electron acceptor for solar cells application was published in the peer review journal Synthetic Metals and was chosen to illustrate the cover page of the issue [5]. Finally, in the last chapter, we have used time resolved photoinduced absorption to improve the understanding of the charge carrier loss mechanisms in P3HT:PCBM active layers. This comprehension is of prime importance because, the fact that this recombination is far weaker than expected from the Langevin theory, enable polarons to travel further without recombining and thus to build thicker and more efficient devices. A comprehensive analysis of steady-state PIA spectra of pure P3HT, indicates that probing at 980 nm at a temperature between 140 and 250 K enables to monitor specifically polaron densities in both neat P3HT and P3HT:PCBM. Applying this finding to transient absorption enabled us to monitor, for the first time, the bimolecular recombination in pure P3HT, and to discover that - in sharp contrast with the blend - this recombination was in agreement with the Langevin theory. Moreover, it enables us to pinpoint the important role played by the existence of two materials and of energetical traps in the slow recombination and high recombination orders observed in the blend. This work has been published in the Journal of Applied Physics.[6] Those new insights in the photophysics of polymer:fullerene photoactive layers could have a strong impact on the future developement of those materials. Consistent measurements of the binding energy of excitons and intermediate species, would enable to clarify the role played by excess thermal energy in interfacial states dissociation. Better understanding of blends morphology and its influence on solar cells parameters and in particular on recombination could enable to reproduce the conditions of limited recombination on material systems offering some promising performances but with only limited active layer thicknesses. However, due to the number of parameters involved, further experimentation is required, before we can reach a quantitative modeling of bimolecular recombination. [1] Deibel et al., Phys. Rev. B, 81:085202, 2010 [2] Gorenflot et al., Deutsche Physikalische Gesellschaft Fr{\"u}hjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [3] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Feichtner2017, author = {Feichtner, Thorsten}, title = {Optimal Design of Focusing Nanoantennas for Light : Novel Approaches: From Evolution to Mode-Matching}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140604}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Optische Antennen arbeiten {\"a}hnlich wie Antennen f{\"u}r Radiowellen und wandeln elektromagnetische Strahlung in elektrische Wechselstr{\"o}me um. Ladungsdichteansammlungen an der Antennen-Oberfl{\"a}che f{\"u}hren zu starken und lokalisierten Nahfeldern. Da die meisten optischen Antennen eine Ausdehnung von wenigen hundert Nanometern besitzen, erm{\"o}glichen es ihre Nahfelder, Licht auf ein Volumen weit unterhalb des Beugungslimits zu fokussieren, mit Intensit{\"a}ten, die mehrere Gr{\"o}ßenordnungen {\"u}ber dem liegen, was man mit klassischer beugender und reflektierender Optik erreichen kann. Die Aufgabe, die Abstrahlung eines Quantenemitters zu maximieren, eines punktf{\"o}rmigen Objektes, welches einzelne Photonen absorbieren und emittieren kann, ist identisch mit der Aufgabe, die Feldintensit{\"a}t am Ort des Quantenemitters zu maximieren. Darum ist es erstrebenswert, den Fokus optischer Antennen zu optimieren Optimierte Radiofrequenz-Antennen, welche auf Gr{\"o}ßenordnungen von wenigen 100 Nanometern herunterskaliert werden, zeigen bereits eine gute Funktionalit{\"a}t. Jedoch liegen optische Frequenzen in der N{\"a}he der Plasmafrequenz von den Metallen, die f{\"u}r optische Antennen genutzt werden und die Masse der Elektronen kann nicht mehr vernachl{\"a}ssigt werden. Dadurch treten neue physikalische Ph{\"a}nomene auf. Es entstehen gekoppelte Zust{\"a}nde aus Licht und Ladungsdichte-Schwingungen, die sogenannten Plasmonen. Daraus folgen Effekte wie Volumenstr{\"o}me und k{\"u}rzere effektive Wellenl{\"a}ngen. Zus{\"a}tzlich f{\"u}hrt die endliche Leitf{\"a}higkeit zu thermischen Verluste. Das macht eine Antwort auf die Frage nach der optimalen Geometrie f{\"u}r fokussierende optische Antennen schwer. Jedoch stand vor dieser Arbeit der Beweis noch aus, dass es f{\"u}r optische Antennen bessere Alternativen gibt als herunterskalierte Radiofrequenz-Konzepte. In dieser Arbeit werden optische Antennen auf eine bestm{\"o}gliche Fokussierung optimiert. Daf{\"u}r wird ein Ansatz gew{\"a}hlt, welcher bei Radiofrequenz-Antennen f{\"u}r komplexe Anwendungsfelder (z.B. isotroper Breitbandempfang) schon oft Erfolg hatte: evolution{\"a}re Algorithmen. Die hier eingef{\"u}hrte erste Implementierung erlaubt eine große Freiheit in Bezug auf Partikelform und Anzahl, da sie quadratische Voxel auf einem planaren, quadratischen Gitter beliebig anordnet. Die Geometrien werden in einer bin{\"a}ren Matrix codiert, welche als Genom dient und somit Methoden wie Mutation und Paarung als Verbesserungsmechanismus erlaubt. So optimierte Antennen-Geometrien {\"u}bertreffen vergleichbare klassische Dipol-Geometrien um einen Faktor von Zwei. Dar{\"u}ber hinaus l{\"a}sst sich aus den optimierten Antennen ein neues Funktionsprinzip ableiten: ein magnetische Split-Ring-Resonanz kann mit Dipol-Antennen leitend zu neuartigen und effektiveren Split-Ring-Antennen verbunden werden, da sich ihre Str{\"o}me nahe des Fokus konstruktiv {\"u}berlagern. Im n{\"a}chsten Schritt wird der evolution{\"a}re Algorithmus so angepasst, so die Genome real herstellbare Geometrien beschreiben. Zus{\"a}tzlich wird er um eine Art ''Druckertreiber'' erweitert, welcher aus den Genomen direkt Anweisungen zur fokussierten Ionenstrahl-Bearbeitung von einkristallinen Goldflocken erstellt. Mit Hilfe von konfokaler Mikroskopie der Zwei-Photonen-Photolumineszenz wird gezeigt, dass Antennen unterschiedlicher Effizienz reproduzierbar aus dem evolution{\"a}ren Algorithmus heraus hergestellt werden k{\"o}nnen. Außerdem wird das Prinzip der Split-Ring-Antenne verbessert, indem zwei Ring-Resonanzen zu einer Dipol-Resonanz hinzugef{\"u}gt werden. Zu guter Letzt dient die beste Antenne des zweiten evolution{\"a}re Algorithmus als Inspiration f{\"u}r einen neuen Formalismus zur Beschreibung des Leistungs{\"u}bertrages zwischen einer optischen Antenne und einem Punkt-Dipol, welcher sich als "dreidimensionaler Moden{\"u}berlapp" beschreiben l{\"a}sst. Damit k{\"o}nnen erstmals intuitive Regeln f{\"u}r die Form einer optischen Antenne aufgestellt werden. Die G{\"u}ltigkeit der Theorie wird analytisch f{\"u}r den Fall eines Dipols nahe einer metallischen Nano-Kugel gezeigt. Das vollst{\"a}ndige Problem, Licht mittels einer optischen Antenne zu fokussieren, l{\"a}sst sich so auf die Erf{\"u}llung zweier Moden{\"u}berlapp-Bedingungen reduzieren -- mit dem Feld eines Punktdipols, sowie mit einer ebenen Welle. Damit lassen sich zwei Arten idealer Antennenmoden identifizieren, welche sich von der bekannten Dipol-Antennen-Mode grundlegend unterscheiden. Zum einen l{\"a}sst sich dadurch die Funktionalit{\"a}t der evolution{\"a}ren und Split-Ring-Antennen erkl{\"a}ren, zum lassen sich neuartige plasmonische Hohlraum-Antennen entwerfen, welche zu besserer Fokussierung von Licht f{\"u}hren. Dies wird numerisch im direkten Vergleich mit einer klassischen Dipolantennen-Geometrie gezeigt.}, subject = {Physik}, language = {en} } @phdthesis{Schwedhelm2009, author = {Schwedhelm, Kai Florian}, title = {Optimierte Methoden der Magnetresonanz-Spektroskopie zur molekularen Charakterisierung neuartiger Wirkstoffe gegen Infektionskrankheiten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38535}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In diesem Projekt wurde die Wechselwirkung des PPIase-Enzyms MIP mit Kollagen IV unter- sucht. MIP ist maßgeblich f{\"u}r die Infekti{\"o}sit{\"a}t von Legionella pneumophila verantwortlich, einem Bakterium, welches im Menschen schwere Lungenentz{\"u}ndungen ausl{\"o}sen kann. Das Enzym zeigt eine hohe Affinit{\"a}t gegen{\"u}ber einem kurzen Peptidsequenzabschnitt in Kolla- gen IV (genannt „P290"), welches unter anderem im Epithel der Lunge zu finden ist. Die Interaktionsoberfl{\"a}che der Molek{\"u}le wurde durch den Einsatz eines paramagnetischen Spin-Labels in NMR-Experimenten charakterisiert. Mit Hilfe von Docking und Molek{\"u}ldy- namiksimulationen konnte aus diesen Daten ein Modell des MIP-Kollagen-Komplexes be- rechnet werden. Es wurde gezeigt, dass MIP als Dimer in der Lage ist, nach Kollagen IV zu „greifen" und sich dann an das Molek{\"u}l heranzuziehen. Wahrscheinlich dient dieser Mechanismus der Adh{\"a}- sion von L. pneumophila an die Wirtszelle. Neben der zuvor postulierten Destabilisierung von Kollagen IV durch MIP, welche hier nicht beobachtet wurde, k{\"o}nnte die Adh{\"a}sion ein wichtiger Faktor f{\"u}r die Virulenz von L. pneumophila sein. Weiterhin wurde die inhibitorische Wirkung des isolierten Peptids P290 auf die biologische PPIase-Aktivit{\"a}t von MIP untersucht. Durch NMR-Messungen und anschließenden Mole- k{\"u}ldynamiksimulationen konnte gezeigt werden, dass P290 sich stabil in die Bindungsta- sche von MIP einlagert und durch den Sequenzabschnitt -CYS130-PRO131---TRP134- das Enzym blockiert. Die {\"u}brigen Aminos{\"a}uren in P290 dienen der Stabilisierung des Kom- plexes und sorgen f{\"u}r die Selektivit{\"a}t von P290, welches, im Unterschied zu bekannten Wirkstoffen, das humane Homolog zu MIP nicht inhibiert. Die Vorhersagen der Simulatio- nen konnten durch ein Peptid Microarray und Messungen der enzymatischen Aktivit{\"a}t von MIP in PPIase-Assays best{\"a}tigt werden. Die Ergebnisse wurden zur Optimierung von P290 eingesetzt, indem die Peptidsequenz durch den Austausch zweier Aminos{\"a}uren ver{\"a}ndert und das Molek{\"u}l zu einem Ring geschlossen wurde. Die entstandene Struktur besitzt deut- lich verbesserte Bindungseigenschaften und k{\"o}nnte k{\"u}nftig als Basis f{\"u}r eine neue Klasse von Wirkstoffen gegen L. pneumophila dienen. In diesem Projekt wurde eine Methode zur Aufkl{\"a}rung der Molek{\"u}lstruktur neuartiger Wirkstoffe gegen Malaria im Komplex mit ihrem paramagnetischen Zielmolek{\"u}l etabliert und weiterentwickelt. Die Vorgehensweise leitet intermolekulare Distanzinformationen aus der sog. paramagnetischen Relaxation ab, einem Effekt, der den Einsatz klassischer Me- thoden zur Molek{\"u}lstrukturaufkl{\"a}rung mittels NMR verhindert. Es werden drei Parameter durch NMR-Spektroskopie bestimmt: 1. die longitudinale Relaxationszeit der Wasserstoff- atome in Wirkstoffmolek{\"u}l, 2. die effektive Korrelationszeit des Komplexes und 3. der Spin- Zustand des Eisenions im Zielmolek{\"u}l. Mit Hilfe dieser Messmethode konnte die Komplexstruktur mehrerer bekannter Medika- mente gegen Malaria aufgekl{\"a}rt werden. Weiterhin wurden zwei neue Klassen von Wirkstof- fen untersucht, die C,C-gekoppelten Naphthylisoquinolin-Alkaloide und die N,C-gekoppelte Naphthylisoquinolin-Alkaloide. In {\"U}bereinstimmung mit theoretischen Vorhersagen aus der Literatur lagern sich die Wirkstoffe stets um einen Winkel geneigt und in Richtung des Randes des Zielmolek{\"u}ls verschoben an. Diese Konfiguration maximiert die attraktiven \&\#960;- \&\#960;-Wechselwirkungen zwischen den Molek{\"u}len. Aufgrund der gewonnenen Ergebnisse aus NMR, UV-Spektroskopie und Massenspektrome- trie konnte die Existenz eines bisher nicht bekannten Tetramer-Komplexes nachgewiesen werden, welcher eine wichtige Zwischenstufe in der Biokristallisation von H{\"a}mozoin durch die Malariaparasiten darstellen k{\"o}nnte, und Ansatzpunkte f{\"u}r den weiterhin nicht vollst{\"a}n- dig bekannten Wirkmechanismus der meisten Antimalaria-Wirkstoffe liefert. F{\"u}r die Naphthylisoquinolin-Alkaloide zeigte sich weiterhin, dass Wasser eine essenzielle Rolle in der Komplexbildung spielt. In Molek{\"u}ldynamiksimulationen der N,C-gekoppelten Naphthylisoquinolin-Alkaloide konnte die Entstehung einer Wasserstoffbr{\"u}cke zwischen Wirkstoff und Zielmolek{\"u}l gezeigt werden, welche einen zus{\"a}tzlichen Weg der Komplex- stabilisierung neben den bereits bekannten \&\#960;-\&\#960;-Wechselwirkungen aufzeigt. Die N,C-NIQs konnten erstmals auch bei einem pH-Wert von 5,6 beobachtet werden, einer chemischen Umgebung wie sie auch in-vivo in der Verdauungsvakuole des Malariaparasiten herrscht.}, subject = {NMR-Spektroskopie}, language = {de} } @phdthesis{Huggenberger2012, author = {Huggenberger, Alexander}, title = {Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78031}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Daten{\"u}bertragung, die durch Quantenkryptographie abh{\"o}rsicher verschl{\"u}sselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschr{\"a}nkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein h{\"a}ufig untersuchtes System und k{\"o}nnen heutzutage mit hoher Kristallqualit{\"a}t durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erh{\"o}hen, wurden Mikros{\"a}ulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate f{\"u}r die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen {\"A}tztechniken erreicht. F{\"u}r den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema f{\"u}r den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. F{\"u}r die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngr{\"o}ße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese h{\"a}ufig aufgrund spektraler Diffusion gr{\"o}ßer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ans{\"a}tze und Strategien zur {\"U}berwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV f{\"u}r die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualit{\"a}t besitzen. Die FSS der Emission eines Quantenpunktes sollte f{\"u}r die direkte Erzeugung polarisationsverschr{\"a}nkter Photonen m{\"o}glichst klein sein. Deswegen wurden unterschiedliche Ans{\"a}tze diskutiert, um die FSS einer m{\"o}glichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in ge{\"a}tzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend f{\"u}r den k{\"u}nftigen Einsatz solcher Quantenpunkte in Quellen f{\"u}r verschr{\"a}nkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschr{\"a}nkten Zustandes gezeigt. In Zusammenarbeit mit der Universit{\"a}t Tokyo wurde ein Konzept entwickelt, mit dem k{\"u}nftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavit{\"a}ten hergestellt werden k{\"o}nnen. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikros{\"a}ulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavit{\"a}tsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion f{\"u}r verschwindende Zeitdifferenzen nachgewiesen wurde.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Ullherr2021, author = {Ullherr, Maximilian}, title = {Optimization of Image Quality in High-Resolution X-Ray Imaging}, doi = {10.25972/OPUS-23117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The SNR spectra model and measurement method developed in this work yield reliable application-specific optima for image quality. This optimization can either be used to understand image quality, find out how to build a good imaging device or to (automatically) optimize the parameters of an existing setup. SNR spectra are here defined as a fraction of power spectra instead of a product of device properties. In combination with the newly developed measurement method for this definition, a close correspondence be- tween theory and measurement is achieved. Prior approaches suffer from a focus on theoretical definitions without fully considering if the defined quantities can be measured correctly. Additionally, discrepancies between assumptions and reality are common. The new approach is more reliable and complete, but also more difficult to evaluate and interpret. The signal power spectrum in the numerator of this fraction allows to model the image quality of different contrast mechanisms that are used in high-resolution x-ray imaging. Superposition equations derived for signal and noise enable understanding how polychromaticity (or superposition in general) affects the image quality. For the concept of detection energy weighting, a quantitative model for how it affects im- age quality was found. It was shown that—depending on sample properties—not detecting x-ray photons can increase image quality. For optimal computational energy weighting, more general formula for the optimal weight was found. In addition to the signal strength, it includes noise and modulation transfer. The novel method for measuring SNR spectra makes it possible to experimentally optimize image quality for different contrast mechanisms. This method uses one simple measurement to obtain a measure for im- age quality for a specific experimental setup. Comparable measurement methods typically require at least three more complex measurements, where the combination may then give a false result. SNR spectra measurements can be used to: • Test theoretical predictions about image quality optima. • Optimize image quality for a specific application. • Find new mechanisms to improve image quality. The last item reveals an important limitation of x- ray imaging in general: The achievable image quality is limited by the amount of x-ray photons interacting with the sample, not by the amount incident per detector area (see section 3.6). If the rest of the imaging geometry is fixed, moving the detector only changes the field of view, not the image quality. A practical consequence is that moving the sample closer to the x-ray source increases image quality quadratically. The results of a SNR spectra measurement represent the image quality only on a relative scale, but very reliable. This relative scale is sufficient for an optimization problem. Physical effects are often already clearly identifiable by the shape of the functional relationship between input parameter and measurement result. SNR spectra as a quantity are not well suited for standardization, but instead allow a reliable optimization. Not satisfying the requirements of standardization allows to use methods which have other advantages. In this case, the SNR spectra method describes the image quality for a specific application. Consequently, additional physical effects can be taken into account. Additionally, the measurement method can be used to automate the setting of optimal machine parameters. The newly proposed image quality measure detection effectiveness is better suited for standardization or setup comparison. This quantity is very similar to measures from other publications (e.g. CNR(u)), when interpreted monochromatically. Polychromatic effects can only be modeled fully by the DE(u). The measurement processes of both are different and the DE(u) is fundamentally more reliable. Information technology and digital data processing make it possible to determine SNR spectra from a mea- sured image series. This measurement process was designed from the ground up to use these technical capabilities. Often, information technology is only used to make processes easier and more exact. Here, the whole measurement method would be infeasible without it. As this example shows, using the capabilities of digital data processing much more extensively opens many new possibilities. Information technology can be used to extract information from measured data in ways that analog data processing simply cannot. The original purpose of the SNR spectra optimization theory and methods was to optimize high resolution x-ray imaging only. During the course of this work, it has become clear that some of the results of this work affect x-ray imaging in general. In the future, these results could be applied to MI and NDT x-ray imaging. Future work on the same topic will also need to consider the relationship between SNR spectra or DE(u) and sufficient image quality.This question is about the minimal image quality required for a specific measurement task.}, subject = {Bildqualit{\"a}t}, language = {en} } @phdthesis{Wagner2003, author = {Wagner, Joachim}, title = {Optische Charakterisierung von II-VI-Halbleiter-Oberfl{\"a}chen in Kombination mit First-Principles-Rechnungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8722}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In dieser Arbeit sind Methoden der optischen Spektroskopie, insbesondere die Ramanspektroskopie (RS) und die Reflexions-Anisotropie-Spektroskopie (RAS), angewandt worden, um die Oberfl{\"a}chen von II-VI Halbleitern zu charakterisieren. F{\"u}r die experimentellen Untersuchungen wurde eine eigens f{\"u}r diesen Zweck entwickelte UHV-Optikkammer benutzt. Diese einzigartige M{\"o}glichkeit, II-VI Halbleiterproben aus einer state-of-the-art MBE-Anlage mit einer UHV-Optikanlage zu kombinieren hat gezeigt, dass optische Spektroskopie sehr gut daf{\"u}r geeignet ist, strukturelle Eigenschaften, z.B. Rekonstruktionen, und chemische Bindungen an Oberfl{\"a}chen, sowie die damit verbundene Schwingungsdynamik zu analysieren. Neben den experimentellen Arbeiten wurden u. a. first principles Rechnungen mittels der Dichtefunktionaltheorie im Rahmen der Lokalen-Dichte-Approximation durchgef{\"u}hrt. Damit konnten f{\"u}r die Oberfl{\"a}chen einerseits ihre geometrischen Eigenschaften, d.h die atomare Anordnung der Oberfl{\"a}chenatome, und andererseits auch ihre Dynamik, d.h. die Schwingungsfrequenzen und die Auslenkungsmuster der an der Rekonstruktion beteiligten Atome der Oberfl{\"a}che und der oberfl{\"a}chennahen Schichten, im Rahmen der Frozen-Phonon-N{\"a}herung bestimmt werden. Die Kombination von experimenteller und theoretischer Vibrationsbestimmung von Oberfl{\"a}chen bietet also, neben den klassischen Oberfl{\"a}chen-Analysemethoden wie RHEED, LEED, XPS, Auger und SXRD, ein zus{\"a}tzliches Werkzeug zur Charakterisierung von Oberfl{\"a}chen. Da die Frozen-Phonon-N{\"a}herung nicht elementarer Bestandteil des hier benutzten DFT-Programmcodes fhi96md ist, wurde diese Erweiterung im Rahmen dieser Arbeit durchgef{\"u}hrt. Die theoretische Berechnung von Schwingungsfrequenzen mit dynamischen Matrizen ist in einem Unterkapitel dargestellt. Die so berechneten Schwingungsfrequenzen f{\"u}r verschiedene Oberfl{\"a}chen-Rekonstruktionen konnten erfolgreich am Beispiel der reinen BeTe(100)-Oberfl{\"a}che mit den experimentell mit der UHV-Ramanspektroskopie beobachteten Frequenzen verglichen werden. So gelang erstmalig die optische identifizierung von rekonstruktionsinduzierten Eigenschwingungen einer Oberfl{\"a}che. Nach detaillierter Kenntnis der BeTe(100)-Oberfl{\"a}che wurde die Ramanspektroskopie als Sonde benutzt, um die Entwicklung der BeTe-Oberfl{\"a}che bei unterschiedlichen Behandlungen (Modifikation) zu verfolgen. Dabei dienten die fr{\"u}heren Ergebnisse als Referenzpunkte, um die modifizierten Spektren zu erkl{\"a}ren. Zus{\"a}tzlich wurde ein Konzept zur Passivierung der Te-reichen BeTe(100)-Oberfl{\"a}che entwickelt, um diese Proben ohne einen technisch aufwendigen UHV-Transportbeh{\"a}lter {\"u}ber gr{\"o}ssere Entfernungen transportieren zu k{\"o}nnen (z.B. zu Experimenten an einem Synchrotron). Mit der RAS wurden auch die Oberfl{\"a}chen von weiteren Gruppe II-Telluriden, n{\"a}mlich die Te-reiche (2x1) CdTe(100)-Oberfl{\"a}che, die Te-reiche (2x1) MnTe(100)-Oberfl{\"a}che und die Hg-reiche c(2x2) HgTe(100)-Oberfl{\"a}che untersucht. Schließlich wurde der Wachstumsstart von CdSe auf der BeTe(100)-Oberfl{\"a}che im Bereich weniger Monolagen (1-5 ML) CdSe analysiert, wobei die hohe Empfindlichkeit der Ramanspektroskopie bereits den Nachweis einer Monolage CdSe erlaubte.}, subject = {Zwei-Sechs-Halbleiter}, language = {de} } @phdthesis{Weinlaeder2003, author = {Weinl{\"a}der, Helmut}, title = {Optische Charakterisierung von Latentw{\"a}rmespeichermaterialien zur Tageslichtnutzung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In dieser Arbeit wurde untersucht, inwieweit sich durch den Einsatz von Latentw{\"a}rmespeichermaterialien (kurz PCM = phase change material) Tageslichtelemente realisieren lassen, welche einen Teil der eingestrahlten Solarenergie zwischenspeichern und zeitverz{\"o}gert w{\"a}hrend der Abend- und Nachtstunden wieder an den Innenraum abgeben. Hierdurch lassen sich mehrere Effekte erzielen: Der bei Verglasungen auftretende starke W{\"a}rmeeintrag w{\"a}hrend des Tages wird ged{\"a}mpft und bis in die Abend- und Nachtstunden ausgedehnt. Im Sommer f{\"u}hrt dies zu geringeren K{\"u}hllasten. Die zeitlich verz{\"o}gerten abends auftretenden W{\"a}rmeeintr{\"a}ge k{\"o}nnen bei Bedarf {\"u}ber Nachtl{\"u}ftung abgef{\"u}hrt werden. Im Winter sind die solaren Gewinne zeitlich besser mit den W{\"a}rmeverlusten korreliert was ihren Nutzungsgrad erh{\"o}ht. Dies f{\"u}hrt zu geringerem Heizenergiebedarf. Weiter wird im Winter aufgrund der Erh{\"o}hung der Systemoberfl{\"a}chentemperatur durch den Phasenwechsel des PCM die thermische Behaglichkeit in den Abendstunden vor allem in Systemn{\"a}he gesteigert. Im Sommer bleiben die Oberfl{\"a}chentemperaturen tags{\"u}ber niedrig, sofern ein PCM mit entsprechender Schmelztemperatur (<30°C) gew{\"a}hlt wird, so dass auch zu diesen Zeiten die thermische Behaglichkeit verbessert wird. Es wurden drei Latentw{\"a}rmespeichermaterialien untersucht: ein Paraffin (RT25), sowie zwei Salzhydrate auf Basis von Kalziumchloridhexahydrat (S27) und Lithiumnitrattrihydrat (L30). Aus Messwerten des Transmissions- und Reflexionsgrades im fl{\"u}ssigen Zustand wurden die spektralen Daten der Brechungsindizes ermittelt. Strukturuntersuchungen der PCMs im festen Zustand erfolgten mittels Lichtmikroskopie und anhand von Streuverteilungsmessungen. Diese wurden mit der Mie-Theorie ausgewertet. Es wurde bei allen Materialien die Ausbildung einer Makrostruktur festgestellt, die wiederum mit einer Mikrostruktur unterlegt ist. Die Makrostruktur entsteht durch Grenzfl{\"a}chen Festk{\"o}rper-Luft beim Erstarren und Zusammenziehen der Materialien, die Mikrostruktur durch sehr feine Lufteinschl{\"u}sse und Grenzfl{\"a}chen innerhalb des Festk{\"o}rperger{\"u}sts. W{\"a}hrend die Makrostruktur vor allem bei den Salzhydraten in ihrer Gr{\"o}ße variiert und sich an die Beh{\"a}lterdicke anpasst, liegt die Gr{\"o}ße der Mikrostrukturen bei allen drei Materialien relativ konstant im Bereich um die 5-20 µm. Die Mikrostrukturen sind f{\"u}r die Lichtstreuung verantwortlich. Unter der Annahme, dass die Werte der Brechungsindizes im festen und fl{\"u}ssigen Zustand gleich sind, wurden mit dem 3-Fluss-Modell die spektralen effektiven Streukoeffizienten der festen PCMs bestimmt. Mit den ermittelten Gr{\"o}ßen lassen sich die optischen Eigenschaften der Materialien im festen und fl{\"u}ssigen Zustand f{\"u}r Schichtdicken zwischen 1,5 mm und 4 cm berechnen. Alle drei Materialien zeigen eine hohe Transmission im sichtbaren Spektralbereich und eine starke Absorption im Nahinfraroten. Dieses Verhalten ist f{\"u}r den Einsatz in Tageslichtelementen g{\"u}nstig, da man dort das sichtbare Licht zur Raumausleuchtung nutzen und den nahinfraroten Anteil in Form von W{\"a}rme speichern will. F{\"u}r den Einsatz im Tageslichtelement m{\"u}ssen die PCMs auslaufsicher in Beh{\"a}lter eingebracht werden. Hierf{\"u}r wurden Stegdoppelplatten (SDP) aus Plexiglas verwendet. Zwei Funktionsmuster mit RT25 und S27, bestehend aus einer W{\"a}rmeschutzverglasung, hinter der die PCM-bef{\"u}llten SDPs angebracht waren, wurden unter nat{\"u}rlichen Klimabedingungen vermessen. Die Messdaten dienten zur Validierung eines Simulationsprogramms, mit dem das Verhalten der drei PCM-Tageslichtelemente unter genormten Bedingungen im Sommer- und Winterbetrieb untersucht wurde. Messungen und Simulationsrechnungen ergaben, dass die gew{\"u}nschten Effekte (D{\"a}mpfung der Energiegewinne tags{\"u}ber, Verschiebung der Gewinne vom Tag in die Abend- und Nachtstunden, sowie Verbesserung der thermischen Behaglichkeit) mit den PCM-Tageslichtelementen erreicht werden. Anhand von Optimierungsrechnungen wurde gezeigt, dass die Energieeinkopplung in das PCM erh{\"o}ht werden muss. Dies kann durch Beimengung absorbierender Materialien in das PCM oder durch Verwendung von Beh{\"a}ltern mit h{\"o}herer Absorption geschehen. Bei derart optimierten Tageslichtelementen sind Schichtdicken von rund 5 mm PCM ausreichend. Lichttechnische Untersuchungen ergaben, dass die Tageslichtelemente mit PCM oft ein stark inhomogenes optisches Erscheinungsbild zeigen, vor allem w{\"a}hrend des Phasenwechsels. Deshalb sollten f{\"u}r den Einsatz in der Praxis M{\"o}glichkeiten zur Kaschierung vorgesehen werden. Dies l{\"a}sst sich z.B. durch streuende Beh{\"a}lter erreichen. Problematisch ist die Dichtigkeit der Beh{\"a}lter, vor allem wenn Salzhydrate als PCM verwendet werden. Die Kristalle {\"u}ben beim Wachstum starke Kr{\"a}fte auf die Beh{\"a}lterwandungen aus, so dass diese besonders bei gr{\"o}ßeren Beh{\"a}lterabmessungen dem Druck nicht standhalten und Risse bilden. Hier ist noch Entwicklungsarbeit zu leisten.}, subject = {Tageslichtelement}, language = {de} } @phdthesis{Keller2004, author = {Keller, Dirk}, title = {Optische Eigenschaften ZnSe-basierter zweidimensionaler Elektronengase und ihre Wechselwirkung mit magnetischen Ionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In dieser Arbeit wurden nichtmagnetische und semimagnetische ZnSe-basierte Quantentr{\"o}ge untersucht. Im Mittelpunkt des Interesses standen hierbei vor allem die Modifikation der optischen Spektren mit einer zunehmenden Modulationsdotierung der Strukturen und der Einfluss von Spinflip-Streuungen der freien Band-Elektronen an den Mn-Ionen auf die Magnetisierung und somit die Zeeman-Aufspaltung der Strukturen. Als experimentelle Methoden wurden Photolumineszenz (PL), Photolumineszenzanregung (PLE) und Reflexionsmessungen verwendet, die in Magnetfeldern von bis zu B=48 T und bei Temperaturen im Bereich von 1.6 K bis 70 K durchgef{\"u}hrt wurden. Dar{\"u}ber hinaus wurde die Abh{\"a}ngigkeit der Spin-Gitter-Relaxationszeit der Mn-Ionen von der Mn-Konzentration und der Elektronengasdichte in den Quantentr{\"o}gen durch zeitaufgel{\"o}ste Lumineszenzmessungen untersucht. Der Einfluss eines Gradienten in der s/p-d-Austauschwechselwirkung auf die Diffusion der Ladungstr{\"a}ger bildet einen weiteren Schwerpunkt dieser Arbeit. Als experimentelle Methode wurde hierbei ortsaufgel{\"o}ste Lumineszenz verwendet.}, subject = {Zinkselenid}, language = {de} } @phdthesis{Kistner2011, author = {Kistner, Caroline}, title = {Optische Spektroskopie an elektrisch kontaktierten Mikros{\"a}ulenresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Der große Fortschritt der Halbleitertechnologie erm{\"o}glichte es in den letzten Jahren quantenoptische Ph{\"a}nomene nicht mehr nur ausschließlich an Atomen, sondern auch in einer Festk{\"o}rpermatrix zu beobachten. Von besonderem Interesse sind dabei Ph{\"a}nomene der Licht-Materie-Wechselwirkung im Kontext der Quantenelektrodynamik in Kavit{\"a}ten. Die {\"a}ußerst aktive Forschung auf diesem Gebiet r{\"u}hrt daher, dass diese Ph{\"a}nomene bei der Realisierung neuartiger Lichtquellen f{\"u}r die Quanteninformationstechnologie ben{\"o}tigt werden. Die Verwirklichung von solchen speziellen Lichtquellen auf Halbleiterbasis besitzt entscheidende Vorteile im Hinblick auf die praktische Anwendbarkeit aufgrund der potentiell hohen Skalierbarkeit und Effizienz. Jedoch kann die erforderliche Licht-Materie-Wechselwirkung nur in qualitativ sehr hochwertigen Halbleiterstrukturen mit quasi nulldimensionalem Ladungstr{\"a}ger- und Lichteinschluss erfolgen. Hierbei wurden in den letzten Jahren enorme technologische Fortschritte bei der Prozessierung von Mikrokavit{\"a}ten mit Quantenpunkten in der aktiven Schicht sowie bei der Beobachtung der gew{\"u}nschten Licht-Materie-Wechselwirkung erzielt. Allerdings erfolgten diese Untersuchungen in erster Linie an optisch mithilfe eines externen Lasers angeregten Strukturen, wohingegen f{\"u}r die Praxis ein elektrischer Betrieb w{\"u}nschenswert ist. Die f{\"u}r die elektrische Anregung von solchen Mikrostrukturen notwendige Kontaktierung kann dar{\"u}ber hinaus zur effizienten Manipulation der Emissionseigenschaften der Quantenemitter mittels eines elektrischen Feldes eingesetzt werden. Vor diesem Hintergrund werden im Rahmen dieser Arbeit die optischen und elektrischen Eigenschaften von kontaktierten Quantenpunkt-Mikros{\"a}ulenkavit{\"a}ten eingehend untersucht. Ausgangspunkt dieser Mikrokavit{\"a}ten sind planare Schichtstrukturen auf der Basis von GaAs und AlAs mit InGaAs-Quantenpunkten mit variierendem Indiumgehalt in der aktiven Schicht. Der Schwerpunkt der Untersuchungen lag hierbei auf vertikal elektrisch kontaktierten Mikros{\"a}ulenresonatoren, deren Aufbau vertikal emittierenden Laserdioden {\"a}hnelt. Die Besonderheit der neuartigen Kontaktierung liegt darin, dass aufgrund der Strominjektion durch die Seitenw{\"a}nde im oberen Bereich des Mikros{\"a}ulenresonators die Facette der Struktur frei von jeglichem absorbierenden Material gehalten wird. Hierdurch kann eine effiziente Lichtauskopplung gew{\"a}hrleistet werden. Des Weiteren wurde auch ein Verfahren zur seitlichen Kontaktierung von undotierten Mikros{\"a}ulenresonatoren entwickelt und optimiert, was eine spezielle Manipulation der Quantenpunktemission in einem lateralen elektrischen Feld erlaubt. Als Untersuchungsmethode wird bei allen Experimenten in erster Linie die Mikrolumineszenzspektroskopie bei tiefen Temperaturen verwendet und durch die Methode der Photostromspektroskopie sowie Autokorrelationsmessungen erster und zweiter Ordnung erg{\"a}nzt ...}, subject = {Galliumarsenidlaser}, language = {de} } @phdthesis{Schmidt2009, author = {Schmidt, Thomas}, title = {Optische Untersuchung und Kontrolle der Spindynamik in Mn dotierten II-VI Quantenpunkten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36033}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die vorliegende Arbeit befasste sich mit dem Spin- und dem damit eng verbundenen Polarisationszustand von Ladungstr{\"a}gern in CdSe/ZnSe Quantenpunkten. II-VI Materialsysteme k{\"o}nnen in geeigneter Weise mit dem Nebengruppenelement Mangan gemischt werden. Diese semimagnetischen Nanostrukturen weisen eine Vielzahl von charakteristischen optischen und elektrischen Besonderheiten auf. Verantwortlich daf{\"u}r ist eine Austauschwechselwirkung zwischen dem Spin optisch erzeugter Ladungstr{\"a}ger und den 3d Elektronen der Mn Ionen. Im Rahmen dieser Arbeit erfolgte die Adressierung gezielter Spinzust{\"a}nde durch optische Anregung der Ladungstr{\"a}ger. Die Besetzung unterschiedlicher Spinzust{\"a}nde konnte durch Detektion des Polarisationsgrades der emittierten Photolumineszenz (PL) bestimmt werden. Dabei kamen verschiedene optische Methoden wie zeitaufgel{\"o}ste und zeitintegrierte PL-Spektroskopie sowie Untersuchungen in Magnetfeldern zum Einsatz.}, subject = {Halbleiterschicht}, language = {de} } @phdthesis{Zimmermann2006, author = {Zimmermann, J{\"o}rg}, title = {Optische Wellenleiter und Filter in photonischen Kristallen auf Indiumphosphid-Basis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21767}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Im Rahmen dieser Arbeit wurden optische Wellenleiter und Filter in zweidimensionalen photonischen Kristallen auf Indiumphosphid-Basis hergestellt, numerisch modelliert sowie experimentell im f{\"u}r die optische Nachrichtentechnik wichtigen Wellenl{\"a}ngenbereich um 1,55 µm untersucht. Photonische Kristalle weisen eine periodische Variation des Brechungsindex auf. Durch das gezielte Einbringen von Defekten in die periodische Struktur ist eine Manipulation der photonischen Zustandsdichte und somit der Lichtausbreitung m{\"o}glich. Grundbaustein der durchgef{\"u}hrten Untersuchungen ist der lineare Defektwellenleiter in einem triangul{\"a}ren Gitter aus Luftl{\"o}chern in einer Halbleitermatrix, der durch das Auslassen von einer oder mehreren Lochreihen entsteht. Die Wellenf{\"u}hrung in vertikaler Richtung wird durch eine Halbleiterheterostruktur mit einer Wellenleiterkernschicht aus InGaAsP oder InGaAlAs und Mantelschichten mit niedrigerem Brechungsindex realisiert. Die Einbettung des zweidimensionalen Lochgitters in die InP-basierte Halbleiterheterostruktur erlaubt die Integration mit aktiven optoelektronischen Bauteilen wie Sende- und Empfangselementen sowie die Verwendung bestehender Halbleiterstrukturierungstechnologien. Die photonischen Kristall-Wellenleiter wurden mit hochaufl{\"o}sender Elektronenstrahllithographie und einem zweistufigen Trocken{\"a}tzprozess hergestellt. Damit konnten Lochradien von 100 nm und Lochtiefen von 4 µm realisiert werden. Zur experimentellen Untersuchung der hergestellten Strukturen wurden Messpl{\"a}tze f{\"u}r die optische Charakterisierung von Transmission und chromatischer Dispersion von photonischen Kristall-Wellenleitern und -Filtern aufgebaut und die Phasenverschiebungsmethode sowie die Modulationsmethode mit Offset angewendet. Damit konnte erstmals direkt die Gruppenlaufzeitdispersion eines photonischen Kristall-Wellenleiter-Filters gemessen werden. Numerische Untersuchungen wurden mit dem Verfahren der Entwicklung nach ebenen Wellen sowie mit dem FDTD-Verfahren durchgef{\"u}hrt. Die photonischen Kristall-Wellenleiter besitzen mehrere Wellenleitermoden, die teilweise refraktiven (auf Totalreflexion beruhenden) und teilweise diffraktiven (auf Bragg-Reflexion beruhenden) Charakter haben. Je nach Symmetrie treten zwischen den Moden Ministoppb{\"a}nder auf, die sich im Transmissionsspektrum als Intensit{\"a}tseinbr{\"u}che darstellen. Die spektrale Lage dieser Ministoppb{\"a}nder h{\"a}ngt von der Wellenleitergeometrie ab. Messungen an Wellenleitern mit verschiedener L{\"a}nge zeigen eine starke Variation der spektralen Breite der Ministoppb{\"a}nder. Diese kann mit der Theorie der gekoppelten Moden unter Annahme unterschiedlicher D{\"a}mpfungswerte f{\"u}r die gekoppelten Wellenleitermoden erkl{\"a}rt werden. Die entscheidene Wellenleitereigenschaft f{\"u}r praktische Anwendungen ist die Wellenleiterd{\"a}mpfung. Diese wurde mit den Verfahren der Fabry-P{\´e}rot-Resonanzen sowie der L{\"a}ngenvariation experimentell bestimmt. Durch Wahl eines geeigneten Schichtaufbaus und Optimierung der Herstellungsprozesse konnten die f{\"u}r das untersuchte Materialsystem niedrigsten D{\"a}mpfungswerte in photonischen Kristall-Wellenleitern erzielt werden. F{\"u}r W7-, W5- und W3-Wellenleiter wurden D{\"a}mpfungswerte von 0,2 dB/mm, 0,6 dB/mm und 1,5 dB/mm erreicht, die schmaleren W1-Wellenleiter zeigen Verluste von 27 dB/mm. Zwei Typen optischer Wellenleiter-Filter wurden untersucht: Richtkoppler sowie Resonatoren. Photonische Kristall-Wellenleiter-Richtkoppler eignen sich als ultrakompakte Demultiplexer und Kanal-Auslasser. Bei den experimentell realisierten photonischen Kristall-Wellenleiter-Richtkopplern konnte das eingekoppelte Licht je nach Wellenl{\"a}nge in den einen oder anderen Ausgangswellenleiter gelenkt werden. Bei photonischen Kristall-Wellenleitern mit Resonatoren konnten G{\"u}te-Faktoren bis zu 1,5*10^4 bei einem Kanalabstand von 100 GHz realisiert werden. Die Gruppenlaufzeitdispersion in diesen Strukturen variiert zwischen -250 ps/nm und +250 ps/nm, so dass mit einem 420 µm langen photonischen Kristall-Wellenleiter-Filter die Dispersion von 15 km Standardglasfaser bei 1,55 µm Wellenl{\"a}nge kompensiert werden kann. Mit Hilfe von kleinen Temperatur{\"a}nderungen kann die Resonanzkurve verschoben werden. Der demonstrierte photonische Kristall-Wellenleiter-Resonator stellt daher einen miniaturisierten durchstimmbaren Dispersionskompensator dar.}, subject = {Photonischer Kristall}, language = {de} } @phdthesis{Pfenning2018, author = {Pfenning, Andreas Theo}, title = {Optoelektronische Transportspektroskopie an Resonanztunneldioden-Fotodetektoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163205}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit optoelektronischer Transportspektroskopie verschiedener Resonanztunneldioden (RTDs). Die Arbeit ist thematisch in zwei Schwerpunktee untergliedert. Im ersten Schwerpunkt werden anhand GaAs-basierter RTD-Fotosensoren f{\"u}r den Telekommunikationswellenl{\"a}ngenbereich um 1,3 µm die Akkumulationsdynamiken photogenerierter Minorit{\"a}tsladungstr{\"a}ger und deren Wirkung auf den RTD-Tunnelstrom untersucht. Im zweiten Schwerpunkt werden GaSb-basierte Al(As)Sb/GaSb-Doppelbarrieren-Quantentrog-RTDs in Hinblick auf ihren Raumtemperaturbetrieb entwickelt und erforscht. Diese legen den Grundstein f{\"u}r die sp{\"a}tere Realisation von RTD-Fotodetektoren im mittleren infraroten (MIR) Spektralbereich. Im Folgenden ist eine kurze inhaltliche Zusammenfassung der einzelnen Kapitel gegeben. Kapitel 1 leitet vor dem Hintergrund eines stark steigenden Bedarfs an verl{\"a}sslichen und sensitiven Fotodetektoren f{\"u}r Telekommunikationsanwendungen sowie f{\"u}r die optische Molek{\"u}l- und Gasspektroskopie in das {\"u}bergeordnete Thema der RTD-Fotodetektoren ein. Kapitel 2 erl{\"a}utert ausgew{\"a}hlte physikalische und technische Grundlagen zu RTD-Fotodetektoren. Ausgehend von einem kurzem {\"U}berblick zu RTDs, werden aktuelle Anwendungsgebiete aufgezeigt und die physikalischen Grundlagen elektrischen Transports in RTDs diskutiert. Anschließend werden Grundlagen, Definitionen und charakteristische Kenngr{\"o}ßen optischer Detektoren und Sensoren definiert. Abschließend werden die physikalischen Grundlagen zum Fotostrom in RTDs beschrieben. In Kapitel 3 RTD-Fotosensor zur Lichtdetektion bei 1,3 µm werden AlGaAs/GaAs-Doppelbarrieren-Quantentrog-Resonanztunneldioden (DBQW-RTDs) mit gitterangepasster, quatern{\"a}rer GaInNAs-Absorptionsschicht als Raumtemperatur-Fotodetektoren f{\"u}r den nahen infraroten (NIR) Spektralbereich bei der Telekommunikationswellenl{\"a}nge von λ=1,3 µm untersucht. RTDs sind photosensitive Halbleiterbauteile, die innerhalb der vergangenen Jahre aufgrund ihrer hohen Fotosensitivit{\"a}t und F{\"a}higkeit selbst einzelne Photonen zu detektieren, ein beachtliches Interesse geweckt haben. Die RTD-Fotosensitivit{\"a}t basiert auf einer Coulomb-Wechselwirkung photogenerierter und akkumulierter Ladungstr{\"a}ger. Diese ver{\"a}ndern das lokale elektrostatische Potential und steuern so einen empfindlichen Resonanztunnelstrom. Die Kenntnis der zugrundeliegenden physikalischen Parameter und deren Spannungsabh{\"a}ngigkeit ist essentiell, um optimale Arbeitspunkte und Bauelementdesigns zu identifizieren. Unterkapitel 3.1 gibt einen {\"U}berblick {\"u}ber das Probendesign der untersuchten RTD-Fotodetektoren, deren Fabrikationsprozess sowie eine Erl{\"a}uterung des Fotodetektionsmechanismus. {\"U}ber Tieftemperatur-Elektrolumineszenz-Spektroskopie wird die effektive RTD-Quantentrog-Breite zu d_DBQW≃3,4 nm bestimmt. Die Quantisierungsenergien der Elektron- und Schwerloch-Grundzust{\"a}nde ergeben sich zu E_Γ1≈144 meV und E_hh1≈39 meV. Abschließend wird der in der Arbeit verwendeten Messaufbau skizziert. In Unterkapitel 3.2 werden die physikalischen Parameter, die die RTD-Fotosensitivit{\"a}t bestimmen, auf ihre Spannungsabh{\"a}ngigkeit untersucht. Die Fotostrom-Spannungs-Kennlinie des RTD-Fotodetektors ist nichtlinear und {\"u}ber drei spannungsabh{\"a}ngige Parametern gegeben: der RTD-Quanteneffizienz η(V), der mittleren Lebensdauer photogenerierter und akkumulierter Minorit{\"a}tsladungstr{\"a}ger (L{\"o}cher) τ(V) und der RTD-I(V)-Kennlinie im Dunkeln I_dark (V). Die RTD Quanteneffizienz η(V) kann {\"u}ber eine Gaußsche-Fehlerfunktion modelliert werden, welche beschreibt, dass Lochakkumulation erst nach {\"U}berschreiten einer Schwellspannung stattfindet. Die mittlere Lebensdauer τ(V) f{\"a}llt exponentiell mit zunehmender Spannung V ab. {\"U}ber einen Vergleich mit thermisch limitierten Lebensdauern in Quantentr{\"o}gen k{\"o}nnen Leitungsband- und Valenzband-Offset zu Q_C \≈0,55 und Q_V≈0,45 abgesch{\"a}tzt werden. Basierend auf diesen Ergebnissen wird ein Modell f{\"u}r die Fotostrom-Spannungs-Kennlinie erstellt, das eine elementare Grundlage f{\"u}r die Charakterisierung von RTD-Photodetektoren bildet. In Unterkapitel 3.3 werden die physikalischen Parameter, die die RTD-Fotosensitivit{\"a}t beschr{\"a}nken, detailliert auf ihre Abh{\"a}ngigkeit gegen{\"u}ber der einfallenden Lichtleistung untersucht. Nur f{\"u}r kleine Lichtleistungen wird eine konstante Sensitivit{\"a}t von S_I=5,82×〖10〗^3 A W-1 beobachtet, was einem Multiplikationsfaktor von M=3,30×〖10〗^5 entspricht. F{\"u}r steigende Lichtleistungen f{\"a}llt die Sensitivit{\"a}t um mehrere Gr{\"o}ßenordnungen ab. Die abfallende, nichtkonstante Sensitivit{\"a}t ist maßgeblich einer Reduktion der mittleren Lebensdauer τ zuzuschreiben, die mit steigender Lochpopulation exponentiell abf{\"a}llt. In Kombination mit den Ergebnissen aus Unterkapitel 3.2 wird ein Modell der RTD-Fotosensitivit{\"a}t vorgestellt, das die Grundlage einer Charakterisierung von RTD-Fotodetektoren bildet. Die Ergebnisse k{\"o}nnen genutzt werden, um die kritische Lichtleistung zu bestimmen, bis zu der der RTD-Fotodetektor mit konstanter Sensitivit{\"a}t betrieben werden kann, oder um den idealen Arbeitspunkt f{\"u}r eine minimale rausch{\"a}quivalente Leistung (NEP) zu identifizieren. Dieser liegt f{\"u}r eine durch theoretisches Schrotrauschen limitierte RTD bei einem Wert von NEP=1,41×〖10〗^(-16) W Hz-1/2 bei V=1,5 V. In Kapitel 4 GaSb-basierte Doppelbarrieren-RTDs werden unterschiedliche Al(As)Sb/GaSb-DBQW-RTDs auf ihre elektrische Transporteigenschaften untersucht und erstmalig resonantes Tunneln von Elektronen bei Raumtemperatur in solchen Resonanztunnelstrukturen demonstriert. Unterkapitel 4.1 beschreibt den Wachstums- und der Fabrikationsprozess der untersuchten AlAsSb/GaSb-DBQW-RTDs. In Unterkapitel 4.2 wird Elektronentransport durch eine AlSb/GaSb-DBQW-Resonanztunnelstruktur untersucht. Bei einer Temperatur von T=4,2 K konnte resonantes Tunneln mit bisher unerreicht hohen Resonanz-zu-Talstrom-Verh{\"a}ltnisse von PVCR=20,4 beobachtet werden. Dies wird auf die exzellente Qualit{\"a}t des Halbleiterkristallwachstums und des Fabrikationsprozesses zur{\"u}ckgef{\"u}hrt. Resonantes Tunneln bei Raumtemperatur konnte hingegen nicht beobachtet werden. Dies wird einer Besonderheit des Halbleiters GaSb zugeschrieben, welche daf{\"u}r sorgt, dass bei Raumtemperatur die Mehrheit der Elektronen Zust{\"a}nde am L-Punkt anstelle des Γ Punktes besetzt. Resonantes Tunneln {\"u}ber den klassischen Γ Γ Γ-Tunnelpfad ist so unterbunden. In Unterkapitel 4.3 werden die elektrischen Transporteigenschaften von AlAsSb/GaSb DBQW RTDs mit pseudomorph gewachsenen tern{\"a}ren Vorquantentopfemittern untersucht. Der prim{\"a}re Zweck der Vorquantentopfstrukturen liegt in der Erh{\"o}hung der Energieseparation zwischen Γ- und L-Punkt. So kann Elektronentransport {\"u}ber L- Kan{\"a}le unterdr{\"u}ckt und Elektronenzust{\"a}nde am Γ-Punkt wiederbev{\"o}lkert werden. Zudem ist bei gen{\"u}gend tiefen Vorquantentopfstrukturen aufgrund von Quantisierungseffekten eine Verbesserung der RTD-Transporteigenschaften m{\"o}glich. Strukturen ohne Vorquantentopf-Emitter zeigen ein Tieftemperatur- (T=77 K) Resonanz-zu-Talstrom-Verh{\"a}ltnis von PVCR=8,2, w{\"a}hrend bei Raumtemperatur kein resonantes Tunneln beobachtet werden kann. Die Integration von Ga0,84In0,16Sb- beziehungsweise GaAs0,05Sb0,95-Vorquantentopfstrukturen f{\"u}hrt zu resonantem Tunneln bei Raumtemperatur mit Resonanz-zu-Talstrom-Verh{\"a}ltnissen von PVCR=1,45 und 1,36. In Unterkapitel 4.4 wird die Abh{\"a}ngigkeit der elektrischen Transporteigenschaften von AlAsSb/GaSb RTDs vom As-Stoffmengenanteil des GaAsSb-Emitter-Vorquantentopfs und der AlAsSb-Tunnelbarriere untersucht. Eine Erh{\"o}hung der As-Stoffmengenkonzentration f{\"u}hrt zu einem erh{\"o}hten Raumtemperatur-PVCR mit Werten von bis zu 2,36 bei gleichzeitig reduziertem Tieftemperatur-PVCR. Das reduzierte Tieftemperatur-Transportverm{\"o}gen wird auf eine mit steigendem As-Stoffmengenanteil zunehmend degradierende Kristallqualit{\"a}t zur{\"u}ckgef{\"u}hrt. In Kapitel 5 AlAsSb/GaSb-RTD-Fotosensoren zur MIR-Lichtdetektion werden erstmalig RTD-Fotodetektoren f{\"u}r den MIR-Spektralbereich vorgestellt und auf ihre optoelektronischen Transporteigenschaften hin untersucht. Zudem wird erstmalig ein p-dotierter RTD-Fotodetektor demonstriert. In Unterkapitel 5.1 wird das Probendesign GaSb-basierter RTD-Fotodetektoren f{\"u}r den mittleren infraroten Spektralbereich vorgestellt. Im Speziellen werden Strukturen mit umgekehrter Ladungstr{\"a}gerpolarit{\"a}t (p- statt n-Dotierung, L{\"o}cher als Majorit{\"a}tsladungstr{\"a}ger) vorgestellt. In Unterkapitel 5.2 werden die optischen Eigenschaften der gitterangepassten quatern{\"a}ren GaInAsSb-Absorptionsschicht mittels Fourier-Transformations-Infrarot-Spektroskopie untersucht. {\"U}ber das Photolumineszenz-Spektrum wird die Bandl{\"u}ckenenergie zu E_Gap≅(447±5) meV bestimmt. Das entspricht einer Grenzwellenl{\"a}nge von λ_G≅(2,77±0,04) µm. Aus dem niederenergetischen monoexponentiellem Abfall der Linienform wird eine Urbach-Energie von E_U=10 meV bestimmt. Der hochenergetische Abfall folgt der Boltzmann-Verteilungsfunktion mit einem Abfall von k_B T=25 meV. In Unterkapitel 5.3 werden die elektrischen Transporteigenschaften der RTD-Fotodetektoren untersucht und mit denen einer n-dotierten Referenzprobe verglichen. Erstmalig wird resonantes Tunneln von L{\"o}chern in AlAsSb/GaSb-DBQW-RTDs bei Raumtemperatur demonstriert. Dabei ist PVCR=1,58. Bei T=4,2 K zeigen resonantes Loch- und Elektrontunneln vergleichbare Kenngr{\"o}ßen mit PVCR=10,1 und PVCR=11,4. Die symmetrische I(V)-Kennlinie der p-dotierten RTD-Fotodetektoren deutet auf eine geringe Valenzbanddiskontinuit{\"a}t zwischen GaSb und der GaInAsSb-Absorptionsschicht hin. Zudem sind die p-dotierten RTDs besonders geeignet f{\"u}r eine sp{\"a}tere Integration mit Typ-II-{\"U}bergittern. In Unterkapitel 5.4 werden die optoelektronischen Transporteigenschaften p-dotierter RTD-Fotodetektoren untersucht. Das vorgestellte neuartige RTD-Fotodetektorkonzept, welches auf resonanten Lochtransport als Majorit{\"a}tsladungstr{\"a}ger setzt, bietet speziell im f{\"u}r den MIR-Spektralbereich verwendeten GaSb-Materialsystem Vorteile, l{\"a}sst sich aber auch auf das InP- oder GaAs- Materialsystem {\"u}bertragen. Die untersuchten p-dotierten Fotodetektoren zeigen eine ausgepr{\"a}gte Fotosensitivit{\"a}t im MIR-Spektralbereich. Fotostromuntersuchungen werden f{\"u}r optische Anregung mittels eines Halbleiterlasers der Wellenl{\"a}nge λ=2,61 µm durchgef{\"u}hrt. Bei dieser Wellenl{\"a}nge liegen fundamentale Absorptionslinien atmosph{\"a}rischen Wasserdampfs. Die Fotostrom-Spannungs-Charakteristik best{\"a}tigt, dass die Fotosensitivit{\"a}t auf einer Modulation des resonanten Lochstroms {\"u}ber Coulomb-Wechselwirkung akkumulierter photogenerierter Minorit{\"a}tsladungstr{\"a}ger (Elektronen) beruht. Es werden Sensitivit{\"a}ten von S_I=0,13 A W-1 ermittelt. Durch eine verbesserte RTD-Quanteneffizienz aufgrund eines optimierten Dotierprofils der Absorptionsschicht l{\"a}sst sich die Sensitivit{\"a}t auf S_I=2,71 A W-1 erh{\"o}hen, was einem Multiplikationsfaktor von in etwa M\≈8,6 entspricht. Gleichzeitig wird jedoch der RTD-Hebelfaktor verringert, sodass n_(RTD p2)=0,42⋅n_(RTD p1). Erstmalig wurde damit erfolgreich Gas-Absorptionsspektroskopie anhand von H2O-Dampf mittels MIR-RTD-Fotodetektor an drei beieinanderliegenden Absorptionslinien demonstriert.}, subject = {Resonanz-Tunneldiode}, language = {de} } @phdthesis{Sachs2010, author = {Sachs, S{\"o}nke}, title = {Organische Halbleiter: Fundamentale Aspekte von Metallkontakten, hochgeordneten Schichten und deren Anwendung in Feldeffekttransistoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48684}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Eingebettet in ein Konzept zum Aufbau eines Hochleistungs-Feldeffekt-Transistors auf der Basis organischer Halbleiter (OFET), werden in der vorliegenden Dissertation fundamentale Aspekte des Aufbaus und der Funktion organischer Halbleiter-Bauelemente erforscht. Die Kenntnis, welche maximale Leistungsf{\"a}higkeit organische Halbleiter in OFETs prinzipiell erreichen k{\"o}nnen, ist von elementarem Interesse, sowohl um Transportmodelle zu verfeinern, als auch um Mechanismen und Optimierungsans{\"a}tze zu finden, mit denen OFETs generell verbessert werden k{\"o}nnen. Es wird das Ziel verfolgt, sich der maximalen Leistungsf{\"a}higkeit eines gegebenen Materialsystems anzun{\"a}hern. Aufwendige Pr{\"a}parationsstrategien werden f{\"u}r dieses Ziel bewusst in Kauf genommen, auch wenn deshalb vermutlich kein direkter Zugang zu Anwendungen er{\"o}ffnet wird. An geeigneten Modellsystemen k{\"o}nnen einzelne wichtige Aspekte, wie die elektronische Struktur an Metallkontakten und im organischen Halbleitervolumen sowie das Wachstum von Schichten und Kristalliten organischer Halbleitermolek{\"u}le auf einkristallinen Isolatorsubstraten charakterisiert werden. Die Ergebnisse dieser grundlegenden Experimente fließen in den Aufbau des geplanten OFETs ein. Auf dem Weg zu einem funktionsf{\"a}higen Bauelement mit bestm{\"o}glichen Eigenschaften wurden wesentliche Fortschritte erzielt. Der erste Schwerpunkt dieser Arbeit ist die Untersuchung elektronischer Niveaus an Metallkontakt-Grenzfl{\"a}chen und im Volumen des Modellsystems PTCDA/Ag(111) mit Zwei-Photonen-Photoelektronenspektroskopie (2PPE). Die 2PPE-Spektren der PTCDA/Ag(111)-Grenzfl{\"a}che sind dominiert durch einen unbesetzten, parallel zur Grenzfl{\"a}che stark dispersiven Shockley-artigen Grenzfl{\"a}chenzustand (IS), der sich durch die Chemisorption der Molek{\"u}le auf der Ag(111)-Oberfl{\"a}che bildet. Bei der Untersuchung von intramolekular angeregten elektronischen Zust{\"a}nden von PTCDA mit 2PPE zeigen sich im Vergleich zum Untergrund der Spektren schwache Signale, die jedoch mit einer geeigneten Beschreibung des Untergrunds davon separiert werden k{\"o}nnen. Besonders interessant ist in diesem Zusammenhang das LUMO, das bei einer Anregung aus dem HOMO eine um 0,4 eV st{\"a}rkere energetische Absenkung zeigt, als bei der Anregung aus dem HOMO-1. Dies kann durch die unterschiedlichen exzitonischen Zust{\"a}nde, die bei den Anregungen entstehen, erkl{\"a}rt werden. Neben den metallischen Kontakten ist die Grenzfl{\"a}che zwischen organischem Halbleiter und Gate-Isolator entscheidend f{\"u}r die Leistungsf{\"a}higkeit eines OFETs. Am Beispiel des Wachstums von Diindenoperylen-Molek{\"u}len (DIP) auf einkristallinen Al2O3-Substraten wurde die morphologische und strukturelle Ausbildung von organischen Halbleiterschichten mit optischer Mikroskopie und Rasterkraftmikroskopie untersucht. Das Wachstum kann als stark anisotrop charakterisiert werden. Die - im Vergleich zu den Bindungsenergien mit dem Substrat - deutlich gr{\"o}ßeren Bindungsenergien innerhalb der DIP-(001)-Kristallebenen f{\"u}hren bei Substrattemperaturen von 440 K zu einem Wachstum von aufrecht stehenden Molek{\"u}len. Es zeigt sich, dass die w{\"a}hrend des Wachstums herrschende Substrattemperatur einen entscheidenden Einfluss auf die Morphologie der DIP-Schicht hat. So nimmt die Inselgr{\"o}ße von etwa 200 nm bei 350 K auf {\"u}ber 700 nm bei 450 K zu. Außerdem wird ein Ansteigen der Filmrauheit, besonders ab etwa 430 K, beobachtet, das auf den {\"U}bergang zu einem anderen Wachstumsmodus bei diesen Temperaturen hinweist. Bei etwas h{\"o}heren Temperaturen von etwa 460 K wird das Wachstum von DIP-Kristalliten beobachtet. Dabei k{\"o}nnen - abh{\"a}ngig von den gew{\"a}hlten Pr{\"a}parationsparametern - drei unterschiedliche Kristallit-Typen unterschieden werden: „Mesa-Kristallite" mit lateralen Abmessungen von mehreren Mikrometern, „Dendritische Kristallite", die eine verzweigte Struktur aufweisen, die mithilfe der Wachstumskinetik erkl{\"a}rt werden kann und „Schichtkristallite", deren Morphologie sich durch teilweise starke Kr{\"u}mmungen auszeichnet. Insgesamt zeigt sich, dass die Morphologie kristalliner Strukturen durch eine feine Balance der Pr{\"a}parationsparameter Substrattemperatur, Aufdampfrate, Substratmorphologie und Substratreinheit bestimmt wird, so dass kleine {\"A}nderungen dieser Parameter zu deutlich unterschiedlichen Kristallitformen f{\"u}hren. Schließlich wird das Konzept zum Aufbau eines Hochleistungs-OFET vorgestellt und in Details weiterentwickelt. Fortschritte werden in erster Linie bei der Pr{\"a}paration der Gate-Elektrode erzielt, die unter dem Al2O3-Substrat angebracht werden soll. F{\"u}r die Ausd{\"u}nnung des Substrats wird eine Bohrtechnik weiterentwickelt und mit einer nasschemischen {\"A}tzmethode kombiniert, so dass Isolatorst{\"a}rken von unter 10 µm erreicht werden k{\"o}nnen. Erste wenige OFETs wurden auf der Basis dieses Substrats pr{\"a}pariert, allerdings ohne dass die Bauteile Feldeffekte zeigten. Verbesserungsm{\"o}glichkeiten werden diskutiert.}, subject = {Organischer Halbleiter}, language = {de} } @phdthesis{Daumer2005, author = {Daumer, Volker}, title = {Phase coherent transport phenomena in HgTe quantum well structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15538}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Although spintronics has aroused increasing interest, much fundamental research has to be done. One important issue is the control over the electronic spin. Therefore, spin and phase coherent transport are very important phenomena. This thesis describes experiments with mercury based quantum well structures. This narrow gap material provides a very good template to study spin related effects. It exhibits large Zeeman spin splitting and Rashba spin-orbit splitting. The latter is at least four to five times larger than in III-V semiconductors. Initially a short review on the transport theory was presented. The main focus as on quantisation effects that are important to understand the related experiments. Thus, Shubnikov-de Haas and the quantum Hall effect have been analysed. Due to the first fabrication of nanostructures on Hg-based quantum well samples, the observation of ballistic transport effects could be expected. Hence, the Landauer-B¨uttiker theory has been introduced which gives the theoretical background to understand such effects. With respect to the main topic of this thesis, phase coherence has been introduced in detail. Experiments, where coherence effects could be observed, have been explained theoretically. Here, possible measurement setups have been discussed, e.g., a ring shaped structure to investigate the Aharonov-Bohm and related effects. Due to the fact, that all experiments, described in this thesis, were performed on Hg-based samples, the exceptional position of such samples among the \&\#147;classical\&\#148; semiconductors has been clarified. Hg1-xMnx Te quantum wells are type-III QWs in contrast to the type-I QWs formed by e.g., GaAs/AlGaAs heterostructures. With a well width of more than 6 nm and a manganese content of less than 7\% they exhibit an inverted band alignment. Band structure calculations based on self consistent Hartree calculations have been presented. The common description of a diluted magnetic semiconductor with the Brillouin function has been introduced and the experiments to obtain the empiric parameters T0 and S0 have been presented. Rashba spin-orbit splitting and giant Zeeman splitting have been explained theoretically and the magnetic ordering of a spin glass as well as the relevant interactions therein have been discussed. The next chapter describes the first realisation of nanostructures on Hg-based heterostructures. Several material specific problems have been solved, but the unique features of this material system mentioned above justify the effort. Interesting new insight could be found and will be found with these structures. Onto a series of QW samples, cross-shaped structures with several lead widths have been patterned. With the non-local resistance measurement setup, evidence for quasiballistic transport was demonstrated in cross-shaped structures with lead widths down to 0.45 mm. The non-local bend resistance and a regime of rebound trajectories as well as the anomalous Hall effect could be identified. Monte-Carlo simulations of the classical electron trajectories have been performed. A good agreement with the experimental data has been achieved by taking a random scattering process into account. Encouraged by this success the technology has been improved and ring-shaped structures with radii down to 1 mm have been fabricated. Low temperature (below 100 mK), four terminal resistance measurements exhibit clear Aharonov-Bohm oscillations. The period of the oscillations agrees very well with a calculation that takes only the sample geometry into account. One goal using such a structure is the experimental prove of the spin-orbit Berry phase. Therefore an additional Shottky gate on top of the ring was needed. With this structure evidence for the Aharonov-Casher effect was observed. Here, a perpendicular applied electric field causes analogous oscillations as does the magnetic field in the AB effect. A subsequent change in the Rashba SO splitting due to several applied gate voltages while measuring the AB effect should reveal the SO Berry phase. Although initially evidence of a phase change was detected, a clear proof for the direct measurement of the SO Berry phase could not be found. In the future, with an advanced sample structure, e.g., with an additional Hall bar next to the ring, which permits a synchronous measurement of the Rashba splitting, it might be possible to measure the SO Berry phase directly. In manganese doped HgTe QWs two different effects simultaneously cause spin splitting: the giant Zeeman and the Rashba effect. By analysing the Shubnikovde Haas oscillations and the node positions of their beating pattern, it has been possible to separate these two effects. Whereas the Rashba effect can be identified by its dependence on the structure inversion asymmetry, varied by the applied gate voltage, the giant Zeeman splitting is extracted from its strong temperature dependence, because Rashba splitting is temperature independent. The analysis revealed, that the Rashba splitting is larger than or comparable to the giant Zeeman splitting even at moderately high magnetic fields. In an extraordinary HgMnTe QW sample, that exhibits the n= 1 quantum Hall plateau from less than 1 T up to 28 T, the anomalous Hall effect could be excluded. Intense studies on the temperature dependence of the QHE as well as band structure calculations have revealed this extraordinary behaviour to be an ordinary band structure effect of this system. In a series of mesoscopic structures on nonmagnetic and magnetic QWs, an investigation of the universal conductance uctuations have been carried out. In the}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Mingebach2012, author = {Mingebach, Markus Harald}, title = {Photocurrent in Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {A quite new approach to low-cost mass production of flexible solar cells are organic photovoltaics. Even though the device efficiencies increased rapidly during the last years, further imporvements are essential for a successful market launch. One important factor influencing the device efficiency is the photocurrent of a solar cell, which is defined as the difference between the current under illumination and in the dark. In case of organic bulk heterojunction (BHJ) solar cells it is — in contrast to inorganic devices — dependent on the applied bias voltage. The voltage dependence results in a reduced fill factor and thus an even more pronounced influence of the photocurrent on the device efficiency. It is therefore crucial to understand the underlying processes determining the photocurrent in order to be able to further improve the solar cell performance. In a first step the photocurrent of P3HT:PC61BM devices was investigated by a pulsed measurement technique in order to prevent disturbing influences due to device heating under continous illumination. The resulting photocurrent was hyperbolic tangent like and featured a point symmetry, whose origin and meaning were discussed. In addition, the photocurrent was described by a combined model of Braun-Onsager and Sokel-Hughes theory for field dependent polaron pair dissociation and charge extraction, respectively. After this macroscopic view on the photocurrent, the focus of this work moves to the more basic processes determining the photocurrent: charge photogeneration and recombination. In a comparative study the field-dependence of these was investigated by time-delayed collection field (TDCF) measurements for two well-known reference systems, namely P3HT:PC61BM and MDMO-PPV:PC61BM. It was possible to identify two different dominating scenarios for the generation of free charge carriers. The first one — via a thermalized charge transfer state (CTS) — is clearly influenced by geminate recombination and therefore less efficient. In the second scenario, the free charge carriers are either generated directly or via an excited, "hot" CTS. In addition, clear differences in the nongeminate recombination dynamics of both material systems were found. Similar studies were also be presented with two modern low bandgap polymers which only differ by the bridging atom in the cyclopentadithiophene (PCPDTBT:PC71BM vs. Si-PCPDTBT:PC71BM). Such small changes in the chemical structure were already sufficient to affect the charge photogeneration as well as the morphology of the blend. These findings were set into relation to current-voltage characteristics in order to discuss the origin of the clear differences in the solar cell performance of both materials. Another crucial parameter limiting the solar cell efficiency is the builtin potential of a device. Within the range of semiconducting pn-junctions, Mott-Schottky analysis is an established method to determine the built-in potential. As it was originally derived for abrupt pn-junctions, its validity for organic BHJ solar cells — a bipolar, effective medium — was discussed. Experimental findings as well as the contradictions to Mott-Schottky theory indicated, that a direct transfer of this method to organic photovoltaics is not appropriate. Finally, the results obtained in the framework of the MOPS-project (Massengedruckte Organische Papier-Solarzellen) will be presented, in which the first completely roll-to-roll printed paper solar cells were realized.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Kudriashova2019, author = {Kudriashova, Liudmila}, title = {Photoluminescence Reveals Charge Carrier Recombination in Organic and Hybrid Semiconductors}, doi = {10.25972/OPUS-19343}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193437}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In this work, we elucidated recombination kinetics in organic and hybrid semiconductors by steady-state and time-resolved PL spectroscopy. Using these simple and very flexible experimental techniques, we probed the infrared emission from recombining free charge carriers in metal-halide perovskites, as well as the deep blue luminescence from intramolecular charge-transfer states in novel OLED emitters. We showed that similar state diagrams and kinetic models accurately describe the dynamics of excited species in these very different material systems. In Chapters 4 and 5, we focused on lead iodide perovskites (MAPI and FAPI), whose comparatively developed deposition techniques suited the systematic material research. In MAPI, we harnessed the anomalous dependence of transient PL on the laser repetition rate in order to investigate the role of interfaces with the commonly used charge-selective layers: PC60BM, spiro-MeOTAD, and P3HT. The film was deposited on a large precut substrate and separated into several parts, which were then covered with the charge-selective layers. Thereby, the same bulk perovskite structure was maintained for all samples. Consequently, we were able to isolate interface-affected and bulk carrier recombination. The first one dominated the fast component of PL decay up to 300 ns, whereas the last was assigned to the remaining slow component. The laser repetition rate significantly prolonged PL decay in MAPI with additional interfaces while shortening the charge carrier lifetime in the pristine film. We qualitatively explained this effect by a kinetic model that included radiative electron-hole recombination and nonradiative trap-assisted recombination. All in all, we showed that the apparent PL lifetime in MAPI is to large extend defined by the laser repetition rate and by the adjacent interfaces. Further, we studied photon recycling in MAPI and FAPI. We monitored how the microscopic PL transforms while propagating through the thin perovskite film. The emission was recorded within 5orders of magnitude in intensity up to 70μm away from the excitation spot. The Beer-Lambert law previously failed to describe the complex interplay of the intrinsic PL spectrum and the additional red-shifted peak. Therefore, we developed a general numerical model that accounts for self-absorption and diffusion of the secondary charge carriers. A simulation based on this model showed excellent agreement with the experimental spatially resolved PL maps. The proposed model can be applied to any perovskite film, because it uses easily measurable intrinsic PL spectrum and macroscopic absorption coefficient as seeding parameters. In Chapter 6, we conducted an extensive photophysical study of a novel compact deep blue OLED emitter, SBABz4, containing spiro-biacridine and benzonitrile units. We also considered its single-donor monomer counterpart, DMABz4, in order to highlight the structure-property relationships. Both compounds exhibited thermally activated delayed fluorescence (TADF), which was independently proven by oxygen quenching and temperature-dependent transient PL measurements. The spiro-linkage in the double-donor core of SBABz4 rendered its luminescence pure blue compared to the blue-green emission from the single-donor DMABz4. Thus, the core-donor provided desirable color tuning in the deep blue region, as opposed to the common TADF molecular design with core-acceptor. Using PL lifetimes and efficiencies, we predicted EQEmax = 7.1\% for SBABz4-based OLED, whereas a real test device showed EQEmax = 6.8\%. Transient PL was recorded from the solutions and solid films in the unprecedentedly broad dynamic range covering up to 6orders of magnitude in time and 8orders of magnitude in intensity. The stretched exponent was shown to fit the transient PL in the films very well, whereas PL decay in dilute solution was found purely exponential. When the emitter was embedded in the host matrix that prevented aggregation, its TADF properties were superior in comparison with the pure SBABz4 film. Finally, using temperature-dependent transient PL data, we calculated the TADF activation energy of 70 meV. To sum up, this Thesis contributes to the two fascinating topics of the last decade's material research: perovskite absorbers for photovoltaics and TADF emitters for OLEDs. We were lucky to work with the emerging systems and tailor for them new models out of the well-known physical concepts. This was both exciting and challenging. In the end, science of novel materials is always a mess. We hope that we brought there a bit of clarity and light.}, subject = {Time-resolved photoluminescence}, language = {en} } @phdthesis{Muench2012, author = {M{\"u}nch, Steffen}, title = {Photolumineszenz-Spektroskopie an niederdimensionalen Halbleiterstrukturen auf III-V-Basis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit optischen Untersuchungen an niederdimensionalen III/V-Halbleiterstrukturen. Dabei werden zun{\"a}chst im ersten Teil selbst-organisiert gewachsene Nanodr{\"a}hte aus InP und GaN bez{\"u}glich ihrer Oberfl{\"a}chen- und Kristallqualit{\"a}t charakterisiert. Dies ist besonders im Hinblick auf zuk{\"u}nftige opto- und nanoelektronische Bauteile von Interesse. Der zweite, grundlagenorientierte Teil der Arbeit ist im Bereich der Quantenoptik angesiedelt und widmet sich magneto-optischen Studien zur Licht-Materie Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen im Regime der starken Kopplung. Oberfl{\"a}chen-Untersuchungen an Halbleiter-Nanodr{\"a}hten Bei diesem Teilaspekt der vorliegenden Arbeit stehen Untersuchungen von Halbleiter-Nanodr{\"a}hten mittels zeitintegrierter und zeitaufgel{\"o}ster Photolumineszenz (PL)-Spektroskopie im Vordergrund. Diese eindimensionalen Nanostrukturen bieten eine vielversprechende Perspektive f{\"u}r die weitere Miniaturisierung in der Mikroelektronik. Da konventionelle Strukturierungsverfahren wie die optische Lithographie zunehmend an physikalische und technologische Grenzen stoßen, sind selbstorganisierte Wachstumsprozesse hierbei von besonderem Interesse. Bei Nanodr{\"a}hten besteht dar{\"u}ber hinaus konkret noch die M{\"o}glichkeit, {\"u}ber ein gezieltes axiales und radiales Wachstum von Heterostrukturen bereits bei der Herstellung komplexere Funktionalit{\"a}ten einzubauen. Auf Grund ihres großen Oberfl{\"a}che-zu-Volumen Verh{\"a}ltnisses sind die elektronischen und optischen Eigenschaften der Nanodr{\"a}hte extrem oberfl{\"a}chensensitiv, was vor allem im Hinblick auf zuk{\"u}nftige Anwendungen im Bereich der Mikro- oder Optoelektronik sowie der Sensorik von essentieller Bedeutung ist. Zur n{\"a}heren Untersuchung der Oberfl{\"a}cheneigenschaften von Nanodr{\"a}hten eignet sich die optische Spektroskopie besonders, da sie als nicht-invasive Messmethode ohne aufw{\"a}ndige Probenpr{\"a}paration schnell n{\"u}tzliche Informationen liefert, die zum Beispiel in der Optimierung des Herstellungsprozesses eingesetzt werden k{\"o}nnen. Quantenoptik an Halbleiter-Mikrokavit{\"a}ten Der zweite Teil dieser Arbeit widmet sich der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen. Dabei ist das Regime der starken Kopplung zwischen Emitter und Resonator, auch im Hinblick auf m{\"o}gliche zuk{\"u}nftige Anwendungen in der Quanteninformationsverarbeitung, von besonderem Interesse. Diese Mikroresonator-T{\"u}rmchen, die auf planaren AlAs/GaAs-Mikroresonatoren mit InGaAs Quantenpunkten in der aktiven Schicht basieren, wurden mittels zeitintegrierter und zeitaufgel{\"o}ster Mikro-PL-Spektroskopie in einem {\"a}ußeren magnetischen Feld in Faraday-Konfiguration untersucht. Grundlegende Untersuchungen von Quantenpunkten im Magnetfeld Zun{\"a}chst wurden InxGa(1-x)As-Quantenpunkte mit unterschiedlichem In-Gehalt (x=30\%, 45\% und 60\%) magneto-optisch untersucht. Aufgrund der gr{\"o}ßeren Abmessungen weisen die Quantenpunkte mit 30\% In-Anteil auch hohe Oszillatorst{\"a}rken auf, was sie besonders f{\"u}r Experimente zur starken Kopplung auszeichnet. Unter dem Einfluss des Magnetfeldes zeigte sich ein direkter Zusammenhang zwischen der lateralen Ausdehnung der Quantenpunkte und ihrer diamagnetischen Verschiebung. Starke Kopplung im magnetischen Feld Neben der M{\"o}glichkeit, das Resonanzverhalten {\"u}ber das externe Magnetfeld zu kontrollieren, zeigte sich eine Korrelation zwischen der Kopplungsst{\"a}rke und dem magnetischen Feld, was auf eine Verringerung der Oszillatorst{\"a}rke im Magnetfeld zur{\"u}ckgef{\"u}hrt werden konnte. Diese steht wiederum im Zusammenhang mit einer Einschn{\"u}rung der Wellenfunktion des Exzitons durch das angelegte Feld. Dieser direkte Einfluss des Magnetfeldes auf die Oszillatorst{\"a}rke erlaubt eine in situ Variation der Kopplungsst{\"a}rke. Photon-Photon-Wechselwirkung bei der starken Kopplung im Magnetfeld Nach der Demonstration der starken Kopplung zwischen entarteten Exziton- und Resonatormoden im Magnetfeld, wurden im weiteren Verlauf Spin-bezogene Kopplungseffekte im Regime der starken Kopplung untersucht. Es ergaben sich im Magnetfeld unter Variation der Temperatur zwei Bereiche der Wechselwirkung zwischen den einzelnen Komponenten von Resonator- und Exzitonenmode. Von besonderem Interesse ist dabei eine beobachtete indirekte Wechselwirkung zwischen den beiden photonischen Moden im Moment der Resonanz, die durch die exzitonische Mode vermittelt wird. Diese sogenannte Spin-vermittelte Photon-Photon-Kopplung stellt ein Bindeglied zwischen eigentlich unabh{\"a}ngigen photonischen Moden {\"u}ber den Spinzustand eines Exzitons dar.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Boeckler2010, author = {B{\"o}ckler, Carolin}, title = {Photon-Exziton Wechselwirkung in Fabry-P{\´e}rot-Mikroresonatoren auf Basis von III-V Halbleitern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53543}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die enormen Fortschritte im Bereich der Halbleiter-Nanotechnologie haben es in den letzten Jahren erlaubt, quantenoptische Ph{\"a}nomene nicht nur in atomaren Systemen, sondern auch mehr und mehr in Festk{\"o}rpern zu beobachten. Von besonderer Bedeutung ist hierbei die Wechselwirkung zwischen Licht und Materie im Rahmen der Kavit{\"a}t-Quantenelektrodynamik, kurz cQED. Das große Interesse an diesem sehr aktiven Feld der modernen Quantenoptik erkl{\"a}rt sich {\"u}ber die m{\"o}gliche Anwendung von cQED-Effekten in neuartigen Lichtquellen und Elementen der Quanteninformationsverarbeitung. Halbleiterstrukturen zeichnen sich in diesem Zusammenhang durch eine potentiell hohe Skalierbarkeit sowie ein kompaktes und effzientes Design aus. Die gew{\"u}nschte Wechselwirkung kann jedoch nur in qualitativ hochwertigen Halbleiterstrukturen mit quasi nulldimensionalem Licht- und Ladungstr{\"a}gereinschluss realisiert werden. Daher wird weltweit mit hohem technologischen Aufwand an der Realisierung von Mikroresonatoren mit Quantenpunkten als diskrete Photonenemitter geforscht. Erste Erfolge auf diesem Gebiet haben es erlaubt, Licht-Materie-Wechselwirkung im Regime der schwachen, von dissipativen Verlusten gepr{\"a}gten Kopplung zu verwirklichen. Vor diesem Hintergrund besch{\"a}ftigt sich die vorliegende Arbeit mit dem koh{\"a}renten Kopplungsverhalten zwischen einzelnen Quantenpunkt-Exzitonen und dem Vakuumfeld von Mikroresonatoren. Das Hauptziel dieser Arbeit ist es, den experimentellen Nachweis der starken Kopplung in III-V Fabry-P{\´e}rot Mikroresonatoren mit Quantenpunkten als aktive Schicht zu erbringen. Dar{\"u}ber hinaus wird aber auch die koh{\"a}rente Kopplung von zwei Quantenpunkt-Exzitonen {\"u}ber das Vakuumfeld des Resonators experimentell untersucht. Quantenpunkt-Mikroresonatorstrukturen sind aufgrund ihrer hohen G{\"u}ten und großen Purcell-Faktoren weiterhin pr{\"a}destiniert f{\"u}r den Einsatz als Mikrolaser mit sehr geringer Laserschwelle. Neben der Herstellung und Charakterisierung von Mikrolasern mit großen Q-Faktoren befasst sich die vorliegende Arbeit mit dem Einfluß einzelner Quantenpunkt-Exzitonen auf das Lasing-Verhalten eines Mikroresonators, mit dem Fernziel einen Einzelquantenpunkt-Laser zu realisieren. F{\"u}r die Verwirklichung dieser beiden Hauptziele werden Mikroresonatoren h{\"o}chster G{\"u}te ben{\"o}tigt. Dies stellt enorme Anforderungen an die Technologie der Mikroresonatoren. Der vertikale Aufbau der hier vorgestellten GaAs/AlAs Fabry-P{\´e}rot Mikroresonatoren mit ihren InGaAs-Quantenpunkten als aktive Schicht wird mittels Molekularstrahlepitaxie realisiert....}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Mahnkopf2005, author = {Mahnkopf, Sven}, title = {Photonic crystal based widely tunable laser diodes and integrated optoelectronic components}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In a first aspect of this work, the development of photonic crystal based widely tunable laser diodes and their monolithic integration with photonic crystal based passive waveguide and coupler structures is explored theoretically and experimentally. In these devices, the photonic crystal is operated in the photonic bandgap which can be used for the realization of effective reflectors and waveguide structures. Such tunable light sources are of great interest for the development of optical network systems that are based on wavelength division multiplexing. In a second aspect of this work, the operation of a photonic crystal block near the photonic band edge is investigated with respect to the so-called superprism effect. After a few introductory remarks that serve to motivate this work, chapter 3 recapitulates some aspects of semiconductor lasers and photonic crystals that are essential for the understanding of this work so that the reader should be readily equipped with the tools to appreciate the results presented in this work.}, subject = {Laserdiode}, language = {en} } @phdthesis{Dantscher2006, author = {Dantscher, Sandra}, title = {Photostromspektroskopie an Nanokontakten : Tunnel- und Einzelmolek{\"u}lkontakte unter Femtosekundenbeleuchtung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18094}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In dieser Arbeit wurde der lichtinduzierte Ladungstransfer in Nanokontakten untersucht. Dabei wurden sowohl Tunnel- als auch Molek{\"u}lkontakte eingesetzt. Zur Pr{\"a}paration der Tunnelkontakte standen zwei verschiedene Methoden zur Verf{\"u}gung: mechanisch kontrollierte Bruchkontakte und elektromigrierte Nanokontakte. Die Bruchkontakttechnik bietet die M{\"o}glichkeit, den Abstand der Elektroden mit Sub-AA-Genauigkeit zu ver{\"a}ndern, w{\"a}hrend die elektromigrierten Kontakte einen durch die Pr{\"a}parationsbedingungen fest vorgegebenen Abstand haben. Bei den hier untersuchten Molek{\"u}len handelt es sich um Dithiole, die {\"u}ber eine Schwefel-Gold-Bindung an die Elektroden gebunden sind. Die Beleuchtung erfolgte im Fall der Bruchkontakte mit ultrakurzen Laserpulsen bei 800 nm und durch Frequenzverdopplung bei 400 nm. Durch Fokussierung auf einen Radius von ca. 100 mum wurden Spitzenintensit{\"a}ten von 10^7 Wcm^-2 (800 nm) bzw. 10^6 Wcm^-2 (400 nm) erreicht. Die Bruchkontakte (Tunnel- und Molek{\"u}lkontakte) waren bis zu den auftretenden Maximalintensit{\"a}ten von 10^7 Wcm^-2 stabil. F{\"u}r alle untersuchten Tunnelkontakte konnte eine lichtinduzierte Stromkomponente von bis zu 1 nA nachgewiesen werden. Sie ist proportional zum jeweils fließenden mittleren DC-Strom und betr{\"a}gt typischerweise einige Prozent davon. Dieser Strom wurde auf die thermische Ausdehnung der Elektroden auf Grund der dort durch Absorption deponierten Lichtenergie zur{\"u}ckgef{\"u}hrt. Aus der relativen Gr{\"o}ße des lichtinduzierten Signals und einem Wert der Austrittsarbeit von Gold von ca. 4,7 eV ergibt sich eine Expansion jeder Elektrode um etwa 1 pm. Dies ist in guter {\"U}berinstimmung mit einem einfachen thermischen Modell der freitragenden Elektroden. Bei einigen Kontakten wurde noch eine weitere lichtinduzierte Stromkomponente in der Gr{\"o}ßenordnung einiger pA gefunden, die nicht von der angelegten Biasspannung abh{\"a}ngt, aber linear mit der Laserleistung zunimmt. Ein Modell, das diese Befunde erkl{\"a}rt, geht von einer asymmetrischen Anregung in den beiden Elektroden aus. Somit ergibt sich ein Nettostrom angeregter Elektronen in eine Richtung. Die dazugeh{\"o}rige gemessene Quanteneffizienz liegt nahe bei 1, was ein Indiz auf einen Beitrag von sekund{\"a}ren heißen Elektronen zum Strom ist. Auch bei den Molek{\"u}lkontakten konnte eine lichtinduzierte Stromkomponente identifiziert werden, die linear von der Laserintensit{\"a}t abh{\"a}ngt. Sie wird, {\"a}hnlich wie im Fall der Tunnelkontakte, der thermisch verursachten Expansion der Elektroden zugeschrieben, allerdings ließ sich der genaue Prozess bisher noch nicht erkl{\"a}ren. Es ist anzunehmen, dass die Zunahme der Elektrodenl{\"a}nge durch eine Umordnung auf atomarer L{\"a}ngenskala in der vordersten Spitze der Goldelektrode kompensiert wird, da dies der duktilste Bereich des gesamten Kontakts ist. Der genaue Prozess konnte jedoch noch nicht gekl{\"a}rt werden. Messungen, die den Elektrodenabstand um einige AA ver{\"a}nderten, lieferten weitere Indizien f{\"u}r die Komplexit{\"a}t der Molek{\"u}lkontakte. So trat in manchen F{\"a}llen eine starke Korrelation zwischen Ver{\"a}nderungen des mittleren DC-Stroms und des lichtinduzierten Signals auf, was auf einen einzelnen Transportpfad f{\"u}r beide Signale hindeutet. Andererseits ver{\"a}nderten sich die beiden Str{\"o}me teilweise aber auch unabh{\"a}ngig voneinander, was nur durch mehrere parallele Transportkan{\"a}le im Kontakt erkl{\"a}rt werden kann. Zus{\"a}tzlich zum thermisch verursachten lichtinduzierten Signal wurden, wie im Fall der Tunnelkontakte, biasspannungsunabh{\"a}ngige Str{\"o}me identifiziert. Sie sind in der gleichen Gr{\"o}ßenordnung wie in Tunnelkontakten und werden somit der gleichen Ursache zugeschrieben, n{\"a}mlich einer asymmetrischen Anregung in den Metallelektroden, die zu einem Nettostrom in einer Richtung f{\"u}hrt. Im zweiten Teil der Arbeit wurden elektromigrierte Tunnelkontakte untersucht. Da diese Kontakte einen sehr großen Elektrodenabstand in der Gr{\"o}ßenordnung von 30 nm aufwiesen, konnte nur bei Kombination von einer Biasspannung von mehreren Volt mit Femtosekundenbeleuchtung ein Strom im Bereich von 100 fA detektiert werden. Durch Verbesserung der Fokussierung im Vergleich zu den Experimenten an den Bruchkontakten wurden Spitzenintensit{\"a}ten von 10^11 Wcm^-2 erreicht. Die lichtinduzierten Tunnelstr{\"o}me zeigen eine quadratische Intensit{\"a}tsabh{\"a}ngigkeit, was einem Zwei-Photonen-Prozess entspricht, sowie eine ebenfalls nichtlineare Spannungsabh{\"a}ngigkeit. Zur Beschreibung der Daten wurde das Modell einer Multiphotonen-Photofeldemission verwendet, das auf der Fowler-Nordheim-Formel f{\"u}r Feldemission basiert. Durch geeignete Wahl der Modellparameter (Elektrodenabstand, Kr{\"u}mmungsradius der Elektrodenspitze und Barrierenh{\"o}he im Tunnelkontakt) war es m{\"o}glich, die Spannungsabh{\"a}ngigkeit des lichtinduzierten Signals zu reproduzieren.}, subject = {Tunnelkontakt}, language = {de} }