@phdthesis{Fuchs2015, author = {Fuchs, Franziska}, title = {Optical spectroscopy on silicon vacancy defects in silicon carbide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124071}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {This work sheds light on different aspects of the silicon vacancy in SiC: (1) Defect creation via irradiation is shown both with electrons and neutrons. Optical properties have been determined: the excitation of the vacancy is most efficient at excitation wavelengths between 720nm and 800nm. The PL decay yields a characteristic excited state lifetime of (6.3±0.6)ns. (2) Defect engineering, meaning the controlled creation of vacancies in SiC with varying neutron fluence. The defect density could be engineered over eight orders of magnitude. On the one hand, in the sample with highest emitter density, the huge PL signal could even be enhanced by factor of five via annealing mechanisms. On the other hand, in the low defect density samples, single defects with photostable room temperature NIR emission were doubtlessly proven. Their lifetime of around 7ns confirmed the value of the transient measurement. (3) Also electrical excitation of the defects has been demonstrated in a SiC LED structure. (4) The investigations revealed for the first time that silicon vacancies can even exist SiC nanocrystals down to sizes of about 60 nm. The defects in the nanocrystals show stable PL emission in the NIR and even magnetic resonance in the 600nm fraction. In conclusion, this work ascertains on the one hand basic properties of the silicon vacancy in silicon carbide. On the other hand, proof-of-principle measurements test the potential for various defect-based applications of the vacancy in SiC, and confirm the feasibility of e.g. electrically driven single photon sources or nanosensing applications in the near future.}, subject = {Siliciumcarbid}, language = {en} } @phdthesis{Gorenflot2014, author = {Gorenflot, Julien Fran{\c{c}}ois}, title = {Optical study of the excited states in the semiconducting polymer poly(3-hexylthiophene) for photovoltaic applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116730}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In the course of this dissertation, we have presented the interest of using spectroscopic methods to unravel the physics of polymer semiconductors in photovoltaic applications. Applying photoluminescence and photoinduced absorption spectroscopy to the reference system P3HT:PCBM has enabled us to study the major steps of photocurrent generation in organic bulk heterojunctions, from excitons generation to charges extraction and loss mechanisms and thus to improve the understanding of those mechanisms. The exciton binding energy, is the first obstacle to overcome for photocurrent generation in organic solar cell and the reason for the use of two materials, whose heterojunction act as a driving force for charge separation. We developed an original photoluminescence-detected field-induced exciton quenching method to investigate this energy. Absorption and photoluminescence spectra of pure P3HT show that, while both amorphous and crystalline domains participate in absorption, the energy is then transferred to the crystalline domains, from where the photoluminescence is exclusively originating. The field dependence of this photoluminescence showed that an energy of no less than 420 meV is necessary to split excitons into non photon-emitting species. Comparing those results with energy levels obtained by absorption and photoelectron spectroscopies, confirmed that the formation of those species is only a first step toward dissociation into free charges. Indeed, photoemission spectroscopy and the onset of photocurrent upon increasing the photon energy in a pure P3HT solar cell, concomitantly show that the energy level of a pair of free polarons is located 0.7 eV above the one of the exciton. The comprehensive analysis of those results originating from those different method enable us to draw a global picture of the states and energies involved in free polarons generation in pure material. This work has been widely acknowledged by the scientific community, published in Physical Review B in 2010 [1] and presented in national [2] and international [3] conferences. The spectroscopy of excited states is used to detect the presence of wanted species (charges) and potentially unwanted neutral species upon photoexcitation. As such, it offers us the possibility to qualify the efficiency of charge generation and, if any, identify the competing processes and the generation of unwanted species. In the frame of the European Marie Curie Research Network SolarNType,[4] this possibility was used - in combination with morphological, charge transport and devices characterizationsn - to study a number of new donor:acceptor blends. Thanks to those techniques, we were able to not only quantify the potential of those blends, but also to provide the chemist laboratories with a precious and detailed feedback on the strengths and weakness of the molecules, regarding charge generation, transport and extraction. The detailed study of terrylene-3,4:11,12-bis(dicarboximide) as electron acceptor for solar cells application was published in the peer review journal Synthetic Metals and was chosen to illustrate the cover page of the issue [5]. Finally, in the last chapter, we have used time resolved photoinduced absorption to improve the understanding of the charge carrier loss mechanisms in P3HT:PCBM active layers. This comprehension is of prime importance because, the fact that this recombination is far weaker than expected from the Langevin theory, enable polarons to travel further without recombining and thus to build thicker and more efficient devices. A comprehensive analysis of steady-state PIA spectra of pure P3HT, indicates that probing at 980 nm at a temperature between 140 and 250 K enables to monitor specifically polaron densities in both neat P3HT and P3HT:PCBM. Applying this finding to transient absorption enabled us to monitor, for the first time, the bimolecular recombination in pure P3HT, and to discover that - in sharp contrast with the blend - this recombination was in agreement with the Langevin theory. Moreover, it enables us to pinpoint the important role played by the existence of two materials and of energetical traps in the slow recombination and high recombination orders observed in the blend. This work has been published in the Journal of Applied Physics.[6] Those new insights in the photophysics of polymer:fullerene photoactive layers could have a strong impact on the future developement of those materials. Consistent measurements of the binding energy of excitons and intermediate species, would enable to clarify the role played by excess thermal energy in interfacial states dissociation. Better understanding of blends morphology and its influence on solar cells parameters and in particular on recombination could enable to reproduce the conditions of limited recombination on material systems offering some promising performances but with only limited active layer thicknesses. However, due to the number of parameters involved, further experimentation is required, before we can reach a quantitative modeling of bimolecular recombination. [1] Deibel et al., Phys. Rev. B, 81:085202, 2010 [2] Gorenflot et al., Deutsche Physikalische Gesellschaft Fr{\"u}hjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [3] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Feichtner2017, author = {Feichtner, Thorsten}, title = {Optimal Design of Focusing Nanoantennas for Light : Novel Approaches: From Evolution to Mode-Matching}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140604}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Optische Antennen arbeiten {\"a}hnlich wie Antennen f{\"u}r Radiowellen und wandeln elektromagnetische Strahlung in elektrische Wechselstr{\"o}me um. Ladungsdichteansammlungen an der Antennen-Oberfl{\"a}che f{\"u}hren zu starken und lokalisierten Nahfeldern. Da die meisten optischen Antennen eine Ausdehnung von wenigen hundert Nanometern besitzen, erm{\"o}glichen es ihre Nahfelder, Licht auf ein Volumen weit unterhalb des Beugungslimits zu fokussieren, mit Intensit{\"a}ten, die mehrere Gr{\"o}ßenordnungen {\"u}ber dem liegen, was man mit klassischer beugender und reflektierender Optik erreichen kann. Die Aufgabe, die Abstrahlung eines Quantenemitters zu maximieren, eines punktf{\"o}rmigen Objektes, welches einzelne Photonen absorbieren und emittieren kann, ist identisch mit der Aufgabe, die Feldintensit{\"a}t am Ort des Quantenemitters zu maximieren. Darum ist es erstrebenswert, den Fokus optischer Antennen zu optimieren Optimierte Radiofrequenz-Antennen, welche auf Gr{\"o}ßenordnungen von wenigen 100 Nanometern herunterskaliert werden, zeigen bereits eine gute Funktionalit{\"a}t. Jedoch liegen optische Frequenzen in der N{\"a}he der Plasmafrequenz von den Metallen, die f{\"u}r optische Antennen genutzt werden und die Masse der Elektronen kann nicht mehr vernachl{\"a}ssigt werden. Dadurch treten neue physikalische Ph{\"a}nomene auf. Es entstehen gekoppelte Zust{\"a}nde aus Licht und Ladungsdichte-Schwingungen, die sogenannten Plasmonen. Daraus folgen Effekte wie Volumenstr{\"o}me und k{\"u}rzere effektive Wellenl{\"a}ngen. Zus{\"a}tzlich f{\"u}hrt die endliche Leitf{\"a}higkeit zu thermischen Verluste. Das macht eine Antwort auf die Frage nach der optimalen Geometrie f{\"u}r fokussierende optische Antennen schwer. Jedoch stand vor dieser Arbeit der Beweis noch aus, dass es f{\"u}r optische Antennen bessere Alternativen gibt als herunterskalierte Radiofrequenz-Konzepte. In dieser Arbeit werden optische Antennen auf eine bestm{\"o}gliche Fokussierung optimiert. Daf{\"u}r wird ein Ansatz gew{\"a}hlt, welcher bei Radiofrequenz-Antennen f{\"u}r komplexe Anwendungsfelder (z.B. isotroper Breitbandempfang) schon oft Erfolg hatte: evolution{\"a}re Algorithmen. Die hier eingef{\"u}hrte erste Implementierung erlaubt eine große Freiheit in Bezug auf Partikelform und Anzahl, da sie quadratische Voxel auf einem planaren, quadratischen Gitter beliebig anordnet. Die Geometrien werden in einer bin{\"a}ren Matrix codiert, welche als Genom dient und somit Methoden wie Mutation und Paarung als Verbesserungsmechanismus erlaubt. So optimierte Antennen-Geometrien {\"u}bertreffen vergleichbare klassische Dipol-Geometrien um einen Faktor von Zwei. Dar{\"u}ber hinaus l{\"a}sst sich aus den optimierten Antennen ein neues Funktionsprinzip ableiten: ein magnetische Split-Ring-Resonanz kann mit Dipol-Antennen leitend zu neuartigen und effektiveren Split-Ring-Antennen verbunden werden, da sich ihre Str{\"o}me nahe des Fokus konstruktiv {\"u}berlagern. Im n{\"a}chsten Schritt wird der evolution{\"a}re Algorithmus so angepasst, so die Genome real herstellbare Geometrien beschreiben. Zus{\"a}tzlich wird er um eine Art ''Druckertreiber'' erweitert, welcher aus den Genomen direkt Anweisungen zur fokussierten Ionenstrahl-Bearbeitung von einkristallinen Goldflocken erstellt. Mit Hilfe von konfokaler Mikroskopie der Zwei-Photonen-Photolumineszenz wird gezeigt, dass Antennen unterschiedlicher Effizienz reproduzierbar aus dem evolution{\"a}ren Algorithmus heraus hergestellt werden k{\"o}nnen. Außerdem wird das Prinzip der Split-Ring-Antenne verbessert, indem zwei Ring-Resonanzen zu einer Dipol-Resonanz hinzugef{\"u}gt werden. Zu guter Letzt dient die beste Antenne des zweiten evolution{\"a}re Algorithmus als Inspiration f{\"u}r einen neuen Formalismus zur Beschreibung des Leistungs{\"u}bertrages zwischen einer optischen Antenne und einem Punkt-Dipol, welcher sich als "dreidimensionaler Moden{\"u}berlapp" beschreiben l{\"a}sst. Damit k{\"o}nnen erstmals intuitive Regeln f{\"u}r die Form einer optischen Antenne aufgestellt werden. Die G{\"u}ltigkeit der Theorie wird analytisch f{\"u}r den Fall eines Dipols nahe einer metallischen Nano-Kugel gezeigt. Das vollst{\"a}ndige Problem, Licht mittels einer optischen Antenne zu fokussieren, l{\"a}sst sich so auf die Erf{\"u}llung zweier Moden{\"u}berlapp-Bedingungen reduzieren -- mit dem Feld eines Punktdipols, sowie mit einer ebenen Welle. Damit lassen sich zwei Arten idealer Antennenmoden identifizieren, welche sich von der bekannten Dipol-Antennen-Mode grundlegend unterscheiden. Zum einen l{\"a}sst sich dadurch die Funktionalit{\"a}t der evolution{\"a}ren und Split-Ring-Antennen erkl{\"a}ren, zum lassen sich neuartige plasmonische Hohlraum-Antennen entwerfen, welche zu besserer Fokussierung von Licht f{\"u}hren. Dies wird numerisch im direkten Vergleich mit einer klassischen Dipolantennen-Geometrie gezeigt.}, subject = {Physik}, language = {en} } @phdthesis{Schwedhelm2009, author = {Schwedhelm, Kai Florian}, title = {Optimierte Methoden der Magnetresonanz-Spektroskopie zur molekularen Charakterisierung neuartiger Wirkstoffe gegen Infektionskrankheiten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38535}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In diesem Projekt wurde die Wechselwirkung des PPIase-Enzyms MIP mit Kollagen IV unter- sucht. MIP ist maßgeblich f{\"u}r die Infekti{\"o}sit{\"a}t von Legionella pneumophila verantwortlich, einem Bakterium, welches im Menschen schwere Lungenentz{\"u}ndungen ausl{\"o}sen kann. Das Enzym zeigt eine hohe Affinit{\"a}t gegen{\"u}ber einem kurzen Peptidsequenzabschnitt in Kolla- gen IV (genannt „P290"), welches unter anderem im Epithel der Lunge zu finden ist. Die Interaktionsoberfl{\"a}che der Molek{\"u}le wurde durch den Einsatz eines paramagnetischen Spin-Labels in NMR-Experimenten charakterisiert. Mit Hilfe von Docking und Molek{\"u}ldy- namiksimulationen konnte aus diesen Daten ein Modell des MIP-Kollagen-Komplexes be- rechnet werden. Es wurde gezeigt, dass MIP als Dimer in der Lage ist, nach Kollagen IV zu „greifen" und sich dann an das Molek{\"u}l heranzuziehen. Wahrscheinlich dient dieser Mechanismus der Adh{\"a}- sion von L. pneumophila an die Wirtszelle. Neben der zuvor postulierten Destabilisierung von Kollagen IV durch MIP, welche hier nicht beobachtet wurde, k{\"o}nnte die Adh{\"a}sion ein wichtiger Faktor f{\"u}r die Virulenz von L. pneumophila sein. Weiterhin wurde die inhibitorische Wirkung des isolierten Peptids P290 auf die biologische PPIase-Aktivit{\"a}t von MIP untersucht. Durch NMR-Messungen und anschließenden Mole- k{\"u}ldynamiksimulationen konnte gezeigt werden, dass P290 sich stabil in die Bindungsta- sche von MIP einlagert und durch den Sequenzabschnitt -CYS130-PRO131---TRP134- das Enzym blockiert. Die {\"u}brigen Aminos{\"a}uren in P290 dienen der Stabilisierung des Kom- plexes und sorgen f{\"u}r die Selektivit{\"a}t von P290, welches, im Unterschied zu bekannten Wirkstoffen, das humane Homolog zu MIP nicht inhibiert. Die Vorhersagen der Simulatio- nen konnten durch ein Peptid Microarray und Messungen der enzymatischen Aktivit{\"a}t von MIP in PPIase-Assays best{\"a}tigt werden. Die Ergebnisse wurden zur Optimierung von P290 eingesetzt, indem die Peptidsequenz durch den Austausch zweier Aminos{\"a}uren ver{\"a}ndert und das Molek{\"u}l zu einem Ring geschlossen wurde. Die entstandene Struktur besitzt deut- lich verbesserte Bindungseigenschaften und k{\"o}nnte k{\"u}nftig als Basis f{\"u}r eine neue Klasse von Wirkstoffen gegen L. pneumophila dienen. In diesem Projekt wurde eine Methode zur Aufkl{\"a}rung der Molek{\"u}lstruktur neuartiger Wirkstoffe gegen Malaria im Komplex mit ihrem paramagnetischen Zielmolek{\"u}l etabliert und weiterentwickelt. Die Vorgehensweise leitet intermolekulare Distanzinformationen aus der sog. paramagnetischen Relaxation ab, einem Effekt, der den Einsatz klassischer Me- thoden zur Molek{\"u}lstrukturaufkl{\"a}rung mittels NMR verhindert. Es werden drei Parameter durch NMR-Spektroskopie bestimmt: 1. die longitudinale Relaxationszeit der Wasserstoff- atome in Wirkstoffmolek{\"u}l, 2. die effektive Korrelationszeit des Komplexes und 3. der Spin- Zustand des Eisenions im Zielmolek{\"u}l. Mit Hilfe dieser Messmethode konnte die Komplexstruktur mehrerer bekannter Medika- mente gegen Malaria aufgekl{\"a}rt werden. Weiterhin wurden zwei neue Klassen von Wirkstof- fen untersucht, die C,C-gekoppelten Naphthylisoquinolin-Alkaloide und die N,C-gekoppelte Naphthylisoquinolin-Alkaloide. In {\"U}bereinstimmung mit theoretischen Vorhersagen aus der Literatur lagern sich die Wirkstoffe stets um einen Winkel geneigt und in Richtung des Randes des Zielmolek{\"u}ls verschoben an. Diese Konfiguration maximiert die attraktiven \&\#960;- \&\#960;-Wechselwirkungen zwischen den Molek{\"u}len. Aufgrund der gewonnenen Ergebnisse aus NMR, UV-Spektroskopie und Massenspektrome- trie konnte die Existenz eines bisher nicht bekannten Tetramer-Komplexes nachgewiesen werden, welcher eine wichtige Zwischenstufe in der Biokristallisation von H{\"a}mozoin durch die Malariaparasiten darstellen k{\"o}nnte, und Ansatzpunkte f{\"u}r den weiterhin nicht vollst{\"a}n- dig bekannten Wirkmechanismus der meisten Antimalaria-Wirkstoffe liefert. F{\"u}r die Naphthylisoquinolin-Alkaloide zeigte sich weiterhin, dass Wasser eine essenzielle Rolle in der Komplexbildung spielt. In Molek{\"u}ldynamiksimulationen der N,C-gekoppelten Naphthylisoquinolin-Alkaloide konnte die Entstehung einer Wasserstoffbr{\"u}cke zwischen Wirkstoff und Zielmolek{\"u}l gezeigt werden, welche einen zus{\"a}tzlichen Weg der Komplex- stabilisierung neben den bereits bekannten \&\#960;-\&\#960;-Wechselwirkungen aufzeigt. Die N,C-NIQs konnten erstmals auch bei einem pH-Wert von 5,6 beobachtet werden, einer chemischen Umgebung wie sie auch in-vivo in der Verdauungsvakuole des Malariaparasiten herrscht.}, subject = {NMR-Spektroskopie}, language = {de} } @phdthesis{Huggenberger2012, author = {Huggenberger, Alexander}, title = {Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78031}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Daten{\"u}bertragung, die durch Quantenkryptographie abh{\"o}rsicher verschl{\"u}sselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschr{\"a}nkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein h{\"a}ufig untersuchtes System und k{\"o}nnen heutzutage mit hoher Kristallqualit{\"a}t durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erh{\"o}hen, wurden Mikros{\"a}ulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate f{\"u}r die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen {\"A}tztechniken erreicht. F{\"u}r den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema f{\"u}r den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. F{\"u}r die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngr{\"o}ße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese h{\"a}ufig aufgrund spektraler Diffusion gr{\"o}ßer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ans{\"a}tze und Strategien zur {\"U}berwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV f{\"u}r die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualit{\"a}t besitzen. Die FSS der Emission eines Quantenpunktes sollte f{\"u}r die direkte Erzeugung polarisationsverschr{\"a}nkter Photonen m{\"o}glichst klein sein. Deswegen wurden unterschiedliche Ans{\"a}tze diskutiert, um die FSS einer m{\"o}glichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in ge{\"a}tzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend f{\"u}r den k{\"u}nftigen Einsatz solcher Quantenpunkte in Quellen f{\"u}r verschr{\"a}nkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschr{\"a}nkten Zustandes gezeigt. In Zusammenarbeit mit der Universit{\"a}t Tokyo wurde ein Konzept entwickelt, mit dem k{\"u}nftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavit{\"a}ten hergestellt werden k{\"o}nnen. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikros{\"a}ulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavit{\"a}tsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion f{\"u}r verschwindende Zeitdifferenzen nachgewiesen wurde.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Ullherr2021, author = {Ullherr, Maximilian}, title = {Optimization of Image Quality in High-Resolution X-Ray Imaging}, doi = {10.25972/OPUS-23117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The SNR spectra model and measurement method developed in this work yield reliable application-specific optima for image quality. This optimization can either be used to understand image quality, find out how to build a good imaging device or to (automatically) optimize the parameters of an existing setup. SNR spectra are here defined as a fraction of power spectra instead of a product of device properties. In combination with the newly developed measurement method for this definition, a close correspondence be- tween theory and measurement is achieved. Prior approaches suffer from a focus on theoretical definitions without fully considering if the defined quantities can be measured correctly. Additionally, discrepancies between assumptions and reality are common. The new approach is more reliable and complete, but also more difficult to evaluate and interpret. The signal power spectrum in the numerator of this fraction allows to model the image quality of different contrast mechanisms that are used in high-resolution x-ray imaging. Superposition equations derived for signal and noise enable understanding how polychromaticity (or superposition in general) affects the image quality. For the concept of detection energy weighting, a quantitative model for how it affects im- age quality was found. It was shown that—depending on sample properties—not detecting x-ray photons can increase image quality. For optimal computational energy weighting, more general formula for the optimal weight was found. In addition to the signal strength, it includes noise and modulation transfer. The novel method for measuring SNR spectra makes it possible to experimentally optimize image quality for different contrast mechanisms. This method uses one simple measurement to obtain a measure for im- age quality for a specific experimental setup. Comparable measurement methods typically require at least three more complex measurements, where the combination may then give a false result. SNR spectra measurements can be used to: • Test theoretical predictions about image quality optima. • Optimize image quality for a specific application. • Find new mechanisms to improve image quality. The last item reveals an important limitation of x- ray imaging in general: The achievable image quality is limited by the amount of x-ray photons interacting with the sample, not by the amount incident per detector area (see section 3.6). If the rest of the imaging geometry is fixed, moving the detector only changes the field of view, not the image quality. A practical consequence is that moving the sample closer to the x-ray source increases image quality quadratically. The results of a SNR spectra measurement represent the image quality only on a relative scale, but very reliable. This relative scale is sufficient for an optimization problem. Physical effects are often already clearly identifiable by the shape of the functional relationship between input parameter and measurement result. SNR spectra as a quantity are not well suited for standardization, but instead allow a reliable optimization. Not satisfying the requirements of standardization allows to use methods which have other advantages. In this case, the SNR spectra method describes the image quality for a specific application. Consequently, additional physical effects can be taken into account. Additionally, the measurement method can be used to automate the setting of optimal machine parameters. The newly proposed image quality measure detection effectiveness is better suited for standardization or setup comparison. This quantity is very similar to measures from other publications (e.g. CNR(u)), when interpreted monochromatically. Polychromatic effects can only be modeled fully by the DE(u). The measurement processes of both are different and the DE(u) is fundamentally more reliable. Information technology and digital data processing make it possible to determine SNR spectra from a mea- sured image series. This measurement process was designed from the ground up to use these technical capabilities. Often, information technology is only used to make processes easier and more exact. Here, the whole measurement method would be infeasible without it. As this example shows, using the capabilities of digital data processing much more extensively opens many new possibilities. Information technology can be used to extract information from measured data in ways that analog data processing simply cannot. The original purpose of the SNR spectra optimization theory and methods was to optimize high resolution x-ray imaging only. During the course of this work, it has become clear that some of the results of this work affect x-ray imaging in general. In the future, these results could be applied to MI and NDT x-ray imaging. Future work on the same topic will also need to consider the relationship between SNR spectra or DE(u) and sufficient image quality.This question is about the minimal image quality required for a specific measurement task.}, subject = {Bildqualit{\"a}t}, language = {en} } @phdthesis{Wagner2003, author = {Wagner, Joachim}, title = {Optische Charakterisierung von II-VI-Halbleiter-Oberfl{\"a}chen in Kombination mit First-Principles-Rechnungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8722}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In dieser Arbeit sind Methoden der optischen Spektroskopie, insbesondere die Ramanspektroskopie (RS) und die Reflexions-Anisotropie-Spektroskopie (RAS), angewandt worden, um die Oberfl{\"a}chen von II-VI Halbleitern zu charakterisieren. F{\"u}r die experimentellen Untersuchungen wurde eine eigens f{\"u}r diesen Zweck entwickelte UHV-Optikkammer benutzt. Diese einzigartige M{\"o}glichkeit, II-VI Halbleiterproben aus einer state-of-the-art MBE-Anlage mit einer UHV-Optikanlage zu kombinieren hat gezeigt, dass optische Spektroskopie sehr gut daf{\"u}r geeignet ist, strukturelle Eigenschaften, z.B. Rekonstruktionen, und chemische Bindungen an Oberfl{\"a}chen, sowie die damit verbundene Schwingungsdynamik zu analysieren. Neben den experimentellen Arbeiten wurden u. a. first principles Rechnungen mittels der Dichtefunktionaltheorie im Rahmen der Lokalen-Dichte-Approximation durchgef{\"u}hrt. Damit konnten f{\"u}r die Oberfl{\"a}chen einerseits ihre geometrischen Eigenschaften, d.h die atomare Anordnung der Oberfl{\"a}chenatome, und andererseits auch ihre Dynamik, d.h. die Schwingungsfrequenzen und die Auslenkungsmuster der an der Rekonstruktion beteiligten Atome der Oberfl{\"a}che und der oberfl{\"a}chennahen Schichten, im Rahmen der Frozen-Phonon-N{\"a}herung bestimmt werden. Die Kombination von experimenteller und theoretischer Vibrationsbestimmung von Oberfl{\"a}chen bietet also, neben den klassischen Oberfl{\"a}chen-Analysemethoden wie RHEED, LEED, XPS, Auger und SXRD, ein zus{\"a}tzliches Werkzeug zur Charakterisierung von Oberfl{\"a}chen. Da die Frozen-Phonon-N{\"a}herung nicht elementarer Bestandteil des hier benutzten DFT-Programmcodes fhi96md ist, wurde diese Erweiterung im Rahmen dieser Arbeit durchgef{\"u}hrt. Die theoretische Berechnung von Schwingungsfrequenzen mit dynamischen Matrizen ist in einem Unterkapitel dargestellt. Die so berechneten Schwingungsfrequenzen f{\"u}r verschiedene Oberfl{\"a}chen-Rekonstruktionen konnten erfolgreich am Beispiel der reinen BeTe(100)-Oberfl{\"a}che mit den experimentell mit der UHV-Ramanspektroskopie beobachteten Frequenzen verglichen werden. So gelang erstmalig die optische identifizierung von rekonstruktionsinduzierten Eigenschwingungen einer Oberfl{\"a}che. Nach detaillierter Kenntnis der BeTe(100)-Oberfl{\"a}che wurde die Ramanspektroskopie als Sonde benutzt, um die Entwicklung der BeTe-Oberfl{\"a}che bei unterschiedlichen Behandlungen (Modifikation) zu verfolgen. Dabei dienten die fr{\"u}heren Ergebnisse als Referenzpunkte, um die modifizierten Spektren zu erkl{\"a}ren. Zus{\"a}tzlich wurde ein Konzept zur Passivierung der Te-reichen BeTe(100)-Oberfl{\"a}che entwickelt, um diese Proben ohne einen technisch aufwendigen UHV-Transportbeh{\"a}lter {\"u}ber gr{\"o}ssere Entfernungen transportieren zu k{\"o}nnen (z.B. zu Experimenten an einem Synchrotron). Mit der RAS wurden auch die Oberfl{\"a}chen von weiteren Gruppe II-Telluriden, n{\"a}mlich die Te-reiche (2x1) CdTe(100)-Oberfl{\"a}che, die Te-reiche (2x1) MnTe(100)-Oberfl{\"a}che und die Hg-reiche c(2x2) HgTe(100)-Oberfl{\"a}che untersucht. Schließlich wurde der Wachstumsstart von CdSe auf der BeTe(100)-Oberfl{\"a}che im Bereich weniger Monolagen (1-5 ML) CdSe analysiert, wobei die hohe Empfindlichkeit der Ramanspektroskopie bereits den Nachweis einer Monolage CdSe erlaubte.}, subject = {Zwei-Sechs-Halbleiter}, language = {de} } @phdthesis{Weinlaeder2003, author = {Weinl{\"a}der, Helmut}, title = {Optische Charakterisierung von Latentw{\"a}rmespeichermaterialien zur Tageslichtnutzung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In dieser Arbeit wurde untersucht, inwieweit sich durch den Einsatz von Latentw{\"a}rmespeichermaterialien (kurz PCM = phase change material) Tageslichtelemente realisieren lassen, welche einen Teil der eingestrahlten Solarenergie zwischenspeichern und zeitverz{\"o}gert w{\"a}hrend der Abend- und Nachtstunden wieder an den Innenraum abgeben. Hierdurch lassen sich mehrere Effekte erzielen: Der bei Verglasungen auftretende starke W{\"a}rmeeintrag w{\"a}hrend des Tages wird ged{\"a}mpft und bis in die Abend- und Nachtstunden ausgedehnt. Im Sommer f{\"u}hrt dies zu geringeren K{\"u}hllasten. Die zeitlich verz{\"o}gerten abends auftretenden W{\"a}rmeeintr{\"a}ge k{\"o}nnen bei Bedarf {\"u}ber Nachtl{\"u}ftung abgef{\"u}hrt werden. Im Winter sind die solaren Gewinne zeitlich besser mit den W{\"a}rmeverlusten korreliert was ihren Nutzungsgrad erh{\"o}ht. Dies f{\"u}hrt zu geringerem Heizenergiebedarf. Weiter wird im Winter aufgrund der Erh{\"o}hung der Systemoberfl{\"a}chentemperatur durch den Phasenwechsel des PCM die thermische Behaglichkeit in den Abendstunden vor allem in Systemn{\"a}he gesteigert. Im Sommer bleiben die Oberfl{\"a}chentemperaturen tags{\"u}ber niedrig, sofern ein PCM mit entsprechender Schmelztemperatur (<30°C) gew{\"a}hlt wird, so dass auch zu diesen Zeiten die thermische Behaglichkeit verbessert wird. Es wurden drei Latentw{\"a}rmespeichermaterialien untersucht: ein Paraffin (RT25), sowie zwei Salzhydrate auf Basis von Kalziumchloridhexahydrat (S27) und Lithiumnitrattrihydrat (L30). Aus Messwerten des Transmissions- und Reflexionsgrades im fl{\"u}ssigen Zustand wurden die spektralen Daten der Brechungsindizes ermittelt. Strukturuntersuchungen der PCMs im festen Zustand erfolgten mittels Lichtmikroskopie und anhand von Streuverteilungsmessungen. Diese wurden mit der Mie-Theorie ausgewertet. Es wurde bei allen Materialien die Ausbildung einer Makrostruktur festgestellt, die wiederum mit einer Mikrostruktur unterlegt ist. Die Makrostruktur entsteht durch Grenzfl{\"a}chen Festk{\"o}rper-Luft beim Erstarren und Zusammenziehen der Materialien, die Mikrostruktur durch sehr feine Lufteinschl{\"u}sse und Grenzfl{\"a}chen innerhalb des Festk{\"o}rperger{\"u}sts. W{\"a}hrend die Makrostruktur vor allem bei den Salzhydraten in ihrer Gr{\"o}ße variiert und sich an die Beh{\"a}lterdicke anpasst, liegt die Gr{\"o}ße der Mikrostrukturen bei allen drei Materialien relativ konstant im Bereich um die 5-20 µm. Die Mikrostrukturen sind f{\"u}r die Lichtstreuung verantwortlich. Unter der Annahme, dass die Werte der Brechungsindizes im festen und fl{\"u}ssigen Zustand gleich sind, wurden mit dem 3-Fluss-Modell die spektralen effektiven Streukoeffizienten der festen PCMs bestimmt. Mit den ermittelten Gr{\"o}ßen lassen sich die optischen Eigenschaften der Materialien im festen und fl{\"u}ssigen Zustand f{\"u}r Schichtdicken zwischen 1,5 mm und 4 cm berechnen. Alle drei Materialien zeigen eine hohe Transmission im sichtbaren Spektralbereich und eine starke Absorption im Nahinfraroten. Dieses Verhalten ist f{\"u}r den Einsatz in Tageslichtelementen g{\"u}nstig, da man dort das sichtbare Licht zur Raumausleuchtung nutzen und den nahinfraroten Anteil in Form von W{\"a}rme speichern will. F{\"u}r den Einsatz im Tageslichtelement m{\"u}ssen die PCMs auslaufsicher in Beh{\"a}lter eingebracht werden. Hierf{\"u}r wurden Stegdoppelplatten (SDP) aus Plexiglas verwendet. Zwei Funktionsmuster mit RT25 und S27, bestehend aus einer W{\"a}rmeschutzverglasung, hinter der die PCM-bef{\"u}llten SDPs angebracht waren, wurden unter nat{\"u}rlichen Klimabedingungen vermessen. Die Messdaten dienten zur Validierung eines Simulationsprogramms, mit dem das Verhalten der drei PCM-Tageslichtelemente unter genormten Bedingungen im Sommer- und Winterbetrieb untersucht wurde. Messungen und Simulationsrechnungen ergaben, dass die gew{\"u}nschten Effekte (D{\"a}mpfung der Energiegewinne tags{\"u}ber, Verschiebung der Gewinne vom Tag in die Abend- und Nachtstunden, sowie Verbesserung der thermischen Behaglichkeit) mit den PCM-Tageslichtelementen erreicht werden. Anhand von Optimierungsrechnungen wurde gezeigt, dass die Energieeinkopplung in das PCM erh{\"o}ht werden muss. Dies kann durch Beimengung absorbierender Materialien in das PCM oder durch Verwendung von Beh{\"a}ltern mit h{\"o}herer Absorption geschehen. Bei derart optimierten Tageslichtelementen sind Schichtdicken von rund 5 mm PCM ausreichend. Lichttechnische Untersuchungen ergaben, dass die Tageslichtelemente mit PCM oft ein stark inhomogenes optisches Erscheinungsbild zeigen, vor allem w{\"a}hrend des Phasenwechsels. Deshalb sollten f{\"u}r den Einsatz in der Praxis M{\"o}glichkeiten zur Kaschierung vorgesehen werden. Dies l{\"a}sst sich z.B. durch streuende Beh{\"a}lter erreichen. Problematisch ist die Dichtigkeit der Beh{\"a}lter, vor allem wenn Salzhydrate als PCM verwendet werden. Die Kristalle {\"u}ben beim Wachstum starke Kr{\"a}fte auf die Beh{\"a}lterwandungen aus, so dass diese besonders bei gr{\"o}ßeren Beh{\"a}lterabmessungen dem Druck nicht standhalten und Risse bilden. Hier ist noch Entwicklungsarbeit zu leisten.}, subject = {Tageslichtelement}, language = {de} } @phdthesis{Keller2004, author = {Keller, Dirk}, title = {Optische Eigenschaften ZnSe-basierter zweidimensionaler Elektronengase und ihre Wechselwirkung mit magnetischen Ionen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In dieser Arbeit wurden nichtmagnetische und semimagnetische ZnSe-basierte Quantentr{\"o}ge untersucht. Im Mittelpunkt des Interesses standen hierbei vor allem die Modifikation der optischen Spektren mit einer zunehmenden Modulationsdotierung der Strukturen und der Einfluss von Spinflip-Streuungen der freien Band-Elektronen an den Mn-Ionen auf die Magnetisierung und somit die Zeeman-Aufspaltung der Strukturen. Als experimentelle Methoden wurden Photolumineszenz (PL), Photolumineszenzanregung (PLE) und Reflexionsmessungen verwendet, die in Magnetfeldern von bis zu B=48 T und bei Temperaturen im Bereich von 1.6 K bis 70 K durchgef{\"u}hrt wurden. Dar{\"u}ber hinaus wurde die Abh{\"a}ngigkeit der Spin-Gitter-Relaxationszeit der Mn-Ionen von der Mn-Konzentration und der Elektronengasdichte in den Quantentr{\"o}gen durch zeitaufgel{\"o}ste Lumineszenzmessungen untersucht. Der Einfluss eines Gradienten in der s/p-d-Austauschwechselwirkung auf die Diffusion der Ladungstr{\"a}ger bildet einen weiteren Schwerpunkt dieser Arbeit. Als experimentelle Methode wurde hierbei ortsaufgel{\"o}ste Lumineszenz verwendet.}, subject = {Zinkselenid}, language = {de} } @phdthesis{Kistner2011, author = {Kistner, Caroline}, title = {Optische Spektroskopie an elektrisch kontaktierten Mikros{\"a}ulenresonatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Der große Fortschritt der Halbleitertechnologie erm{\"o}glichte es in den letzten Jahren quantenoptische Ph{\"a}nomene nicht mehr nur ausschließlich an Atomen, sondern auch in einer Festk{\"o}rpermatrix zu beobachten. Von besonderem Interesse sind dabei Ph{\"a}nomene der Licht-Materie-Wechselwirkung im Kontext der Quantenelektrodynamik in Kavit{\"a}ten. Die {\"a}ußerst aktive Forschung auf diesem Gebiet r{\"u}hrt daher, dass diese Ph{\"a}nomene bei der Realisierung neuartiger Lichtquellen f{\"u}r die Quanteninformationstechnologie ben{\"o}tigt werden. Die Verwirklichung von solchen speziellen Lichtquellen auf Halbleiterbasis besitzt entscheidende Vorteile im Hinblick auf die praktische Anwendbarkeit aufgrund der potentiell hohen Skalierbarkeit und Effizienz. Jedoch kann die erforderliche Licht-Materie-Wechselwirkung nur in qualitativ sehr hochwertigen Halbleiterstrukturen mit quasi nulldimensionalem Ladungstr{\"a}ger- und Lichteinschluss erfolgen. Hierbei wurden in den letzten Jahren enorme technologische Fortschritte bei der Prozessierung von Mikrokavit{\"a}ten mit Quantenpunkten in der aktiven Schicht sowie bei der Beobachtung der gew{\"u}nschten Licht-Materie-Wechselwirkung erzielt. Allerdings erfolgten diese Untersuchungen in erster Linie an optisch mithilfe eines externen Lasers angeregten Strukturen, wohingegen f{\"u}r die Praxis ein elektrischer Betrieb w{\"u}nschenswert ist. Die f{\"u}r die elektrische Anregung von solchen Mikrostrukturen notwendige Kontaktierung kann dar{\"u}ber hinaus zur effizienten Manipulation der Emissionseigenschaften der Quantenemitter mittels eines elektrischen Feldes eingesetzt werden. Vor diesem Hintergrund werden im Rahmen dieser Arbeit die optischen und elektrischen Eigenschaften von kontaktierten Quantenpunkt-Mikros{\"a}ulenkavit{\"a}ten eingehend untersucht. Ausgangspunkt dieser Mikrokavit{\"a}ten sind planare Schichtstrukturen auf der Basis von GaAs und AlAs mit InGaAs-Quantenpunkten mit variierendem Indiumgehalt in der aktiven Schicht. Der Schwerpunkt der Untersuchungen lag hierbei auf vertikal elektrisch kontaktierten Mikros{\"a}ulenresonatoren, deren Aufbau vertikal emittierenden Laserdioden {\"a}hnelt. Die Besonderheit der neuartigen Kontaktierung liegt darin, dass aufgrund der Strominjektion durch die Seitenw{\"a}nde im oberen Bereich des Mikros{\"a}ulenresonators die Facette der Struktur frei von jeglichem absorbierenden Material gehalten wird. Hierdurch kann eine effiziente Lichtauskopplung gew{\"a}hrleistet werden. Des Weiteren wurde auch ein Verfahren zur seitlichen Kontaktierung von undotierten Mikros{\"a}ulenresonatoren entwickelt und optimiert, was eine spezielle Manipulation der Quantenpunktemission in einem lateralen elektrischen Feld erlaubt. Als Untersuchungsmethode wird bei allen Experimenten in erster Linie die Mikrolumineszenzspektroskopie bei tiefen Temperaturen verwendet und durch die Methode der Photostromspektroskopie sowie Autokorrelationsmessungen erster und zweiter Ordnung erg{\"a}nzt ...}, subject = {Galliumarsenidlaser}, language = {de} }