@article{WuRoldaoRauchetal.2022, author = {Wu, Zhu and Roldao, Juan Carlos and Rauch, Florian and Friedrich, Alexandra and Ferger, Matthias and W{\"u}rthner, Frank and Gierschner, Johannes and Marder, Todd B.}, title = {Pure Boric Acid Does Not Show Room-Temperature Phosphorescence (RTP)}, series = {Angewandte Chemie}, volume = {61}, journal = {Angewandte Chemie}, number = {15}, doi = {10.1002/anie.202200599}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318308}, year = {2022}, abstract = {Boric acid (BA) has been used as a transparent glass matrix for optical materials for over 100 years. However, recently, apparent room-temperature phosphorescence (RTP) from BA (crystalline and powder states) was reported (Zheng et al., Angew. Chem. Int. Ed. 2021, 60, 9500) when irradiated at 280 nm under ambient conditions. We suspected that RTP from their BA sample was induced by an unidentified impurity. Our experimental results show that pure BA synthesized from B(OMe)\(_{3}\) does not luminesce in the solid state when irradiated at 250-400 nm, while commercial BA indeed (faintly) luminesces. Our theoretical calculations show that neither individual BA molecules nor aggregates would absorb light at >175 nm, and we observe no absorption of solid pure BA experimentally at >200 nm. Therefore, it is not possible for pure BA to be excited at >250 nm even in the solid state. Thus, pure BA does not display RTP, whereas trace impurities can induce RTP.}, language = {en} } @article{HuangHuShietal.2022, author = {Huang, Mingming and Hu, Jiefeng and Shi, Shasha and Friedrich, Alexandra and Krebs, Johannes and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Selective, Transition Metal-free 1,2-Diboration of Alkyl Halides, Tosylates, and Alcohols}, series = {Chemistry-A European Journal}, volume = {28}, journal = {Chemistry-A European Journal}, number = {24}, doi = {10.1002/chem.202200480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318262}, year = {2022}, abstract = {Defunctionalization of readily available feedstocks to provide alkenes for the synthesis of multifunctional molecules represents an extremely useful process in organic synthesis. Herein, we describe a transition metal-free, simple and efficient strategy to access alkyl 1,2-bis(boronate esters) via regio- and diastereoselective diboration of secondary and tertiary alkyl halides (Br, Cl, I), tosylates, and alcohols. Control experiments demonstrated that the key to this high reactivity and selectivity is the addition of a combination of potassium iodide and N,N-dimethylacetamide (DMA). The practicality and industrial potential of this transformation are demonstrated by its operational simplicity, wide functional group tolerance, and the late-stage modification of complex molecules. From a drug discovery perspective, this synthetic method offers control of the position of diversification and diastereoselectivity in complex ring scaffolds, which would be especially useful in a lead optimization program.}, language = {en} } @article{JuddHofBeladdaleetal.2022, author = {Judd, L. and Hof, L. and Beladdale, L. and Friederich, P. and Thoma, J. and Wittmann, M. and Zacharowski, K. and Meybohm, P. and Choorapoikayil, S.}, title = {Prevalence of pre-operative anaemia in surgical patients: a retrospective, observational, multicentre study in Germany}, series = {Anaesthesia}, volume = {77}, journal = {Anaesthesia}, number = {11}, doi = {10.1111/anae.15847}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318199}, pages = {1209 -- 1218}, year = {2022}, abstract = {Anaemia is a risk factor for several adverse postoperative outcomes. Detailed data about the prevalence of anaemia are not available over a long time-period in Germany. In this retrospective, observational, multicentre study, patients undergoing surgery in March in 2007, 2012, 2015, 2017 and 2019 were studied. The primary objective was the prevalence of anaemia at hospital admission. The secondary objectives were the association between anaemia and the number of units of red blood cells transfused, length of hospital stay and in-hospital mortality. A total of 23,836 patients were included from eight centres. The prevalence of pre-operative anaemia in patients aged ≥ 18 years decreased slightly from 37\% in 2007 to 32.5\% in 2019 (p = 0.01) and increased in patients aged ≤ 18 years from 18.8\% in 2007 to 26.4\% in 2019 (p > 0.001). The total amount of blood administered per 1000 patients decreased from 671.2 units in 2007 to 289.0 units in 2019. Transfusion rates in anaemic patients declined from 33.8\% in 2007 to 19.1\% in 2019 (p < 0.001) and in non-anaemic patients from 8.4\% in 2007 to 3.4\% in 2019 (p < 0.001). Overall, the mortality rate remained constant over the years: 2.9\% in 2007, 2.1\% in 2012, 2.5\% in 2015, 1.9\% in 2017 and 2.5\% in 2019. In the presence of anaemia, mortality was significantly increased compared with patients without anaemia (OR 5.27 (95\%CI 4.13-6.77); p < 0.001). Red blood cell transfusion was associated with an increased risk of mortality (OR 14.98 (95\%CI 11.83-19.03); p < 0.001). Using multivariable linear regression analysis with fixed effects, we found that pre-operative anaemia (OR 2.08 (95\%CI 1.42-3.05); p < 0.001) and red blood cell transfusion (OR 4.29 (95\%CI 3.09-5.94); p < 0.001) were predictors of mortality but not length of stay (0.99 (95\%CI 0.98-1.00) days; p = 0.12) and analysed years (2007 vs. 2019: OR 1.49 (95\%CI 0.86-2.69); p = 0.07). Pre-operative anaemia affects more than 30\% of surgical patients in Germany and multidisciplinary action is urgently required to reduce adverse outcomes.}, language = {en} } @article{ReinholdKrugSalvadoretal.2022, author = {Reinhold, Ann Kristin and Krug, Susanne M. and Salvador, Ellaine and Sauer, Reine S. and Karl-Sch{\"o}ller, Franziska and Malcangio, Marzia and Sommer, Claudia and Rittner, Heike L.}, title = {MicroRNA-21-5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury}, series = {Annals of the New York Academy of Sciences}, volume = {1515}, journal = {Annals of the New York Academy of Sciences}, number = {1}, doi = {10.1111/nyas.14816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318226}, pages = {184 -- 195}, year = {2022}, abstract = {Both nerve injury and complex regional pain syndrome (CRPS) can result in chronic pain. In traumatic neuropathy, the blood nerve barrier (BNB) shielding the nerve is impaired—partly due to dysregulated microRNAs (miRNAs). Upregulation of microRNA-21-5p (miR-21) has previously been documented in neuropathic pain, predominantly due to its proinflammatory features. However, little is known about other functions. Here, we characterized miR-21 in neuropathic pain and its impact on the BNB in a human-murine back translational approach. MiR-21 expression was elevated in plasma of patients with CRPS as well as in nerves of mice after transient and persistent nerve injury. Mice presented with BNB leakage, as well as loss of claudin-1 in both injured and spared nerves. Moreover, the putative miR-21 target RECK was decreased and downstream Mmp9 upregulated, as was Tgfb. In vitro experiments in human epithelial cells confirmed a downregulation of CLDN1 by miR-21 mimics via inhibition of the RECK/MMP9 pathway but not TGFB. Perineurial miR-21 mimic application in mice elicited mechanical hypersensitivity, while local inhibition of miR-21 after nerve injury reversed it. In summary, the data support a novel role for miR-21, independent of prior inflammation, in elicitation of pain and impairment of the BNB via RECK/MMP9.}, language = {en} } @article{KindlTeichmuellerEscolanoLozanoetal.2022, author = {Kindl, Gudrun and Teichm{\"u}ller, Karolin and Escolano-Lozano, Fabiola and Birklein, Frank and Rittner, Heike L.}, title = {Pain, disability, and lifestyle: Patients with complex regional pain syndrome compared to chronic musculoskeletal pain-A retrospective analysis}, series = {European Journal of Pain}, volume = {26}, journal = {European Journal of Pain}, number = {3}, doi = {10.1002/ejp.1900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318200}, pages = {719 -- 728}, year = {2022}, abstract = {Background Complex regional pain syndrome (CRPS) is an orphan disease occurring as a complication after trauma. Due to its acute onset and the typical clinical presentation of the inflammatory and autonomous signs, it is an eye-catching chronic pain disease affecting also young and working people. In social media and the internet, high pain severity and the unfavourable prognosis are often empathized. Methods Here, we compared epidemiological, pain and lifestyle factors of 223 CPRS patients from the "ncRNAPain" cohort with 255 patients with chronic musculoskeletal pain (MSK). MSK patients were recruited at the beginning of a multimodal pain therapy programme. We searched for factors predicting pain intensity. Results Both chronic pain diseases affected women in middle age. Patients with MSK were more obese, drank more alcohol, and were less educated (Pearson chi-square Test or Mann-Whitney/U-Test). Both groups smoked more than healthy people in the OECD (Organization for Economic Cooperation and Development). Mann-Whitney/U-Test confirmed that CRPS patients did not have more severe pain and did not suffer more from pain-related disability than patients with MSK. CRPS patients also had less psychiatric comorbidities. Multiple linear regression analysis revealed that group assignment, depressive characteristics, body mass index, average alcohol consumption and smoking predicted higher pain ratings, while disease duration, anxiety symptoms or gender had no influence on pain intensity. Conclusion In summary, our study supports a more optimistic view on pain in CRPS patients in comparison to MSK and identifies lifestyle factors that might contribute to the pathophysiology like smoking and drinking. Important next steps are the identification of CRPS patients at risk for chronification or—vice versa—with protective factors for pain resolution. Significance This study compares complex regional pain syndrome (CRPS) and chronic musculoskeletal pain and questions previously reported pain, disability and lifestyle factors associated with CRPS.}, language = {en} } @article{BazihizinaBoehmMessereretal.2022, author = {Bazihizina, Nadia and B{\"o}hm, Jennifer and Messerer, Maxim and Stigloher, Christian and M{\"u}ller, Heike M. and Cuin, Tracey Ann and Maierhofer, Tobias and Cabot, Joan and Mayer, Klaus F. X. and Fella, Christian and Huang, Shouguang and Al-Rasheid, Khaled A. S. and Alquraishi, Saleh and Breadmore, Michael and Mancuso, Stefano and Shabala, Sergey and Ache, Peter and Zhang, Heng and Zhu, Jian-Kang and Hedrich, Rainer and Scherzer, S{\"o}nke}, title = {Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa}, series = {New Phytologist}, volume = {235}, journal = {New Phytologist}, number = {5}, doi = {10.1111/nph.18205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287222}, pages = {1822 -- 1835}, year = {2022}, abstract = {Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na\(^{+}\)), chloride (Cl\(^{-}\)), potassium (K\(^{+}\)) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.}, language = {en} } @article{ForsterDichtlWagener2022, author = {Forster, Johannes and Dichtl, Karl and Wagener, Johannes}, title = {Lower beta-1,3-D-glucan testing cut-offs increase sensitivity for non-albicans Candida species bloodstream infections}, series = {Mycoses}, volume = {65}, journal = {Mycoses}, number = {5}, doi = {10.1111/myc.13421}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276515}, pages = {500 -- 507}, year = {2022}, abstract = {Purpose Fungal biomarkers support early diagnosis of invasive fungal infections. In this study, we evaluated the impact of a recent update to the manufacturer-recommended cut-off for beta-1,3-D-glucan (BDG) testing (Fujifilm Wako BDG assay) on sensitivity and specificity for the detection of candidemia. Additionally, we compared the performance with tests for Candida antigen (Ag by Serion ELISA antigen Candida, Virion\Serion) and anti-mannan antibodies (Ab by Hemkit Candida IHA, Ravo Diagnostika). Methods Sera of 82 patients with candidemia, which were sampled with a maximum distance of ±14 days from the date of sampling of the corresponding positive blood cultures, were retrospectively analysed for BDG, Ag and Ab. Results of BDG testing were compared with results from sera of 129 patients with candidemia from a different hospital. Results Sensitivity of BDG testing (47\%) was higher than for Ag (17\%) or Ab (20\%). By combining Ag and Ab testing, sensitivity was raised to 32\%. Lowering the cut-off of BDG from 11 pg/ml to the newly recommended cut-off of 7 pg/ml resulted in a significant increase in sensitivity (47\% vs 58\%, p = .01 and 63\% vs 71\% p < .01). At both centres, the increase was significant in NAC but not in C. albicans candidemia. No significant effects on specificity were observed. Conclusion BDG testing outperformed Ag and Ab testing and its combination. Lowering the BDG cut-off had no significant impact on specificity. The increase in sensitivity can be mainly attributed to a gain in sensitivity for non-albicans Candida species bloodstream infections.}, language = {en} } @article{EbertWeissenbergerBraunetal.2022, author = {Ebert, Regina and Weissenberger, Manuel and Braun, Clemens and Wagenbrenner, Mike and Herrmann, Marietta and M{\"u}ller-Deubert, Sigrid and Krug, Melanie and Jakob, Franz and Rudert, Maximilian}, title = {Impaired regenerative capacity and senescence-associated secretory phenotype in mesenchymal stromal cells from samples of patients with aseptic joint arthroplasty loosening}, series = {Journal of Orthopaedic Research}, volume = {40}, journal = {Journal of Orthopaedic Research}, number = {2}, doi = {10.1002/jor.25041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238963}, pages = {513 -- 523}, year = {2022}, abstract = {Aseptic loosening of total hip and knee joint replacements is the most common indication for revision surgery after primary hip and knee arthroplasty. Research suggests that exposure and uptake of wear by mesenchymal stromal cells (MSC) and macrophages results in the secretion of proinflammatory cytokines and local osteolysis, but also impaired cell viability and regenerative capacity of MSC. Therefore, this in vitro study compared the regenerative and differentiation capacity of MSC derived from patients undergoing primary total hip arthroplasty (MSCprim) to MSC derived from patients undergoing revision surgery after aseptic loosening of total hip and knee joint implants (MSCrev). Regenerative capacity was examined by measuring the cumulative population doubling (CPD) in addition to the number of passages until cells stopped proliferating. Osteogenesis and adipogenesis in monolayer cultures were assessed using histological stainings. Furthermore, RT-PCR was performed to evaluate the relative expression of osteogenic and adipogenic marker genes as well as the expression of markers for a senescence-associated secretory phenotype (SASP). MSCrev possessed a limited regenerative capacity in comparison to MSCprim. Interestingly, MSCrev also showed an impaired osteogenic and adipogenic differentiation capacity compared to MSCprim and displayed a SASP early after isolation. Whether this is the cause or the consequence of the aseptic loosening of total joint implants remains unclear. Future research should focus on the identification of specific cell markers on MSCprim, which may influence complication rates such as aseptic loosening of total joint arthroplasty to further individualize and optimize total joint arthroplasty.}, language = {en} } @article{SunAnhaltSarosietal.2022, author = {Sun, Meng-Jia and Anhalt, Olga and S{\´a}rosi, Menyh{\´a}rt B. and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Activating Organic Phosphorescence via Heavy Metal-π Interaction Induced Intersystem Crossing}, series = {Advanced Materials}, volume = {34}, journal = {Advanced Materials}, number = {51}, doi = {10.1002/adma.202207331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312248}, year = {2022}, abstract = {Heavy-atom-containing clusters, nanocrystals, and other semiconductors can sensitize the triplet states of their surface-bonded chromophores, but the energy loss, such as nonradiative deactivation, often prevents the synergistic light emission in their solid-state coassemblies. Cocrystallization allows new combinations of molecules with complementary properties for achieving functionalities not available in single components. Here, the cocrystal formation that employs platinum(II) acetylacetonate (Pt(acac)\(_{2}\)) as a triplet sensitizer and electron-deficient 1,4,5,8-naphthalene diimides (NDIs) as organic phosphors is reported. The hybrid cocrystals exhibit room-temperature phosphorescence confined in the low-lying, long-lived triplet state of NDIs with photoluminescence (PL) quantum yield (Φ\(_{PL}\)) exceeding 25\% and a phosphorescence lifetime (τ\(_{Ph}\)) of 156 µs. This remarkable PL property benefits from the noncovalent electronic and spin-orbital coupling between the constituents.}, language = {en} } @article{JonesHuangHedrichetal.2022, author = {Jones, Jeffrey J. and Huang, Shouguang and Hedrich, Rainer and Geilfus, Christoph-Martin and Roelfsema, M. Rob G.}, title = {The green light gap: a window of opportunity for optogenetic control of stomatal movement}, series = {New Phytologist}, volume = {236}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.18451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293724}, pages = {1237 -- 1244}, year = {2022}, abstract = {Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.}, language = {en} }