@phdthesis{Hoecker2022, author = {H{\"o}cker, Julian Harald}, title = {High-quality Organolead Trihalide Perovskite Crystals: Growth, Characterisation, and Photovoltaic Applications}, doi = {10.25972/OPUS-25859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258590}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Overview of the Organolead Trihalide Perovskite Crystal Area Studies of perovskite single crystals with high crystallographic quality is an important technological area of the perovskite research, which enables to estimate their full optoelectronic potential, and thus to boost their future applications [26]. It was therefore essential to grow high-quality single crystals with lowest structural as well as chemical defect densities and with a stoichiometry relevant for their thin-film counterparts [26]. Optoelectronic devices, e.g. solar cells, are highly complex systems in which the properties of the active layer (absorber) are strongly influenced by the adjacent layers, so it is not always easy to define the targeted properties and elaborate the design rules for the active layer. Currently, organolead trihalide perovskite (OLTP) single crystals with the structure ABX3 are one of the most studied crystalline systems. These hybrid crystals are solids composed of an organic cation such as methylammonium (A = MA+) or formamidinium (A = FA+) to form a three-dimensional periodic lattice together with the lead cation (B = Pb2+) and a halogen anion such as chloride, bromide or iodide (X = Cl-, Br- or I-) [23]. Among them are methylammonium lead tribromide (MAPbBr3), methylammonium lead triiodide (MAPbI3), as well as methylammonium lead trichloride (MAPbCl3) [62, 63]. Important representatives with the larger cation FA+ are formamidinium lead tribromide (FAPbBr3) and formamidinium lead triiodide (FAPbI3) [23, 64]. Besides the exchange of cations as well as anions, it was possible to grow crystals containing two halogens to obtain mixed crystals with different proportions of chlorine to bromine and bromine to iodine, as it is shown in Figure 70. By varying the mixing ratio of the halogens, it was therefore possible to vary the colour and thus the absorption properties of the crystals [85], as it can be done with thin polycrystalline perovskite films. In addition, since a few years it is also doable to grow complex crystals that contain several cations as well as anions [26, 80, 81]. These include the perovskites double cation - double halide formamidinium lead triiodide - methylammonium lead tribromide (FAPbI3)0.9(MAPbBr3)0.1 (FAMA) [26, 80] and formamidinium lead triiodide - methylammonium lead tribromide - caesium lead tribromide (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05 (CsFAMA) [81], which have made a significant contribution to increase the power conversion efficiency (PCE) in thin-film photovoltaics [47, 79, 182]. The growth of crystals to this day is performed exclusively from solution [23, 26, 56, 62]. Important preparation methods are the cooling acid-based precursor solution crystallisation [22], the inverse temperature crystallisation (ITC) [62], and the antisolvent vapour-assistant crystallisation (AVC) [137]. In the cooling crystallisation, the precursor salts AX and PbX2 are dissolved in an aqueous halogen-containing acid at high temperatures [56]. Controlled and slow cooling finally results in a supersaturated precursor solution, which leads to spontaneous nucleation of crystal nuclei, followed by subsequent crystal growth. The ITC method is based on the inverse or retrograde solubility of a dissociated perovskite in an organic solvent [23, 64]. With increasing temperature, the solubility of the perovskite decreases and mm-sized crystals can be grown within a few hours [23]. In the AVC method, the precursors are also dissolved in an organic solvent as well [137]. By slow evaporation of a so-called antisolvent [137], the solubility of the perovskite in the now present solvent mixture decreases and it finally precipitates. In addition, there are many other methods with the goal of growing high quality and large crystals in a short period of time [60, 61, 233, 310].}, subject = {Perowskit}, language = {en} } @phdthesis{Harder2022, author = {Harder, Tristan H.}, title = {Topological Modes and Flatbands in Microcavity Exciton-Polariton Lattices}, doi = {10.25972/OPUS-25900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259008}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented. At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed. In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices. Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection. Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators.}, subject = {Exziton-Polariton}, language = {en} } @phdthesis{Youssef2022, author = {Youssef, Almoatazbellah}, title = {Fabrication of Micro-Engineered Scaffolds for Biomedical Application}, doi = {10.25972/OPUS-23545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235457}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients' own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW.}, language = {en} } @phdthesis{Weissenseel2022, author = {Weißenseel, Sebastian G{\"u}nter}, title = {Spin-Spin Interactions and their Impact on Organic Light-Emitting Devices}, doi = {10.25972/OPUS-25745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This work investigates the correlations between spin states and the light emission properties of organic light-emitting diodes (OLEDs), which are based on the principle of thermally activated delayed fluorescence. The spin-spin interactions responsible for this mechanism are investigated in this work using methods based on spin-sensitive electron paramagnetic resonance (EPR). In particular, this method has been applied to electrically driven OLEDs. The magnetic resonance has been detected by electroluminescence, giving this method its name: electroluminescence detected magnetic resonance (ELDMR). Initial investigations on a novel deep blue TADF emitter were performed. Furthermore, the ELDMR method was used in this work to directly detect the spin states in the OLED. These measurements were further underlined by time-resolved experiments such as transient electro- and photoluminescence.}, subject = {Elektronenspinresonanz}, language = {en} } @phdthesis{Wiest2022, author = {Wiest, Wolfram}, title = {Entwicklung einer Apparatur zur In-situ-Erm{\"u}dungspr{\"u}fung von Zahnimplantaten mittels Synchrotron Micro-CT}, doi = {10.25972/OPUS-25770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257702}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der volumenbildgebenden Untersuchung von mechanischen Erm{\"u}dungsprozessen in Titan-Zahnimplantaten. Im Vordergrund steht die Entwicklung einer neuen Messmethode der In-situ-Mikrotomografie am Synchrotron. Zahnimplantate werden beim Gebrauch mechanisch wiederholt belastet (Wechsellast). Nach vielen zyklischen Belastungen k{\"o}nnen aufgrund von mikroplastische Verformungen Erm{\"u}dungssch{\"a}den auftreten. Diese k{\"o}nnen im Extremfall zum Versagen und Verlust eines Implantats f{\"u}hren. Die Computertomographie ist eine sehr geeignete zerst{\"o}rungsfrei Pr{\"u}fmethode, um Zahnimplantate zu untersuchen. Diese Arbeit erweitert die bisherige CT-Methode insofern, dass In-situ-Beobachtungen bei mechanischer Belastung m{\"o}glich sind. Die in dieser Arbeit untersuchten Zahnimplantate weisen an der Implantat-Abutment-Grenzfl{\"a}che bei eintretender Erm{\"u}dung einen Mikrospalt auf. Dieser wird als Indikator f{\"u}r einsetzende Fatigue- Prozesse benutzt. Der in der Synchrotron CT verf{\"u}gbare Inlinephasenkontrast erm{\"o}glicht eine verbesserte Bestimmung der Mikrospaltgr{\"o}ße. Da die schnellen Bewegungen der Erm{\"u}dungspr{\"u}fung mittels Standard-CT-Verfahren schwer zu erfassen sind, war die stroboskopische Aufnahmemethode das zielf{\"u}hrende Messverfahren, um in-situ-Pr{\"u}fung zu erm{\"o}glichen. Die 4 kommerziellen Zahnimplantattypen werden neben der In-situ-Fatigue Pr{\"u}fung auch mittels klassischer Erm{\"u}dungspr{\"u}fung untersucht und mit der Neuen Messmethode verglichen. Die hier entwickelte In-situ-Fatigue-Pr{\"u}fstation kann Proben bis zu 345 N tomographisch untersuchen. Neben den experimentellen Untersuchungen wird eine statische FEM-Betrachtung durchgef{\"u}hrt und mit experimentellen Messdaten verglichen. Zuletzt wird mit der entwickelten Messtation Knochenrisse in der Implantat Umgebung untersucht.}, subject = {Mikrocomputertomographie}, language = {de} } @phdthesis{Mahler2022, author = {Mahler, David}, title = {Surface states in the topological material HgTe}, doi = {10.25972/OPUS-25398}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-253982}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The motivation for this work has been contributing a step to the advancement of technology. A next leap in technology would be the realization of a scalable quantum computer. One potential route is via topological quantum computing. A profound understanding of topological materials is thus essential. My work contributes by the investigation of the exemplary topological material HgTe. The focus lies on the understanding of the topological surface states (TSS) and new possibilities to manipulate them appropriately. Traditionally top gate electrodes are used to adjust the carrier density in such semi-conductor materials. We found that the electric field of the top gate can further alter the properties of the HgTe layer. The formation of additional massive Volkov-Pankratov states limits the accessibility of the TSS. The understanding of these states and their interplay with the TSS is necessary to appropriately design devices and to ensure their desired properties. Similarly, I observed the existence and stability of TSSs even without a bandgap in the bulk band structure in the inversion induced Dirac semi-metal phase of compressively strained HgTe. The finding of topological surface states in inversion-induced Dirac semi-metals provides a consistent and simple explanation for the observation reported for \(\text{Cd}_3\text{As}_2\). These observations have only been possible due to the high quality of the MBE grown HgTe layers and the access of different phases of HgTe via strain engineering. As a starting point I performed Magneto-transport measurements on 67 nm thick tensilely strained HgTe layers grown on a CdTe substrate. We observed multiple transport channels in this three-dimensional topological insulator and successfully identified them. Not only do the expected topological surface states exist, but also additional massive surface states have been observed. These additional massive surface states are formed due to the electrical field applied at the top gate, which is routinely used to vary the carrier density in the HgTe layer. The additional massive surface states are called Volkov-Pankratov states after B. A. Volkov and O. A. Pankratov. They predicted the existence of similar massive surface states at the interface of materials with mutually inverted bands. We first found indications for such massive Volkov-Pankratov states in high-frequency compressibility measurements for very high electron densities in a fruitful collaboration with LPA in Paris. Magneto-transport measurements and \(k \cdot p\) calculations revealed that such Volkov-Pankratov states are also responsible for the observed whole transport. We also found indications for similar massive VPS in the electron regime, which coexist with the topological surface states. The topological surface states exist over the full investigated gate range including a regime of pure topological insulator transport. To increase the variability of the topological surface states we introduced a modulation doping layer in the buffer layer. This modulation doping layer also enabled us to separate and identify the top and bottom topological surface states. We used the variability of the bulk band structure of HgTe with strain to engineer the band structure of choice using virtual substrates. The virtual substrates enable us to grow compressively strained HgTe layers that do not possess a bandgap, but instead linear crossing points. These layers are predicted to beDirac semi-metals. Indeed I observed also topological surface states and massive Volkov-Pankratov states in the compressively strained Dirac semi-metal phase. The observation of topological surfaces states also in the Dirac semi-metal phase has two consequences: First, it highlights that no bulk bandgap is necessary to observe topological surface states. Second, the observation of TSS also in the Dirac semi-metal phase emphasizes the importance of the underlying band inversion in this phase. I could not find any clear signatures of the predicted disjoint topological surface states, which are typically called Fermi-arcs. The presence of topological surface states and massive Volkov-Pankratov states offer a simple explanation for the observed quantum Hall effect and other two-dimensional transport phenomena in the class of inversion induced Dirac semi-metals, as \(\text{Cd}_3\text{As}_2\). This emphasizes the importance of the inherent bulk band inversion of different topological materials and provides a consistent and elegant explanation for the observed phenomena in these materials. Additionally, it offers a route to design further experiments, devices, and thus the foundation for the induction of superconductivity and thus topological quantum computing. Another possible path towards quantum computing has been proposed based on the chiral anomaly. The chiral anomaly is an apparent transport anomaly that manifests itself as an additional magnetic field-driven current in three-dimensional topological semimetals with a linear crossing point in their bulk band structure. I observed the chiral anomaly in compressively strained HgTe samples and performed multiple control experiments to identify the observed reduction of the magnetoresistance with the chiral anomaly. First, the dependence of the so-called negative magnetoresistance on the angle and strength of the magnetic field has been shown to fit the expectation for the chiral anomaly. Second, extrinsic effects as scattering could be excluded as a source for the observed negative MR using samples with different mobilities and thus impurity concentrations. Third, the necessity of the linear crossing point has been shown by shifting the electrochemical potential away from the linear crossing points, which diminished the negative magnetoresistance. Fourth, I could not observe a negative magnetoresistance in the three-dimensional topological insulator phase of HgTe. These observations together prove the existence of the chiral anomaly and verify compressively strained HgTe as Dirac semi-metal. Surprisingly, the chiral anomaly is also present in unstrained HgTe samples, which constitute a semi-metal with a quadratic band touching point. This observation reveals the relevance of the Zeeman effect for the chiral anomaly due to the lifting of the spin-degeneracy in these samples. Additionally to the chiral anomaly, the Dirac semi-metal phase of compressively strained HgTe showed other interesting effects. For low magnetic fields, a strong weak-antilocalization has been observed. Such a strong weak-anti-localization correction in a three-dimensional layer is surprising and interesting. Additionally, non-trivial magnetic field strength and direction dependencies have been observed. These include a strong positive magnetoresistance for high magnetic fields, which could indicate a metal-insulator transition. On a more device-oriented note, the semi-metal phase of unstrained HgTe constitutes the lower limit of the by strain engineering adjustable minimal carrier density of the topological surface states and thus of very high mobility. To sum up, topological surface states have been observed in the three-dimensional topological insulator phase and the Dirac semi-metal phase of HgTe. The existence and accessibility of topological surface states are thus independent of the existence of a bandgap in the bulk band structure. The topological surface states can be accompanied by massive Volkov-Pankratov states. These VPS are created by electric fields, which are routinely applied to adjust the carrier density in semiconductor devices. The theoretical predicted chiral anomaly has been observed in the Dirac semi-metal phase of HgTe. In contrast to theoretical predictions, no indications for the Fermi-arc called disjoint surface states have been observed, but instead the topological and massive Volkov-Pankratov surface states have been found. These states are thus expected for all inversion-induced topological materials.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Scheuermann2021, author = {Scheuermann, Julian}, title = {Interbandkaskadenlaser f{\"u}r Anwendungen in der Absorptionsspektroskopie}, doi = {10.25972/OPUS-25179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Das Ziel dieser Arbeit war die Entwicklung und Weiterentwicklung von Laserlichtquellen basierend auf der Interbandkaskadentechnologie in einem Wellenl{\"a}ngenbereich von ca. 3 bis 6 µm. Der Fokus lag dabei auf der Entwicklung von Kantenemitter-Halbleiterlasern, welche bei verschiedensten Emissionswellenl{\"a}ngen erfolgreich hergestellt werden konnten. Dabei wurde auf jeweilige Herausforderungen eingegangen, welche entweder durch die Herstellung selbst oder der anwendungstechnischen Zielsetzung bedingt war. Im Rahmen dieser Arbeit wurden verschiedene, spektral einzelmodige Halbleiterlaser im angesprochenen Wellenl{\"a}ngenbereich entwickelt und hergestellt. Basierend auf dem jeweiligen Epitaxiematerial und der angestrebten Emissionswellenl{\"a}nge wurden Simulationen der optischen Lasermode durchgef{\"u}hrt und die grundlegenden f{\"u}r die Herstellung notwendigen Parameter bestimmt und experimentell umgesetzt. Des Weiteren wurden die verwendeten Verfahren f{\"u}r den jeweiligen Herstellungsprozess angepasst und optimiert. Das umfasst die in den ersten Kapiteln beschriebenen Schritte wie optische Lithografie, Elektronenstrahllithografie, reaktives Trocken{\"a}tzen und verschiedene Arten der Materialdeposition. Mit einer Emissionswellenl{\"a}nge von 2,8 µm wurde beispielsweise der bislang kurzwelligste bei Raumtemperatur im Dauerstrichbetrieb betriebene einzelmodige Interbandkaskadenlaser hergestellt. Dessen Leistungsmerkmale sind mit Diodenlasern im entsprechenden Emissionsbereich vergleichbar. Somit erg{\"a}nzt die Interbandkaskadentechnologie bestehende Technologien nahtlos und es ist eine l{\"u}ckenlose Wellenl{\"a}ngenabdeckung bis in den mittleren Infrarotbereich m{\"o}glich. Je nach Herstellungsprozess wurde außerdem auf die verteilte R{\"u}ckkopplung eingegangen und die Leistungsf{\"a}higkeit des verwendeten Metallgitterkonzeptes anhand von Messungen an spektral einzelmodigen Bauteile aufgezeigt. Es wurden aber auch die je nach Zielsetzung unterschiedlichen Herausforderungen aufgezeigt und diskutiert. F{\"u}r eine Anwendung wurden spezielle Laserchips mit zwei einzelmodigen Emissionswellenl{\"a}ngen bei 3928 nm und 4009 nm entwickelt. Die beiden Wellenl{\"a}ngen sind f{\"u}r die Detektion von Schwefeldioxid und Schwefelwasserstoff geeignet, welche zur {\"U}berwachung und Optimierung der Schwefelgewinnung durch das Claus-Verfahren notwendig sind. Bei der Umsetzung wurden auf einzelnen Chips zwei Laseremitter in einem Abstand von 70 µm platziert und mit je einem Metallgitter versehen. Das verwendete Epitaxiematerial war so konzipiert, dass es optimal f{\"u}r beide Zielwellenl{\"a}ngen verwendet werden kann. Die geforderten Eigenschaften wurden erf{\"u}llt und die Bauteile konnten erfolgreich hergestellt werden. Die Emissionseigenschaften und das spektrale Verhalten wurde bei beiden Zielwellenl{\"a}ngen bestimmt. Einzeln betrachtet erf{\"u}llen beide Emitter die notwendigen Eigenschaften um f{\"u}r spektroskopische Anwendungen eingesetzt werden zu k{\"o}nnen. Erg{\"a}nzend wurde zum einen das Abstimmverhalten der Emissionswellenl{\"a}nge in Abh{\"a}ngigkeit der Modulationsfrequenz des Betriebsstromes untersucht und zus{\"a}tzlich die thermische Abh{\"a}ngigkeit der Betriebsparameter beider Kan{\"a}le zueinander bestimmt. Diese Abh{\"a}ngigkeit ist f{\"u}r eine simultane Messung mit beiden Kan{\"a}len notwendig. Das Konzept mit mehreren Stegwellenleitern pro Laserchip wurde in einem weiteren Fall noch st{\"a}rker ausgearbeitet. Denn je nach Komplexit{\"a}t eines Gasgemisches sind zur Bestimmung der einzelnen Komponenten mehr Messpunkte bzw. Wellenl{\"a}ngen notwendig. Im zweiten Fall ist die Analyse der Kohlenwasserstoffe Methan, Ethan, Propan, Butan, Iso-Butan, Pentan und Iso-Pentan von Interesse, welche als Hauptbestandteile von Erdgas z.B. in Erdgasaufbereitungsanlagen oder zur Bestimmung des Heizwertes analysiert werden m{\"u}ssen. Die genannten Kohlenwasserstoffe zeigen ein starkes Absorptionsverhalten im Wellenl{\"a}ngenbereich von 3,3 bis 3,5 µm. Auf dem entsprechend angepassten Interbandkaskadenmaterial wurden Bauteile mit neun Wellenleitern pro Laserchip hergestellt. Mithilfe der neun einzelmodigen Emissionskan{\"a}le konnte ein Bereich von bis zu 190 nm (21 meV, 167 cm-1) adressiert werden. Außerdem wurde der sich mit zunehmender Wellenl{\"a}nge {\"a}ndernde Schichtaufbau und dessen Einfluss auf die Bauteileigenschaften diskutiert. Die Leistungsdaten der langwelligsten Epitaxie waren im Vergleich deutlich schw{\"a}cher. Um diesen Nachteil zu kompensieren, wurde eine spezielle Wellenleitergeometrie mit doppeltem Steg genutzt. Die Eigenschaften des Konzeptes wurden zuerst mittels Simulation untersucht und ein entsprechendes Herstellungsverfahren entwickelt. Mit der Simulation als Grundlage wurden die verschiedenen Prozessparameter {\"u}ber mehrere Prozessl{\"a}ufe iterativ optimiert und somit die Performance der Laser verbessert. Auch mit diesem Verfahren konnte ausreichende Kopplung an das Metallgitter erzielt werden. Abschließend wurden mit diesem Herstellungsverfahren einzelmodige Laser im Wellenl{\"a}ngenbereich von 5,9 bis {\"u}ber 6 Mikrometern realisiert. Diese Laser emittierten im Dauerstrichbetrieb bei einer maximalen Betriebstemperatur von -2 °C. Insgesamt wurde anhand der im Rahmen dieser Arbeit entwickelten Bauteilen und de ren Charakterisierung gezeigt, dass diese die Anforderungen von TLAS Anwendungen erf{\"u}llen. Jedoch konnte nur auf einen Teil der M{\"o}glichkeiten eingegangen werden, den die Interbandkaskadentechnologie bietet, denn die angesprochenen Einsatzgebiete stellen nur einzelne grundlegende M{\"o}glichkeiten dieser Technologie mit Schwerpunkt auf laserbasierte Lichtquellen dar. Zusammenfassend kann allerdings gesagt werden, dass sich die Interbandkaskadentechnologie etabliert hat. Gerade durch die gezeigten Leistungsdaten bei den Wellenl{\"a}ngen um 2,9 µm, 3,4 µm und 4,0 µm im Dauerstrichbetrieb bei Raumtemperatur wird ersichtlich, dass im Bereich der Sensorik die ICL Technologie in Bezug auf niedriger Strom- bzw. Leistungsaufnahme quasi konkurrenzlos ist. Sicherlich werden die Anwendungsgebiete in Zukunft noch vielf{\"a}ltiger. Denn es sind auf jeden Fall weitere Fortschritte in Richtung h{\"o}herer Emissionswellenl{\"a}ngen, deutlich h{\"o}herer Betriebstemperaturen, verbreiterte Emissionsbereiche oder g{\"a}nzlich andere Bauteil Konzepte wie z.B. f{\"u}r Frequenzk{\"a}mme bzw. Terahertz Anwendungen zu erwarten. Diese Entwicklung betrifft nicht nur den Einsatz als Lichtquelle, denn auch Interbandkaskadendetektoren bzw. Solarzellen wurden schon realisiert und werden weiterentwickelt.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Leisegang2021, author = {Leisegang, Markus}, title = {Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde}, doi = {10.25972/OPUS-25076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Verlustarmer Ladungstr{\"a}gertransport ist f{\"u}r die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende W{\"a}rme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungstr{\"a}gertransport bestimmen, laufen jedoch auf L{\"a}ngenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu k{\"o}nnen, bedarf es Messmethoden mit hoher zeitlicher oder {\"o}rtlicher Aufl{\"o}sung. F{\"u}r Letztere gibt es wenige etablierte Experimente, h{\"a}ufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschr{\"a}nkungen unterliegen. Um die M{\"o}glichkeiten der Detektion von Ladungstr{\"a}gertransport auf Distanzen der mittleren freien Wegl{\"a}nge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molek{\"u}l als Detektor f{\"u}r Ladungstr{\"a}ger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molek{\"u}l in das untersuchte Substrat injiziert werden. Die hohe Aufl{\"o}sung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors erm{\"o}glicht dabei atomare Kontrolle von Transportpfaden {\"u}ber wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierf{\"u}r werden zun{\"a}chst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Molek{\"u}ls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden F{\"a}llen zeigt sich eine signifikante {\"A}nderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Molek{\"u}ls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zus{\"a}tzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfl{\"a}che, was einen nicht-punktf{\"o}rmigen Detektor best{\"a}tigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde pr{\"a}sentiert. Zun{\"a}chst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungstr{\"a}gern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfl{\"a}che durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird.}, subject = {Rastertunnelmikroskopie}, language = {de} } @phdthesis{EliasdosSantos2021, author = {Elias dos Santos, Graciely}, title = {Spin-Orbit Torques and Galvanomagnetic Effects Generated by the 3D Topological Insulator HgTe}, doi = {10.25972/OPUS-24797}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247971}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In meiner Dissertation besch{\"a}ftigte ich mich mit der Frage, ob der 3D topologische Isolator Quecksilbertellurid (3D TI HgTe) ein geeignetes Material f{\"u}r Spintronik-Anwendungen ist. Wir untersuchten Spin-Bahn-Drehmomente, die auf Elektronen beim Tunneln zwischen HgTe und einem angrenzenden Ferromagneten (Permalloy) einwirken. Zun{\"a}chst setzten wir die Methode der Ferromagnetresonanz (SOT-FMR) f{\"u}r diese Untersuchungen ein. Im ersten Teil der Dissertation werden die Leser in die mathematische Beschreibung von Spin- Bahn-Drehmomenten in einem Hybridsystem bestehend aus topologischem Isolator (TI) und Ferromagnet (FM) eingef{\"u}hrt. Des Weiteren werden die Probenherstellung und der Messaufbau f{\"u}r SOT-FMR Messungen besprochen. Unsere SOT-FMR Messungen ergaben, dass bei tiefen Temperaturen (T = 4.2 K) die Normalkomponente (bezogen auf der TI-Oberfl{\"a}che) des Drehmoments groß war. Bei Raumtemperatur konnten im Signal beide Komponenten (parallel und normal zur TI-Oberfl{\"a}che) beobachtet werden. Aus der Symmetrie der Mixing-Spannung (Abbildungen 3.14 und 3.15) schlossen wir, dass 3D TI HgTe ein Spin-Bahn-Drehmoment auf das Elektronensystem des Permalloys {\"u}bertr{\"a}gt. Unsere Untersuchungen zeigten dar{\"u}ber hinaus, dass die Effizienz dieser {\"U}bertragung mit der anderer vorhandener topologischen Isolatoren vergleichbar ist (siehe Abb. 3.17). Abschließend wurden parasit{\"a}re Effekte bei der Absch{\"a}tzung des Spin-Bahn-Drehmoments bzw. andere Interpretationen des Messsignals und seiner Komponenten (z.B., Thermospannungen) ausf{\"u}hrlich diskutiert. Obwohl die hier gezeigten Ergebnisse vermehrt darauf hinweisen, dass der 3D TI HgTe m{\"o}glicherweise effizient f{\"u}r die Anwendung von Spin-Drehmomenten in angrezenden Ferromagneten ist [1], wird dem Leser weiderholt klargemacht, dass parasit{\"a}re Effekte eventuelle das korrekte Schreiben und Lesen der Information in Ferromagneten verunreignigt. Diese sollten auch bei der Interpretation von publizierten Resultaten besonders hohen Spin-Bahn-Drehmoment{\"u}bertragungen in der Literatur ber{\"u}cksichtigt werden [1-3]. Die Nachteile der SOT-FMR-Messmethode f{\"u}hrten zu einerWeiterentwicklung unseres Messkonzepts, bei dem der Ferromagnet durch eine Spin-Valve-Struktur ersetzt wurde. In dieser Messanordnung ist der Stromfluss durch den 3D TI im Gegensatz zu den vorangegangenen Messungen bekannt und die Widerstands{\"a}nderung der Spin-Valve-Struktur kann durch den GMR-Effekt ausgelesen werden. Die Ausrichtung der Magnetisierung des Ferromagneten in den SOT-FMR-Experimenten erforderte es, ein magnetisches Feld von bis zu 300 mT parallel zur TI-Oberfl{\"a}che anzulegen. Motiviert durch diesen Umstand, untersuchten wir den Einfluss eines parallelen Magnetfelds auf den Magnetowiderstand in 3D TI HgTe. Die {\"u}berraschenden Resultate dieser Messungen werden im zweiten Teil der Dissertation beschrieben. Obwohl nichtmagnetisches Quecksilbertellurid untersucht wurde, oszillierte der transversale Magnetowiderstand (Rxy) mit dem Winkel � zwischen der Magnetfeldrichtung (parallel zur Oberfl{\"a}che) und der elektrischen Stromflussrichtung im topologischen Isolator. Dieser Effekt ist eine typische Eigenschaft von ferromagnetischen Materialien und wird planarer Hall-Effekt (PHE) genannt[4, 5]. Magnetowiderstands- (MR-)Oszillationen wurden ebenfalls sowohl im L{\"a}ngswiderstand (Rxx) und im transversalen Widerstand (Rxy) {\"u}ber einen weiten Bereich von magnetischen Feldst{\"a}rken und Ladungstr{\"a}gerdichten des topologischen Isolators beobachtet. Der PHE wurde bereits zuvor in einem anderen TI-Material (Bi2-xSbxTe3) beschrieben [6]. Als physikalischer Mechanismus wurde von den Autoren Elektronenstreuung an magnetisch polarisierten Streuzentren vorgeschlagen. Wir diskutierten sowohl diesen Erkl{\"a}rungsansatz als auch andere Theorievorschl{\"a}ge in der Literatur [7, 8] kritisch. In dieser Doktorarbeit haben wir versucht, der PHE des 3D TI HgTe durch die Asymmetrie in der Bandstruktur dieses Materials zu erkl{\"a}ren. In k.p Bandstrukturrechnungen mit einer 6-Orbital-Basis zeigten wir, dass das Zwischenspiel von Rashba- und Dresselhaus-Spin-Bahn- Wechselwirkung mit dem magnetischen Feld parallel zur TI-Oberfl{\"a}che zu einer Verformung der Fermikontur des Valenzbands von 3D TI-HgTe f{\"u}hrt, welche ihrerseits eine Anisotropie des Leitf{\"a}higkeit bedingt. Die ben{\"o}tigten Magnetfeldst{\"a}rken in diesem Modell waren mit bis zu 40 T jedoch etwa eine Gr{\"o}ßenordnung gr{\"o}ßer als jene in unseren Experimenten. Des Weiteren lieferte eine direkte Berechnung der Zustandsdichten f{\"u}r Bin k I und Bin ? I bisher keine klaren Resultate. Die komplizierte Abh{\"a}ngigkeit der Rashba-Spin-Bahn-Kopplung f{\"u}r p-leitendes HgTe [9] machte es außerdem schwierig, diesen Term in die Bandstrukturrechnung zu inkludieren. Trotz umfangreicher Bem{\"u}hungen, den Ursprung der galvanomagnetischen Effekte im 3D TI HgTe zu verstehen, konnte in dieser Arbeit der Mechanismus des PHE und der MR-Oszillationen nicht eindeutig bestimmt werden. Es gelang jedoch, einige aus der Literatur bekannte Theorien f{\"u}r den PHE und die MR-Oszillationseffekte in topologischen Isolatoren auszuschließen. Die Herausforderung, eine vollst{\"a}ndige theoretische Beschreibung zu entwickeln, die allen experimentellen Aspekten (PHE, Gatespannungsabh{\"a}ngigkeit und MR-Oszillationen) gerecht wird, bleibt weiter bestehen. Abschließend m{\"o}chte die Autorin ihre Hoffnung ausdr{\"u}cken, den Lesern die Komplexit{\"a}t der Fragestellung n{\"a}her gebracht zu haben und sie in die Kunst elektrischer Messungen an topologischen Isolatoren bei angelegtem parallelem Magnetfeld initiiert zu haben.}, language = {en} } @phdthesis{Sochor2021, author = {Sochor, Benedikt}, title = {Aggregation behavior of Pluronic P123 in bulk solution and under confinement at elevated temperatures near its cloud point}, doi = {10.25972/OPUS-24607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246070}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis aims to investigate the form-phase diagram of aqueous solutions of the triblock copolymer Pluronic P123 focusing on its high-temperature phases. P123 is based on polyethylene as well as polypropylene oxide blocks and shows a variety of di erent temperaturedependent micelle morphologies or even lyotropic liquid crystal phases in aqueous solutions. Besides the already well-studied spherical aggregates at intermediate temperatures, the size and internal structure of both worm-like and lamellar micelles, which appear near the cloud point, is determined using light, neutron and X-ray scattering. By combining the results of time-resolved dynamic light as well as small-angle neutron and X-ray scattering experiments, the underlying structural changes and kinetics of the sphere-to-worm transition were studied supporting the random fusion process, which is proposed in literature. For temperatures near the cloud point, it was observed that aqueous P123 solutions below the critical crystallization concentration gelate after several hours, which is linked to the presence and structure of polymeric surface layers on the sample container walls as shown by neutron re ectometry measurements. Using a hierarchical model for the lamellar micelles including their periodicity as well as domain and overall size, it is possible to unify the existing results in literature and propose a direct connection between the near-surface and bulk properties of P123 solutions at temperatures near the cloud point.}, subject = {Weiche Materie}, language = {en} }