@article{LindlGuoKrummenacheretal.2021, author = {Lindl, Felix and Guo, Xueying and Krummenacher, Ivo and Rauch, Florian and Rempel, Anna and Paprocki, Valerie and Dellermann, Theresa and Stennett, Tom E. and Lamprecht, Anna and Br{\"u}ckner, Tobias and Radacki, Krzysztof and B{\´e}langer-Chabot, Guillaume and Marder, Todd B. and Lin, Zhenyang and Braunschweig, Holger}, title = {Rethinking Borole Cycloaddition Reactivity}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {43}, doi = {10.1002/chem.202101290}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256888}, pages = {11226-11233}, year = {2021}, abstract = {Boroles are attracting broad interest for their myriad and diverse applications, including in synthesis, small molecule activation and functional materials. Their properties and reactivity are closely linked to the cyclic conjugated diene system, which has been shown to participate in cycloaddition reactions, such as the Diels-Alder reaction with alkynes. The reaction steps leading to boranorbornadienes, borepins and tricyclic boracyclohexenes from the thermal reaction of boroles with alkynes are seemingly well understood as judged from the literature. Herein, we question the long-established mechanistic picture of pericyclic rearrangements by demonstrating that seven-membered borepins (i. e., heptaphenylborepin and two derivatives substituted with a thienyl and chloride substituent on boron) exist in a dynamic equilibrium with the corresponding bicyclic boranorbornadienes, the direct Diels-Alder products, but are not isolable products from the reactions. Heating gradually converts the isomeric mixtures into fluorescent tricyclic boracyclohexenes, the most stable isomers in the series. Results from mechanistic DFT calculations reveal that the tricyclic compounds derive from the boranorbornadienes and not the borepins, which were previously believed to be intermediates in purely pericyclic processes.}, language = {en} } @article{HeRauchFriedrichetal.2021, author = {He, Jiang and Rauch, Florian and Friedrich, Alexandra and Krebs, Johannes and Krummenacher, Ivo and Bertermann, R{\"u}diger and Nitsch, J{\"o}rn and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {Phenylpyridyl-fused boroles: a unique coordination mode and weak B-N coordination-induced dual fluorescence}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {9}, doi = {10.1002/anie.202013692}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256423}, pages = {4833-4840}, year = {2021}, abstract = {Phenylpyridyl-fused boroles [TipPBB1]\(_4\) and TipPBB2 were synthesized and their properties investigated. [TipPBB1]\(_4\) forms a tetramer in both the solid state and solution. TipPBB2 contains a 4-coordinate boron atom in the solid state but dissociates to give a 3-coordinate boron species in solution. TipPBB2 shows interesting temperature-dependent dual fluorescence in solution because of the equilibrium between 3- and 4-coordinate boron species due to weak N⋅⋅⋅B intermolecular coordination.}, language = {en} } @article{HeRauchFriedrichetal.2019, author = {He, Jiang and Rauch, Florian and Friedrich, Alexandra and Sieh, Daniel and Ribbeck, Tatjana and Krummenacher, Ivo and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {N-Heterocyclic Olefins as Electron Donors in Combination with Triarylborane Acceptors: Synthesis, Optical and Electronic Properties of D-π-A Compounds}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, doi = {10.1002/chem.201903118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204690}, pages = {13777-13784}, year = {2019}, abstract = {N-heterocyclic olefins (NHOs), relatives of N-heterocyclic carbenes (NHCs), exhibit high nucleophilicity and soft Lewis basic character. To investigate their π-electron donating ability, NHOs were attached to triarylborane π-acceptors (A) giving donor (D)-π-A compounds 1-3. In addition, an enamine π-donor analogue (4) was synthesized for comparison. UV-visible absorption studies show a larger red shift for the NHO-containing boranes than for the enamine analogue, a relative of cyclic (alkyl)(amino) carbenes (CAACs). Solvent-dependent emission studies indicate that 1-4 have moderate intramolecular charge-transfer (ICT) behavior. Electrochemical investigations reveal that the NHO-containing boranes have extremely low reversible oxidation potentials (e.g., for 3, \(E^{ox}_{1/2}\) =-0.40 V vs. ferrocene/ferrocenium, Fc/Fc\(^+\), in THF). Time-dependent (TD) DFT calculations show that the HOMOs of 1-3 are much more destabilized than that of the enamine-containing 4, which confirms the stronger donating ability of NHOs.}, language = {en} } @article{RauchFuchsFriedrichetal.2020, author = {Rauch, Florian and Fuchs, Sonja and Friedrich, Alexandra and Sieh, Daniel and Krummenacher, Ivo and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {Highly Stable, Readily Reducible, Fluorescent, Trifluoromethylated 9-Borafluorenes}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {56}, doi = {10.1002/chem.201905559}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218390}, pages = {12794 -- 12808}, year = {2020}, abstract = {Three different perfluoroalkylated borafluorenes (\(^{F}\)Bf) were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo-aryl moieties. They differ with regard to the para substituents on their exo-aryl moieties, being a proton \(^{F}\)Xyl\(^{F}\)Bf, \(^{F}\)Xyl: 2,6-bis(trifluoromethyl)phenyl), a trifluoromethyl group (\(^{F}\)Mes\(^{F}\)Bf, \(^{F}\)Mes: 2,4,6-tris(trifluoromethyl)phenyl) or a dimethylamino group (p-NMe\(_{2}\)-\(^{F}\)Xyl\(^{F}\)Bf, p-NMe\(_{2}\)-\(^{F}\)Xyl: 4-(dimethylamino)-2,6-bis(trifluoromethyl)phenyl), respectively. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron-deficient derivative \(^{F}\)Mes\(^{F}\)Bf was also chemically reduced and its radical anion isolated and characterized. Furthermore, all compounds exhibit very long fluorescent lifetimes of about 250 ns up to 1.6 μs; however, the underlying mechanisms responsible for this differ. The donor-substituted derivative p-NMe\(_{2}\)-\(^{F}\)Xyl\(^{F}\)Bf exhibits thermally activated delayed fluorescence (TADF) from a charge-transfer (CT) state, whereas the \(^{F}\)Mes\(^{F}\)Bf and FXylFBf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition-dipole moments.}, language = {en} } @article{FergerRogerKoesteretal.2022, author = {Ferger, Matthias and Roger, Chantal and K{\"o}ster, Eva and Rauch, Florian and Lorenzen, Sabine and Krummenacher, Ivo and Friedrich, Alexandra and Košćak, Marta and Nestić, Davor and Braunschweig, Holger and Lambert, Christoph and Piantanida, Ivo and Marder, Todd B.}, title = {Electron-Rich EDOT Linkers in Tetracationic bis-Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.202201130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287241}, year = {2022}, abstract = {Three novel tetracationic bis-triarylboranes with 3,4-ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red-shifted absorption and emission compared to their thiophene-containing analogues, with one of the EDOT-derivatives emitting in the NIR region. Only the EDOT-linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3-methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT-linked trixylylborane tetracation and its bis-thiophene analogue revealed efficient photo-induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds-DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra-tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well-focused visible light.}, language = {en} } @article{RauchEndresFriedrichetal.2020, author = {Rauch, Florian and Endres, Peter and Friedrich, Alexandra and Sieh, Daniel and H{\"a}hnel, Martin and Krummenacher, Ivo and Braunschweig, Holger and Finze, Maik and Ji, Lei and Marder, Todd B.}, title = {An Iterative Divergent Approach to Conjugated Starburst Borane Dendrimers}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.202001985}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218345}, pages = {12951 -- 12963}, year = {2020}, abstract = {Using a new divergent approach, conjugated triarylborane dendrimers were synthesized up to the 2nd generation. The synthetic strategy consists of three steps: 1) functionalization, via iridium catalyzed C-H borylation; 2) activation, via fluorination of the generated boronate ester with K[HF\(_{2}\)] or [N(nBu\(_{4}\))][HF\(_{2}\)]; and 3) expansion, via reaction of the trifluoroborate salts with aryl Grignard reagents. The concept was also shown to be viable for a convergent approach. All but one of the conjugated borane dendrimers exhibit multiple, distinct and reversible reduction potentials, making them potentially interesting materials for applications in molecular accumulators. Based on their photophysical properties, the 1st generation dendrimers exhibit good conjugation over the whole system. However, the conjugation does not increase further upon expansion to the 2nd generation, but the molar extinction coefficients increase linearly with the number of triarylborane subunits, suggesting a potential application as photonic antennas.}, language = {en} }