@article{SundermeyerRadiusBurschka1992, author = {Sundermeyer, Joerg and Radius, Udo and Burschka, Christian}, title = {Organometall-Imide - h{\"o}hervalente Derivate der d-Metall-S{\"a}uren, 3. Synthese ond Reaktionen von (Pentamethylcyclopentadienyl)(imido)-Komplexen des Molybd{\"a}ns und Wolframs und eine effiziente Strategie zur Synthese der Organometallate NBu\(_4\)[Cp*MO\(_3\)] (M = Mo, W)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31884}, year = {1992}, abstract = {A convenient and new entry into the chemistry of highvalent pentamethylcyclopentadienyl halfsandwich complexes of molybdenum and tungsten is described. The reaction of Mo-(NtBu)\(_2\)Cl\(_2\) or W(NtBu)\(_2\)Cl\(_2\)(py)\(_2\) with Cp*Li (Cp* = \(\eta^5\)-C\(_5\)Me\(_5\)) provides a high-yield route to new complexes Cp*Mo-(NtBu)\(_2\)CI (la) and Cp*W(NtBu)\(_2\)Cl (1 b) which are converted into a variety of diimido, monoimido, and oxo derivatives. Treatment of 1 a, b with MeLi yields the highly volatile methyl derivatives Cp*Mo(NtBu)\(_2\)Me (2a) and Cp*W(NtBu)\(_2\)Me (2b), while protolysis of 1 a, b with an excess of HCI gas leads to selective cleavage of only one imido function with formation of Cp*Mo(NtBu)Cl\(_3\) (3a) and Cp*W(NtBu)Cl\(_3\) (3b). In contrast, protolysis of 1 a, b with aqueous HCI provides a high-yield route to the well-known organometallic oxides [Cp*MoO\(_2\)](μ-0) (4a) and [Cp*WO\(_2\)](\(\mu\)-0) (4b). These two key compounds are easily converted into the organomolybdate and organotungstate salts NBu\(_4\)[Cp*MoO\(_3\)] (5a) and NBu\(_4\)[Cp*WO\(_3\)] (Sb) by cleavage of the M - 0 - M bridge with NBu\(_4\)[OH]. The Xray structure of 3a is reported.}, subject = {Pentamethylcyclopentadienderivate}, language = {de} } @article{PhilippBertermannRadius2023, author = {Philipp, Michael S. M. and Bertermann, R{\"u}diger and Radius, Udo}, title = {Activation of Ge-H and Sn-H Bonds with N-Heterocyclic Carbenes and a Cyclic (Alkyl)(amino)carbene}, series = {Chemistry - A European Journal}, volume = {29}, journal = {Chemistry - A European Journal}, number = {3}, doi = {10.1002/chem.202202493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311929}, year = {2023}, abstract = {A study of the reactivity of several N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene 1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene (cAAC\(^{Me}\)) with the group 14 hydrides GeH2Mes2 and SnH2Me2 (Me=CH\(_{3}\), Mes=1,3,5-(CH\(_{3}\))\(_{3}\)C\(_{6}\)H\(_{2}\)) is presented. The reaction of GeH\(_{2}\)Mes\(_{2}\) with cAAC\(^{Me}\) led to the insertion of cAAC\(^{Me}\) into one Ge-H bond to give cAAC\(^{Me}\)H-GeHMes\(_{2}\) (1). If 1,3,4,5-tetramethyl-imidazolin-2-ylidene (Me\(_{2}\)Im\(^{Me}\)) was used as the carbene, NHC-mediated dehydrogenative coupling occurred, which led to the NHC-stabilized germylene Me\(_{2}\)Im\(^{Me}\)⋅GeMes\(_{2}\) (2). The reaction of SnH\(_{2}\)Me\(_{2}\) with cAAC\(^{Me}\) also afforded the insertion product cAAC\(^{Me}\)H-SnHMe\(_{2}\) (3), and reaction of two equivalents Me\(_{2}\)Im\(^{Me}\) with SnH\(_{2}\)Me\(_{2}\) gave the NHC-stabilized stannylene Me\(_{2}\)Im\(^{Me}\)⋅SnMe\(_{2}\) (4). If the sterically more demanding NHCs Me\(_{2}\)Im\(^{Me}\), 1,3-di-isopropyl-4,5-dimethyl-imidazolin-2-ylidene (iPr\(_{2}\)Im\(^{Me}\)) and 1,3-bis-(2,6-di-isopropylphenyl)-imidazolin-2-ylidene (Dipp\(_{2}\)Im) were employed, selective formation of cyclic oligomers (SnMe\(_{2}\))\(_{n}\) (5; n=5-8) in high yield was observed. These cyclic oligomers were also obtained from the controlled decomposition of cAAC\(^{Me}\)H-SnHMe\(_{2}\) (3).}, language = {en} } @article{FoehrenbacherKrahfussZapfetal.2021, author = {F{\"o}hrenbacher, Steffen A. and Krahfuss, Mirjam J. and Zapf, Ludwig and Friedrich, Alexandra and Ignat'ev, Nikolai V. and Finze, Maik and Radius, Udo}, title = {Tris(pentafluoroethyl)difluorophosphorane: a versatile fluoride acceptor for transition metal chemistry}, series = {Chemistry Europe}, volume = {27}, journal = {Chemistry Europe}, number = {10}, doi = {10.1002/chem.202004885}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256665}, pages = {3504-3516}, year = {2021}, abstract = {Fluoride abstraction from different types of transition metal fluoride complexes [L\(_n\)MF] (M=Ti, Ni, Cu) by the Lewis acid tris(pentafluoroethyl)difluorophosphorane (C\(_2\)F\(_5\))\(_3\)PF\(_2\) to yield cationic transition metal complexes with the tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C\(_2\)F\(_5\))\(_3\)PF\(_3\)]\(^-\)) is reported. (C\(_2\)F\(_5\))\(_3\)PF\(_2\) reacted with trans-[Ni(iPr\(_2\)Im)\(_2\)(Ar\(^F\))F] (iPr2Im=1,3-diisopropylimidazolin-2-ylidene; Ar\(^F\)=C\(_6\)F\(_5\), 1 a; 4-CF\(_3\)-C\(_6\)F\(_4\), 1 b; 4-C\(_6\)F\(_5\)-C\(_6\)F\(_4\), 1 c) through fluoride transfer to form the complex salts trans-[Ni(iPr\(_2\)Im)\(_2\)(solv)(Ar\(^F\))]FAP (2 a-c[solv]; solv=Et\(_2\)O, CH\(_2\)Cl\(_2\), THF) depending on the reaction medium. In the presence of stronger Lewis bases such as carbenes or PPh\(_3\), solvent coordination was suppressed and the complexes trans-[Ni(iPr\(_2\)Im)\(_2\)(PPh\(_3\))(C\(_6\)F\(_5\))]FAP (trans-2 a[PPh\(_3\)]) and cis-[Ni(iPr\(_2\)Im)\(_2\)(Dipp\(_2\)Im)(C\(_6\)F\(_5\))]FAP (cis-2 a[Dipp\(_2\)Im]) (Dipp\(_2\)Im=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were isolated. Fluoride abstraction from [(Dipp\(_2\)Im)CuF] (3) in CH\(_2\)Cl\(_2\) or 1,2-difluorobenzene led to the isolation of [{(Dipp\(_2\)Im)Cu}\(_2\)]\(^2\)\(^+\)2 FAP\(^-\) (4). Subsequent reaction of 4 with PPh\(_3\) and different carbenes resulted in the complexes [(Dipp\(_2\)Im)Cu(LB)]FAP (5 a-e, LB=Lewis base). In the presence of C6Me6, fluoride transfer afforded [(Dipp\(_2\)Im)Cu(C\(_6\)Me\(_6\))]FAP (5 f), which serves as a source of [(Dipp\(_2\)Im)Cu)]\(^+\). Fluoride abstraction of [Cp\(_2\)TiF\(_2\)] (7) resulted in the formation of dinuclear [FCp\(_2\)Ti(μ-F)TiCp\(_2\)F]FAP (8) (Cp=η\(^5\)-C\(_5\)H\(_5\)) with one terminal fluoride ligand at each titanium atom and an additional bridging fluoride ligand.}, language = {en} } @article{PhilippBertermannRadius2022, author = {Philipp, Michael S. M. and Bertermann, R{\"u}diger and Radius, Udo}, title = {N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Germanium(IV) and Tin(IV) Chlorides and Organyl Chlorides}, series = {European Journal of Inorganic Chemistry}, volume = {2022}, journal = {European Journal of Inorganic Chemistry}, number = {32}, doi = {10.1002/ejic.202200429}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293865}, year = {2022}, abstract = {A study on the reactivity of N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) with selected germanium(IV) and tin(IV) chlorides and organyl chlorides is presented. The reactions of the NHCs Me\(_{2}\)Im\(^{Me}\), iPr\(_{2}\)Im\(^{Me}\) and Dipp2Im with the methyl chlorides ECl\(_{2}\)Me\(_{2}\) afforded the adducts NHC ⋅ ECl\(_{2}\)Me\(_{2}\) (E=Ge (1), Sn (2)), NHC=Me\(_{2}\)Im\(^{Me}\) (a), iPr\(_{2}\)Im\(^{Me}\) (b), Dipp\(_{2}\)Im (c)). The reaction of Me2Im\(^{Me}\) with GeCl\(_{4}\) led to isolation of Me\(_{2}\)Im\(^{Me}\) ⋅ GeCl\(_{4}\) (3), the reaction of iPr\(_{2}\)Im\(^{Me}\) with SnCl\(_{4}\) in THF afforded the THF adduct iPr\(_{2}\)Im\(^{Me}\) ⋅ SnCl\(_{4}\) ⋅ THF (4). Dipp\(_{2}\)Im ⋅ GeCl\(_{2}\)Me\(_{2}\) (1 c) isomerized into the backbone coordinated imidazolium salt [aDipp\(_{2}\)Im ⋅ GeClMe\(_{2}\)][Cl] (5) upon thermal treatment. The reactions of cAAC\(^{Me}\) with (i) ECl\(_{2}\)R\(_{2}\) (E=Ge, Sn) gave the adducts cAAC\(^{Me}\) ⋅ ECl\(_{2}\)R\(_{2}\) (R=Me: E=Ge (6); Sn (7); Ph: E=Ge (8)), with (ii) GeClMe\(_{3}\) and GeCl\(_{4}\) the salts [cAAC\(^{Me}\) ⋅ GeMe\(_{3}\)][Cl] (9) and [cAACMeCl][GeCl\(_{3}\)] (10), and (iii) with SnCl\(_{4}\) the salt [cAACMeCl][SnCl\(_{3}\)] (11) and the adduct cAAC\(^{Me}\) ⋅ SnCl\(_{4}\) (12). Reduction of 2 a with KC\(_{8}\) afforded the NHC-stabilized stannylene Me\(_{2}\)Im\(^{Me}\) ⋅ SnMe\(_{2}\) 13, reduction of 7 with either KC8 or 1,4-bis-(trimethylsilyl)-1,4-dihydropyrazin in the presence of SnCl\(_{2}\)Me\(_{2}\) yielded cAAC\(^{Me}\) ⋅ SnMe\(_{2}\) ⋅ SnMe\(_{2}\)Cl\(_{2}\) (14).}, language = {en} } @article{TenderaLuffKrummenacheretal.2022, author = {Tendera, Lukas and Luff, Martin S. and Krummenacher, Ivo and Radius, Udo}, title = {Cationic Nickel d\(^{9}\)-Metalloradicals [Ni(NHC)\(_{2}\)]\(^{+}\)}, series = {European Journal of Inorganic Chemistry}, volume = {2022}, journal = {European Journal of Inorganic Chemistry}, number = {31}, doi = {10.1002/ejic.202200416}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293702}, year = {2022}, abstract = {A series of five new homoleptic, linear nickel d\(^{9}\)-complexes of the type [Ni\(^{I}\)(NHC)\(_{2}\)]\(^{+}\) is reported. Starting from the literature known Ni(0) complexes [Ni(Mes\(_{2}\)Im)\(_{2}\)] 1, [Ni(Mes\(_{2}\)Im\(^{H2}\))2] 2, [Ni(Dipp\(_{2}\)Im)\(_{2}\)] 3, [Ni(Dipp\(_{2}\)Im\(^{H2}\))\(_{2}\)] 4 and [Ni(cAAC\(^{Me}\))\(_{2}\)] 5 (Mes\(_{2}\)Im=1,3-bis(2,4,6-trimethylphenyl)-imidazolin-2-ylidene, Mes\(_{2}\)Im\(^{H2}\)=1,3-bis(2,4,6-trimethylphenyl)-imidazolidin-2-ylidene, Dipp\(_{2}\)Im=1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene, Dipp\(_{2}\)Im\(^{H2}\)=1,3-bis(2,6-diisopropylphenyl)-imidazolidin-2-ylidene, cAAC\(^{Me}\)=1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-yliden), their oxidized Ni(I) analogues [Ni\(^{I}\)(Mes\(_{2}\)Im)\(_{2}\)][BPh\(_{4}\)] 1\(^{+}\), [Ni\(^{I}\)(Mes\(_{2}\)Im\(^{H2}\))\(_{2}\)][BPh\(_{4}\)] 2\(^{+}\), [Ni\(^{I}\)(Dipp\(_{2}\)Im)\(_{2}\)][BPh\(_{4}\)] 3\(^{+}\), [Ni\(^{I}\)(Dipp\(_{2}\)Im\(^{H2}\))\(_{2}\)][BPh\(_{4}\)] 4\(^{+}\) and [Ni\(^{I}\)(cAAC\(^{Me}\))\(_{2}\)][BPh\(_{4}\)] 5\(^{+}\) were synthesized by one-electron oxidation with ferrocenium tetraphenyl-borate. The complexes 1\(^{+}\)-5\(^{+}\) were fully characterized including X-ray structure analysis. The complex cations reveal linear geometries in the solid state and NMR spectra with extremely broad, paramagnetically shifted resonances. DFT calculations predicted an orbitally degenerate ground state leading to large magnetic anisotropy, which was verified by EPR measurements in solution and on solid samples. The magnetic anisotropy of the complexes is highly dependent from the steric protection of the metal atom, which results in a noticeable decrease of the g-tensor anisotropy for the N-Mes substituted complexes 1\(^{+}\) and 2\(^{+}\) in solution due to the formation of T-shaped THF adducts.}, language = {en} } @article{HuangHuShietal.2022, author = {Huang, Mingming and Hu, Jiefeng and Shi, Shasha and Friedrich, Alexandra and Krebs, Johannes and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Selective, Transition Metal-free 1,2-Diboration of Alkyl Halides, Tosylates, and Alcohols}, series = {Chemistry-A European Journal}, volume = {28}, journal = {Chemistry-A European Journal}, number = {24}, doi = {10.1002/chem.202200480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318262}, year = {2022}, abstract = {Defunctionalization of readily available feedstocks to provide alkenes for the synthesis of multifunctional molecules represents an extremely useful process in organic synthesis. Herein, we describe a transition metal-free, simple and efficient strategy to access alkyl 1,2-bis(boronate esters) via regio- and diastereoselective diboration of secondary and tertiary alkyl halides (Br, Cl, I), tosylates, and alcohols. Control experiments demonstrated that the key to this high reactivity and selectivity is the addition of a combination of potassium iodide and N,N-dimethylacetamide (DMA). The practicality and industrial potential of this transformation are demonstrated by its operational simplicity, wide functional group tolerance, and the late-stage modification of complex molecules. From a drug discovery perspective, this synthetic method offers control of the position of diversification and diastereoselectivity in complex ring scaffolds, which would be especially useful in a lead optimization program.}, language = {en} } @article{PhilippRadius2022, author = {Philipp, Michael S. M. and Radius, Udo}, title = {A Versatile Route To Cyclic (Alkyl)(Amino)Carbene-Stabilized Stibinidenes}, series = {Zeitschrift f{\"u}r Anorganische und Allgemeine Chemie}, volume = {648}, journal = {Zeitschrift f{\"u}r Anorganische und Allgemeine Chemie}, number = {17}, issn = {0044-2313}, doi = {10.1002/zaac.202200085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318272}, year = {2022}, abstract = {A convenient route for the synthesis of the cAAC\(^{Me}\) (cAAC=cyclic (alkyl)(amino)carbene, cAAC\(^{Me}\)=1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) and cAAC\(^{Cy}\) (cAAC\(^{Cy}\)=2-azaspiro[4.5]dec-2-(2,6-diisopropylphenyl)-3,3-dimethyl-1-ylidene) stabilized stibinidenes cAAC\(^{Me}\)⋅SbMes (2a) (Mes=2,4,6-trimethylphenyl) and cAAC\(^{Cy}\)⋅SbMes (2b) is reported. A mechanism for the formation of [cAAC\(^{R}\)Cl][SbCl\(_{3}\)Mes] 1 and cAAC\(^{R}\)⋅SbMes 2 from the reaction of cAAC with the antimony(III) precursor SbCl\(_{2}\)Mes, which proceeds via the isolable intermediate [cAAC\(^{R}\)SbClMes][SbCl\(_{3}\)Mes] (3), is proposed.}, language = {en} } @article{LiuBudimanTianetal.2020, author = {Liu, Zhiqiang and Budiman, Yudha P. and Tian, Ya-Ming and Friedrich, Alexandra and Huang, Mingming and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Copper-Catalyzed Oxidative Cross-Coupling of Electron-Deficient Polyfluorophenylboronate Esters with Terminal Alkynes}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {71}, doi = {10.1002/chem.202002888}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224362}, pages = {17267 -- 17274}, year = {2020}, abstract = {We report herein a mild procedure for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. Thus, it represents a simple alternative to the conventional Sonogashira reaction.}, language = {en} } @article{HorrerKrahfussLubitzetal.2020, author = {Horrer, G{\"u}nther and Krahfuß, Mirjam J. and Lubitz, Katharina and Krummenacher, Ivo and Braunschweig, Holger and Radius, Udo}, title = {N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Complexes of Titanium(IV) and Titanium(III)}, series = {European Journal of Inorganic Chemistry}, volume = {2020}, journal = {European Journal of Inorganic Chemistry}, number = {3}, doi = {10.1002/ejic.201901207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208725}, pages = {281-291}, year = {2020}, abstract = {The reaction of one and two equivalents of the N -heterocyclic carbene IMes [IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazolin-2-ylidene] or the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) [cAAC\(^{Me}\) = 1-(2,6-diisopropyl-phenyl)-3,3,5,5-tetra-methylpyrrolidin-2-ylidene] with [TiCl\(_{4}\)] in n -hexane results in the formation of mono- and bis-carbene complexes [TiCl\(_{4}\)(IMes)] 1 , [TiCl\(_{4}\)(IMes)2] 2 , [TiCl\(_{4}\)(cAAC\(^{Me}\))] 3 , and [TiCl\(_{4}\)(cAAC\(^{Me}\))\(_{2}\)] 4 , respectively. For comparison, the titanium(IV) NHC complex [TiCl\(_{4}\)(Ii Pr\(^{Me}\))] 5 (Ii Pr\(^{Me}\) = 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene) has been synthesized and structurally characterized. The reaction of [TiCl\(_{4}\)(IMes)] 1 with PMe\(_{3}\) affords the mixed substituted complex [TiCl\(_{4}\)(IMes)(PMe\(_{3}\))] 6 . The reactions of [TiCl\(_{3}\)(THF)\(_{3}\)] with two equivalents of the carbenes IMes and cAAC\(^{Me}\) in n -hexane lead to the clean formation of the titanium(III) complexes [TiCl\(_{3}\)(IMes)\(_{2}\)] 7 and [TiCl\(_{3}\)(cAAC\(^{Me}\))\(_{2}\)] 8 . Compounds 1 -8 have been completely characterized by elemental analysis, IR and multinuclear NMR spectroscopy and for 2 -5 , 7 and 8 by X-ray diffraction. Magnetometry in solution, EPR and UV/Vis spectroscopy and DFT calculations performed on 7 and 8 are indicative of a predominantly metal-centered d\(^{1}\)-radical in both cases.}, language = {en} } @article{ZapfRadiusFinze2021, author = {Zapf, Ludwig and Radius, Udo and Finze, Maik}, title = {1,3-bis(tricyanoborane)imidazoline-2-ylidenate anion - a ditopic dianionic N-heterocyclic carbene ligand}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {33}, doi = {10.1002/anie.202105529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256498}, pages = {17974-17980}, year = {2021}, abstract = {The 1,3-bis(tricyanoborane)imidazolate anion 1 was obtained in high yield from lithium imidazolate and B(CN)\(_3\)-pyridine adduct. Anion 1 is chemically very robust and thus allowed the isolation of the corresponding H\(_5\)O\(_2\)\(^+\) salt. Furthermore, monoanion 1 served as starting species for the novel dianionic N-heterocyclic carbene (NHC), 1,3-bis(tricyanoborane)imidazoline-2-ylidenate anion 3 that acts as ditopic ligand via the carbene center and the cyano groups at boron. First reactions of this new NHC 3 with methyl iodide, elemental selenium, and [Ni(CO)\(_4\)] led to the methylated imidazolate ion 4, the dianionic selenium adduct 5, and the dianionic nickel tricarbonyl complex 6. These NHC derivatives provide a first insight into the electronic and steric properties of the dianionic NHC 3. Especially the combination of properties, such as double negative charge, different coordination sites, large buried volume and good σ-donor and π-acceptor ability, make NHC 3 a unique and promising ligand and building block.}, language = {en} } @article{LorkowskiKrahfussKubickietal.2019, author = {Lorkowski, Jan and Krahfuß, Mirjam and Kubicki, Maciej and Radius, Udo and Pietraszuk, Cezary}, title = {Intramolecular Ring-Expansion Reaction (RER) and Intermolecular Coordination of In Situ Generated Cyclic (Amino)(aryl)carbenes (cAArCs)}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.201902630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212496}, pages = {11365 -- 11374}, year = {2019}, abstract = {Cyclic (amino)(aryl)carbenes (cAArCs) based on the isoindoline core were successfully generated in situ by α-elimination of 3-alkoxyisoindolines at high temperatures or by deprotonation of isoindol-2-ium chlorides with sodium or copper(I) acetates at low temperatures. 3-Alkoxy-isoindolines 2 a,b-OR (R=Me, Et, iPr) have been prepared in high yields by the addition of a solution of 2-aryl-1,1-diphenylisoindol-2-ium triflate (1 a,b-OTf; a: aryl=Dipp=2,6-diisopropylphenyl; b: Mesityl-, Mes=2,4,6-trimethylphenyl) to the corresponding alcohol (ROH) with NEt3 at room temperature. Furthermore, the reaction of 2 a,b-OMe in diethyl ether with a tenfold excess of hydrochloric acid led to the isolation of the isoindol-2-ium chlorides 1 a,b-Cl in high yields. The thermally generated cAArC reacts with sulfur to form the thioamide 3 a. Without any additional trapping reagent, in situ generation of 1,1-diphenylisoidolin-3-ylidenes does not lead to the isolation of these compounds, but to the reaction products of the insertion of the carbene carbon atom into an ortho C-H bond of a phenyl substituent, followed by ring-expansion reaction; namely, anthracene derivatives 9-N(H)aryl-10-Ph-C14H8 4 a,b (a: Dipp; b: Mes). These compounds are conveniently synthesized by deprotonation of the isoindol-2-ium chlorides with sodium acetate in high yields. Deprotonation of 1 a-Cl with copper(I) acetate at low temperatures afforded a mixture of 4 a and the corresponding cAArC copper(I) chloride 5 a, and allowed the isolation and structural characterization of the first example of a cAArC copper complex of general formula [(cAArC)CuCl].}, language = {en} } @article{KraemerLuffRadiusetal.2021, author = {Kr{\"a}mer, Felix and Luff, Martin S. and Radius, Udo and Weigend, Florian and Breher, Frank}, title = {NON-Ligated N-Heterocyclic Tetrylenes}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {35}, doi = {10.1002/ejic.202100446}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262586}, pages = {3591 -- 3600}, year = {2021}, abstract = {We report on the synthesis of N-heterocyclic tetrylenes ligated by the NON-donor framework 4,5-bis(2,6-diisopropylphenyl-amino)-2,7-di-tert-butyl-9,9-dimethylxanthene. The molecular structures of the germylene (3), stannylene (4) and plumbylene (5) where determined by X-ray diffraction studies. Furthermore, we present quantum chemical studies on the σ-donor and π-acceptor properties of 3-5. Additionally, we report on the reactivity of the tetrylenes towards the transition metal carbonyls [Rh(CO)\(_{2}\)Cl]\(_{2}\), [W(CO)\(_{6}\)] and [Ni(CO)\(_{4}\)]. The isolated complexes (6 and 7) show the differing reactivity of NHTs compared to NHCs. Instead of just forming the anticipated complex [(NON)Sn-Rh(CO)\(_{2}\)Cl], 4 inserts into the Rh-Cl bond to afford [(NON)Sn(Cl)Rh(CO)(C\(_{6}\)H\(_{6}\))] (6, additional CO/C6H6 exchange) and [(NON)Sn(Cl)Rh\(_{2}\)(CO)\(_{4}\)Cl] (7). By avoiding halogenated transition metal precursors in order to prevent insertion reactions, germylene 3 shows "classical" coordination chemistry towards {Ni(CO)3} forming the complex [(NON)Ge-Ni(CO)\(_{3}\)] (8).}, language = {en} } @article{JosSzwetkowskiSlebodnicketal.2022, author = {Jos, Swetha and Szwetkowski, Connor and Slebodnick, Carla and Ricker, Robert and Chan, Ka Lok and Chan, Wing Chun and Radius, Udo and Lin, Zhenyang and Marder, Todd B. and Santos, Webster L.}, title = {Transition Metal-Free Regio- and Stereo-Selective trans Hydroboration of 1,3-Diynes: A Phosphine-Catalyzed Access to (E)-1-Boryl-1,3-Enynes}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {63}, doi = {10.1002/chem.202202349}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293784}, year = {2022}, abstract = {We report a transition metal-free, regio- and stereo-selective, phosphine-catalyzed method for the trans hydroboration of 1,3-diynes with pinacolborane that affords (E)-1-boryl-1,3-enynes. The reaction proceeds with excellent selectivity for boron addition to the external carbon of the 1,3-diyne framework as unambiguously established by NMR and X-ray crystallographic studies. The reaction displays a broad substrate scope including unsymmetrical diynes to generate products in high yield (up to 95 \%). Experimental and theoretical studies suggest that phosphine attack on the alkyne is a key process in the catalytic cycle.}, language = {en} } @article{TenderaHelmKrahfussetal.2021, author = {Tendera, Lukas and Helm, Moritz and Krahfuss, Mirjam and Kuntze-Fechner, Maximilian W. and Radius, Udo}, title = {Case Study of N-\(^{i}\)Pr versus N-Mes Substituted NHC Ligands in Nickel Chemistry: The Coordination and Cyclotrimerization of Alkynes at [Ni(NHC)\(_{2}\)]}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {71}, doi = {10.1002/chem.202103093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257137}, pages = {17849-17861}, year = {2021}, abstract = {A case study on the effect of the employment of two different NHC ligands in complexes [Ni(NHC)\(_{2}\)] (NHC=\(^{i}\)Pr\(_{2}\)Im\(^{Me}\) 1\(^{Me}\), Mes\(_{2}\)Im 2) and their behavior towards alkynes is reported. The reaction of a mixture of [Ni\(_{2}\)(\(^{i}\)Pr\(_{2}\)Im\(^{Me}\))\(_{4}\)(μ-(η\(^{2}\) : η\(^{2}\))-COD)] B/ [Ni(\(^{i}\)Pr\(_{2}\)Im\(^{Me}\))\(_{2}\)(η\(^{4}\)-COD)] B' or [Ni(Mes\(_{2}\)Im)\(_{2}\)] 2, respectively, with alkynes afforded complexes [Ni(NHC)\(_{2}\)(η\(^{2}\)-alkyne)] (NHC=\(^{i}\)Pr\(_{2}\)Im\(^{Me}\): alkyne=MeC≡CMe 3, H\(_{7}\)C\(_{3}\)C≡CC\(_{3}\)H\(_{7}\) 4, PhC≡CPh 5, MeOOCC≡CCOOMe 6, Me\(_{3}\)SiC≡CSiMe\(_{3}\) 7, PhC≡CMe 8, HC≡CC\(_{3}\)H\(_{7}\) 9, HC≡CPh 10, HC≡C(p-Tol) 11, HC≡C(4-\(^{t}\)Bu-C\(_{6}\)H\(_{4}\)) 12, HC≡CCOOMe 13; NHC=Mes\(_{2}\)Im: alkyne=MeC≡CMe 14, MeOOCC≡CCOOMe 15, PhC≡CMe 16, HC≡C(4-\(^{t}\)Bu-C\(_{6}\)H\(_{4}\)) 17, HC≡CCOOMe 18). Unusual rearrangement products 11 a and 12 a were identified for the complexes of the terminal alkynes HC≡C(p-Tol) and HC≡C(4-\(^{t}\)Bu-C\(_{6}\)H\(_{4}\)), 11 and 12, which were formed by addition of a C-H bond of one of the NHC N-\(^{i}\)Pr methyl groups to the C≡C triple bond of the coordinated alkyne. Complex 2 catalyzes the cyclotrimerization of 2-butyne, 4-octyne, diphenylacetylene, dimethyl acetylendicarboxylate, 1-pentyne, phenylacetylene and methyl propiolate at ambient conditions, whereas 1\(^{Me}\) is not a good catalyst. The reaction of 2 with 2-butyne was monitored in some detail, which led to a mechanistic proposal for the cyclotrimerization at [Ni(NHC)\(_{2}\)]. DFT calculations reveal that the differences between 1\(^{Me}\) and 2 for alkyne cyclotrimerization lie in the energy profile of the initiation steps, which is very shallow for 2, and each step is associated with only a moderate energy change. The higher stability of 3 compared to 14 is attributed to a better electron transfer from the NHC to the metal to the alkyne ligand for the N-alkyl substituted NHC, to enhanced Ni-alkyne backbonding due to a smaller C\(_{NHC}\)-Ni-C\(_{NHC}\) bite angle, and to less steric repulsion of the smaller NHC \(^{i}\)Pr\(_{2}\)Im\(^{Me}\).}, language = {en} } @article{ZapfPetersBertermannetal.2022, author = {Zapf, Ludwig and Peters, Sven and Bertermann, R{\"u}diger and Radius, Udo and Finze, Maik}, title = {Tricyanoborane-Functionalized Anionic N-Heterocyclic Carbenes: Adjustment of Charge and Stereo-Electronic Properties}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {39}, doi = {10.1002/chem.202200275}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287200}, year = {2022}, abstract = {The 1-methyl-3-(tricyanoborane)imidazolin-2-ylidenate anion (2) was obtained in high yield by deprotonation of the B(CN)3-methylimidazole adduct 1. Regarding charge and stereo-electronic properties, anion 2 closes the gap between well-known neutral NHCs and the ditopic dianionic NHC, the 1,3-bis(tricyanoborane)imidazolin-2-ylidenate dianion (IIb). The influence of the number of N-bonded tricyanoborane moieties on the σ-donating and π-accepting properties of NHCs was assessed by quantum chemical calculations and verified by experimental data on 2, IIb, and 1,3-dimethylimidazolin-2-ylidene (IMe, IIa). Therefore NHC 2, which acts as a ditopic ligand via the carbene center and the cyano groups, was reacted with alkyl iodides, selenium, and [Ni(CO)\(_{4}\)] yielding alkylated imidazoles 3 and 4, the anionic selenium adduct 5, and the anionic nickel tricarbonyl complex 8, respectively. The results of this study prove that charge, number of coordination sites, buried volume (\%V\(_{bur}\)) and σ-donor and π-acceptor abilities of NHCs can be effectively fine-tuned via the number of tricyanoborane substituents.}, language = {en} } @article{HuangWuKrebsetal.2021, author = {Huang, Mingming and Wu, Zhu and Krebs, Johannes and Friedrich, Alexandra and Luo, Xiaoling and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Ni-Catalyzed Borylation of Aryl Sulfoxides}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256778}, pages = {8149-8158}, year = {2021}, abstract = {A nickel/N-heterocyclic carbene (NHC) catalytic system has been developed for the borylation of aryl sulfoxides with B\(_{2}\)(neop)\(_{2}\) (neop=neopentyl glycolato). A wide range of aryl sulfoxides with different electronic and steric properties were converted into the corresponding arylboronic esters in good yields. The regioselective borylation of unsymmetric diaryl sulfoxides was also feasible leading to borylation of the sterically less encumbered aryl substituent. Competition experiments demonstrated that an electron-deficient aryl moiety reacts preferentially. The origin of the selectivity in the Ni-catalyzed borylation of electronically biased unsymmetrical diaryl sulfoxide lies in the oxidative addition step of the catalytic cycle, as oxidative addition of methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide to the Ni(0) complex occurs selectively to give the structurally characterized complex trans-[Ni(ICy)\(_{2}\)(4-CF\(_{3}\)-C\(_{6}\)H\(_{4}\)){(SO)-4-MeO-C\(_{6}\)H\(_{4}\)}] 4. For complex 5, the isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I was structurally characterized in which the phenyl sulfinyl ligand is bound via the oxygen atom to nickel. In solution, the complex trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I is in equilibrium with the S-bonded isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(SOC\(_{6}\)H\(_{5}\))] 5, as shown by NMR spectroscopy. DFT calculations reveal that these isomers are separated by a mere 0.3 kJ/mol (M06/def2-TZVP-level of theory) and connected via a transition state trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(η\(^{2}\)-{SO}-C\(_{6}\)H\(_{5}\))], which lies only 10.8 kcal/mol above 5.}, language = {en} } @article{LiuKoleBudimanetal.2021, author = {Liu, Zhiqiang and Kole, Goutam Kumar and Budiman, Yudha P. and Tian, Ya-Ming and Friedrich, Alexandra and Luo, Xiaoling and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Transition metal catalyst-free, base-promoted 1,2-additions of polyfluorophenylboronates to aldehydes and ketones}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {30}, doi = {10.1002/anie.202103686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256487}, pages = {16529-16538}, year = {2021}, abstract = {A novel protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones. Control experiments and DFT calculations indicate that both the ortho-F substituents on the polyfluorophenyl boronates and the counterion K\(^+\) in the carbonate base are critical. The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Intriguing structural features involving O-H⋅⋅⋅O and O-H⋅⋅⋅N hydrogen bonding, as well as arene-perfluoroarene interactions, in this series of racemic polyfluoroaryl carbinols have also been addressed.}, language = {en} } @article{BudimanWestcottRadiusetal.2021, author = {Budiman, Yudha P. and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis}, series = {Advanced Synthesis \& Catalysis}, volume = {363}, journal = {Advanced Synthesis \& Catalysis}, number = {9}, doi = {10.1002/adsc.202001291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225908}, pages = {2224 -- 2255}, year = {2021}, abstract = {Organoboron compounds are well known building blocks for many organic reactions. However, under basic conditions, polyfluorinated aryl boronic acid derivatives suffer from instability issues that are accelerated in compounds containing an ortho-fluorine group, which result in the formation of the corresponding protodeboronation products. Therefore, a considerable amount of research has focused on novel methodologies to synthesize these valuable compounds while avoiding the protodeboronation issue. This review summarizes the latest developments in the synthesis of fluorinated aryl boronic acid derivatives and their applications in cross-coupling reactions and other transformations. image}, language = {en} } @article{PhilippKrahfussRadackietal.2021, author = {Philipp, Michael S. M. and Krahfuss, Mirjam J. and Radacki, Krzysztof and Radius, Udo}, title = {N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Antimony(III)}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {38}, doi = {10.1002/ejic.202100632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257408}, pages = {4007-4019}, year = {2021}, abstract = {A systematic study on Lewis-acid/base adducts of N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) (1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) with antimony(III) chlorides of the general formula SbCl\(_{2}\)R (R=Cl, Ph, Mes) is presented. The reaction of the NHCs Me\(_{2}\)Im\(^{Me}\) (1,3,4,5-tetra-methyl-imidazolin-2-ylidene), iPr\(_{2}\)Im\(^{Me}\) (1,3-di-isopropyl-4,5-dimethyl-imidazolin-2-ylidene), Mes\(_{2}\)Im, Dipp\(_{2}\)Im (R\(_{2}\)Im=1,3-di-organyl-imidazolin-2-ylidene; Mes=2,4,6-trimethylphenyl, Dipp=2,6-di-isopropylphenyl) and cAAC\(^{Me}\) with antimony(III) compounds SbCl\(_{2}\)R (R=Cl (1), Ph (2) and Mes (3)) yields the adducts NHC ⋅ SbCl\(_{2}\)R (R=Cl (4), Ph (5) and Mes (6); NHC=Me\(_{2}\)Im\(^{Me}\) (a), iPr\(_{2}\)Im\(^{Me}\) (b), Dipp\(_{2}\)Im (c) and Mes\(_{2}\)Im (d)) and cAAC\(^{Me}\) ⋅ SbCl\(_{2}\)R (R=Cl (4 e) and Ph (5 e)). Thermal treatment of (Dipp\(_{2}\)Im) ⋅ SbCl\(_{2}\)Ar (Ar=Ph (5 c) and Mes (6 c)) in benzene leads to isomerization to the backbone coordinated \(^{a}\)NHC-adduct \(^{a}\)Dipp\(_{2}\)Im ⋅ SbCl\(_{2}\)Ar (Ar=Mes (7) and Ph (8)) (\(^{"a"}\) denotes "abnormal" coordination mode of the NHC) in high yields. One of the chloride substituents at antimony of 7 can be abstracted by GaCl3 or Ag[BF\(_{4}\)] to obtain the imidazolium salts [\(^{a}\)Dipp\(_{2}\)Im ⋅ SbClMes][BF\(_{4}\)] (9) and [\(^{a}\)Dipp\(_{2}\)Im ⋅ SbClMes][GaCl\(_{4}\)] (10).}, language = {en} } @article{BudimanFriedrichRadiusetal.2019, author = {Budiman, Yudha P. and Friedrich, Alexandra and Radius, Udo and Marder, Todd B.}, title = {Copper-catalysed Suzuki-Miyaura cross-coupling of highly fluorinated aryl boronate esters with aryl iodides and bromides and fluoroarene-arene π-stacking interactions in the products}, series = {ChemCatChem}, volume = {11}, journal = {ChemCatChem}, number = {21}, doi = {10.1002/cctc.201901220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204839}, pages = {5387-5396}, year = {2019}, abstract = {A combination of copper iodide and phenanthroline as the ligand is an efficient catalyst for Suzuki-Miyaura cross-coupling of highly fluorinated boronate esters (aryl-Bpin) with aryl iodides and bromides to generate fluorinated biaryls in good to excellent yields. This method represents a nice alternative to traditional cross-coupling methods which require palladium catalysts and stoichiometric amounts of silver oxide. We note that π⋅⋅⋅π stacking interactions dominate the molecular packing in the partly fluorinated biaryl crystals investigated herein. They are present either between the arene and perfluoroarene, or solely between arenes or perfluoroarenes, respectively.}, language = {en} } @article{LorkowskiKrahfussKubickietal.2019, author = {Lorkowski, Jan and Krahfuss, Mirjam and Kubicki, Maciej and Radius, Udo and Pietraszuk, Cezary}, title = {Intramolecular ring expansion reaction (RER) and intermolecular coordination of in situ generated Cyclic (Amino)(Aryl)Carbenes (cAArCs)}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.201902630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204847}, pages = {11365-11374}, year = {2019}, abstract = {Cyclic (amino)(aryl)carbenes (cAArCs) based on the isoindoline core were successfully generated in situ by α-elimination of 3-alkoxyisoindolines at high temperatures or by deprotonation of isoindol-2-ium chlorides with sodium or copper(I) acetates at low temperatures. 3-Alkoxy-isoindolines 2 a ,b-OR (R=Me, Et, i Pr) have been prepared in high yields by the addition of a solution of 2-aryl-1,1-diphenylisoindol-2-ium triflate (1 a ,b-OTf ; a : aryl=Dipp=2,6-diisopropylphenyl; b : Mesityl-, Mes=2,4,6-trimethylphenyl) to the corresponding alcohol (ROH) with NEt3 at room temperature. Furthermore, the reaction of 2 a ,b-OMe in diethyl ether with a tenfold excess of hydrochloric acid led to the isolation of the isoindol-2-ium chlorides 1 a ,b-Cl in high yields. The thermally generated cAArC reacts with sulfur to form the thioamide 3 a . Without any additional trapping reagent, in situ generation of 1,1-diphenylisoidolin-3-ylidenes does not lead to the isolation of these compounds, but to the reaction products of the insertion of the carbene carbon atom into an ortho C-H bond of a phenyl substituent, followed by ring-expansion reaction; namely, anthracene derivatives 9-N(H)aryl-10-Ph-C14H8 4 a ,b (a : Dipp; b : Mes). These compounds are conveniently synthesized by deprotonation of the isoindol-2-ium chlorides with sodium acetate in high yields. Deprotonation of 1 a-Cl with copper(I) acetate at low temperatures afforded a mixture of 4 a and the corresponding cAArC copper(I) chloride 5 a , and allowed the isolation and structural characterization of the first example of a cAArC copper complex of general formula [(cAArC)CuCl].}, language = {en} } @article{BudimanLorenzenLiuetal.2021, author = {Budiman, Yudha P. and Lorenzen, Sabine and Liu, Zhiqiang and Radius, Udo and Marder, Todd B.}, title = {Base-Free Pd-Catalyzed C-Cl Borylation of Fluorinated Aryl Chlorides}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {11}, doi = {10.1002/chem.202004648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225687}, pages = {3869 -- 3874}, year = {2021}, abstract = {Catalytic C-X borylation of aryl halides containing two ortho-fluorines has been found to be challenging, as most previous methods require stoichiometric amounts of base and the polyfluorinated aryl boronates suffer from protodeboronation, which is accelerated by ortho-fluorine substituents. Herein, we report that a combination of Pd(dba)2 (dba=dibenzylideneacetone) with SPhos (2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl) as a ligand is efficient to catalyze the C-Cl borylation of aryl chlorides containing two ortho-fluorine substituents. This method, conducted under base-free conditions, is compatible with the resulting di-ortho-fluorinated aryl boronate products which are sensitive to base.}, language = {en} } @article{TenderaSchaubKrahfussetal.2020, author = {Tendera, Lukas and Schaub, Thomas and Krahfuss, Mirjam J. and Kuntze-Fechner, Maximilian W. and Radius, Udo}, title = {Large vs. Small NHC Ligands in Nickel(0) Complexes: The Coordination of Olefins, Ketones and Aldehydes at [Ni(NHC)\(_{2}\)]}, series = {European Journal of Inorganic Chemistry}, volume = {2020}, journal = {European Journal of Inorganic Chemistry}, number = {33}, doi = {10.1002/ejic.202000493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216058}, pages = {3194 -- 3207}, year = {2020}, abstract = {Investigations concerning the reactivity of Ni(0) complexes [Ni(NHC)\(_{2}\)] of NHCs (N-heterocyclic carbene) of different steric demand, Mes\(_{2}\)Im (= 1,3-dimesitylimidazoline-2-ylidene) and iPr\(_{2}\)Im (= 1,3-diisopropyl-imidazoline-2-ylidene), with olefins, ketones and aldehydes are reported. The reaction of [Ni(Mes\(_{2}\)Im)\(_{2}\)] 1 with ethylene or methyl acrylate afforded the complexes [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-C\(_{2}\)H\(_{4}\))] 3 and [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-(C,C)-H\(_{2}\)C=CHCOOMe)] 4, as it was previously reported for [Ni\(_{2}\)(iPr\(_{2}\)Im)\(_{4}\)(µ-(η\(^{2}\):η\(^{2}\))-COD)] 2 as a source for [Ni(iPr\(_{2}\)Im)\(_{2}\)]. In contrast to 2, complex 1 does not react with sterically more demanding olefins such as tetramethylethylene, 1,1-diphenylethylene and cyclohexene. The reaction of [Ni(NHC)\(_{2}\)] with more π-acidic ketones or aldehydes led to formation of complexes with side-on η\(^{2}\)-(C,O)-coordinating ligands: [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CH\(^{t}\)Bu)] 5, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CHPh)] 6, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CMePh)] 7, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CPh\(_{2}\))] 8, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=C(4-F-C\(_{6}\)H\(_{4}\))\(_{2}\))] 9, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=C(OMe)(CF\(_{3}\)))] 10 and [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CHPh)] 11, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CH(CH(CH\(_{3}\))\(_{2}\)))] 12, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CH(4-NMe\(_{2}\)-C\(_{6}\)H\(_{4}\)))] 13, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CH(4-OMe-C\(_{6}\)H\(_{4}\)))] 14, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CPh\(_{2}\))] 15 and [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=C(4-F-C\(_{6}\)H\(_{4}\))\(_{2}\))] 16. The reaction of 1 and 2 with these simple aldehydes and ketones does not lead to a significantly different outcome, but NHC ligand rotation is hindered for the Mes\(_{2}\)Im complexes 3, 4 and 11-16 according to NMR spectroscopy. The solid-state structures of 3, 4, 11 and 12 reveal significantly larger C\(_{NHC}\)-Ni-C\(_{NHC}\) angles in the Mes\(_{2}\)Im complexes compared to the iPr\(_{2}\)Im complexes. As electron transfer in d\(^{8}\)- (or d\(^{10}\)-) ML\(_{2}\) complexes to π-acidic ligands depends on the L-M-L bite angle, the different NHCs lead thus to a different degree of electron transfer and activation of the olefin, aldehyde or ketone ligand, i.e., [Ni(iPr\(_{2}\)Im)\(_{2}\)] is the better donor to these π-acidic ligands. Furthermore, we identified two different side products from the reaction of 1 with benzaldehyde, trans-[Ni(Mes\(_{2}\)Im)\(_{2}\)H(OOCPh)] 17 and [Ni\(_{2}\)(Mes\(_{2}\)Im)\(_{2}\)(µ\(_{2}\)-CO)(µ\(_{2}\)-η\(^{2}\)-C,O-PhCOCOPh)] 18, which indicate that radical intermediates and electron transfer processes might be of importance in the reaction of 1 with aldehydes and ketones.}, language = {en} } @article{KrahfussRadius2021, author = {Krahfuss, Mirjam J. and Radius, Udo}, title = {N-Heterocyclic Silylene Main Group Element Chemistry: Adduct Formation, Insertion into E-X Bonds and Cyclization of Organoazides}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {6}, doi = {10.1002/ejic.202000942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224507}, pages = {548 -- 561}, year = {2021}, abstract = {Investigations concerning the reactivity of the N-heterocyclic silylene Dipp\(_{2}\)NHSi (1, 1,3-bis(2,6-diisopropylphenyl)-1,3-diaza-2-silacyclopent-4-en-2-ylidene) towards selected alanes and boranes, elemental halides X\(_{2}\) (X=Br, I), selected halide containing substrates such as tin chlorides and halocarbons, as well as organoazides are presented. The NHSi adducts Dipp\(_{2}\)NHSi⋅AlI\(_{3}\) (2), Dipp\(_{2}\)NHSi⋅Al(C\(_{6}\)F\(_{5}\))\(_{3}\) (3), and Dipp\(_{2}\)NHSi⋅B(C\(_{6}\)F\(_{5}\))\(_{3}\) (4) were formed by the reaction of Dipp\(_{2}\)NHSi with the corresponding Lewis acids AlI\(_{3}\), Al(C\(_{6}\)F\(_{6}\))\(_{3}\) and B(C\(_{6}\)F\(_{5}\))\(_{3}\). Adducts 3 and 4 were tested with respect to their ability to activate small organic molecules, but no frustrated Lewis pair reactivity was observed. Reactions of Dipp\(_{2}\)NHSi with Br\(_{2}\), I\(_{2}\), Ph\(_{2}\)SnCl\(_{2}\) and Me\(_{3}\)SnCl led to formation of Dipp\(_{2}\)NHSiBr\(_{2}\) (5), Dipp\(_{2}\)NHSiI\(_{2}\) (6), Dipp\(_{2}\)NHSiCl\(_{2}\) (7) and {(Me\(_{3}\)Sn)N(Dipp)CH}\(_{2}\) (8), respectively. The reaction with the halocarbons methyl iodide, benzyl chloride, and benzyl bromide afforded the insertion products Dipp\(_{2}\)NHSi(I)(CH\(_{3}\)) (9), Dipp\(_{2}\)NHSi(Cl)(CH\(_{2}\)Ph) (10) and Dipp\(_{2}\)NHSi(Br)(CH\(_{2}\)Ph) (11). Reaction of Dipp\(_{2}\)NHSi with the organoazides Ad-N\(_{3}\) (Ad=adamantyl) and TMS-N\(_{3}\) (TMS=trimethylsilyl) led to the formation of 1-Dipp\(_{2}\)NHSi-2,5-bis(adamantyl)-tetrazoline (12) and bis(trimethylsilyl)amido azido silane (13), respectively. For 2,6-(diphenyl)phenyl-N\(_{3}\) C-H activation occurs and a cyclosilamine 14 was isolated.}, language = {en} } @article{HockWernerRiethmannetal.2020, author = {Hock, Andreas and Werner, Luis and Riethmann, Melanie and Radius, Udo}, title = {Bis-NHC Aluminium and Gallium Dihydride Cations [(NHC)\(_{2}\)EH\(_{2}\)]\(^{+}\) (E = Al, Ga)}, series = {European Journal of Inorganic Chemistry}, volume = {2020}, journal = {European Journal of Inorganic Chemistry}, number = {42}, doi = {10.1002/ejic.202000720}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217928}, pages = {4015 -- 4023}, year = {2020}, abstract = {The NHC alane and gallane adducts (NHC)·AlH\(_{2}\)I (NHC = Me\(_{2}\)Im\(^{Me}\) 7, iPr\(_{2}\)Im 8, iPr\(_{2}\)Im\(^{Me}\) 9) and (NHC)·GaH\(_{2}\)I (NHC = Me\(_{2}\)Im\(^{Me}\) 10, iPr\(_{2}\)Im\(^{Me}\) 11, Dipp\(_{2}\)Im 12; R\(_{2}\)Im = 1,3-di-organyl-imidazolin-2-ylidene; Dipp = 2,6-diisopropylphenyl; iPr = isopropyl; Me\(_{2}\)Im\(^{Me}\) = 1,3,4,5-tetra-methyl-imidazolin-2-ylidene) were prepared either by the simple yet efficient reaction of the NHC adduct (NHC)·AlH\(_{3}\) with elemental iodine or by the treatment of (NHC)·GaH\(_{3}\) with an excess of methyl iodide at room temperature. The reaction of one equivalent of the group 13 NHC complexes with an additional equivalent of the corresponding NHC afforded cationic aluminium and gallium hydrides [(NHC)\(_{2}\)·AlH\(_{2}\)]\(^{+}\)I- (NHC = Me\(_{2}\)Im\(^{Me}\) 13, iPr\(_{2}\)Im 14, iPr\(_{2}\)Im\(^{Me}\) 15) and [(NHC)\(_{2}\)·GaH\(_{2}\)]\(^{+}\)I- (NHC = Me\(_{2}\)Im\(^{Me}\) 16, iPr\(_{2}\)Im\(^{Me}\) 17) and the normal and abnormal NHC coordinated compound [(Dipp\(_{2}\)Im)·GaH\(_{2}\)(aDipp\(_{2}\)Im)]+I- 18. Compounds 7-18 were isolated and characterized by means of elemental analysis, IR and multinuclear NMR spectroscopy and by X-ray diffraction of the compounds 7, 9, 10, 15, 16 and 18.}, language = {en} } @article{LiuMingLuoetal.2020, author = {Liu, Xiaocui and Ming, Wenbo and Luo, Xiaoling and Friedrich, Alexandra and Maier, Jan and Radius, Udo and Santos, Webster L. and Marder, Todd B.}, title = {Regio- and Stereoselective Synthesis of 1,1-Diborylalkenes via Br{\o}nsted Base-Catalyzed Mixed Diboration of Alkynyl Esters and Amides with BpinBdan}, series = {European Journal of Organic Chemistry}, volume = {2020}, journal = {European Journal of Organic Chemistry}, number = {13}, doi = {10.1002/ejoc.202000128}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214728}, pages = {1941 -- 1946}, year = {2020}, abstract = {The NaOtBu-catalyzed mixed 1,1-diboration of terminal alkynes using the unsymmetrical diboron reagent BpinBdan (pin = pinacolato; dan = 1,8-diaminonaphthalene) proceeds in a regio- and stereoselective fashion affording moderate to high yields of 1,1-diborylalkenes bearing orthogonal boron protecting groups. It is applicable to gram-scale synthesis without loss of yield or selectivity. The mixed 1,1-diborylalkene products can be utilized in Suzuki-Miyaura cross-coupling reactions which take place selectivly at the C-B site. DFT calculations suggest the NaOtBu-catalyzed mixed 1,1-diboration of alkynes occurs through deprotonation of the terminal alkyne, stepwise addition of BpinBdan to the terminal carbon followed by protonation with tBuOH. Experimentally observed selective formation of (Z)-diborylalkenes is supported by our theoretical studies.}, language = {en} } @article{HuangHuKrummenacheretal.2022, author = {Huang, Mingming and Hu, Jiefeng and Krummenacher, Ivo and Friedrich, Alexandra and Braunschweig, Holger and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Base-Mediated Radical Borylation of Alkyl Sulfones}, series = {Chemistry—A European Journal}, volume = {28}, journal = {Chemistry—A European Journal}, number = {3}, doi = {10.1002/chem.202103866}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257281}, pages = {e202103866}, year = {2022}, abstract = {A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B\(_{2}\)neop\(_{2}\)), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.}, language = {en} } @article{LuisHorrerPhilippetal.2021, author = {Luis, Werner and Horrer, G{\"u}nther and Philipp, Michael and Lubitz, Katharina and Kuntze-Fechner, Maximilian W. and Radius, Udo}, title = {A General Synthetic Route to NHC-Phosphinidenes: NHC-mediated Dehydrogenation of Primary Phosphines}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {8}, doi = {10.1002/zaac.202000405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258016}, pages = {881-895}, year = {2021}, abstract = {The dehydrocoupling of primary phosphines with N-heterocyclic carbenes (NHCs) to yield NHC-phosphinidenes is reported. The reaction of two equivalents of the NHCs Me\(_2\)Im (1,3-dimethylimidazolin-2-ylidene), Me\(_4\)Im (1,3,4,5-tetramethylimidazolin-2-ylidene), iPr\(_2\)Im (1,3-di-iso-propylimidazolin-2-ylidene) and Mes\(_2\)Im (2,4,6-trimethylphenylimidazolin-2-ylidene) with PhPH\(_2\) and MesPH\(_2\) led to the NHC stabilized phosphinidenes (NHC)PAr: (iPr\(_2\)Im)PPh (1), (Mes\(_2\)Im)PPh (2), (Me\(_4\)Im)PPh (3), (Mes\(_2\)Im)PMes (4), (Me\(_2\)Im)PMes (5), (Me\(_4\)Im)PMes (6) and (iPr\(_2\)Im)PMes (7). The reaction of tBuPH\(_2\) with two equivalents of the NHCs afforded the corresponding NHC stabilized parent phosphinidenes (NHC)PH: (iPr\(_2\)Im)PH (8), (Mes\(_2\)Im)PH (9) and (Me\(_4\)Im)PH (10). Reaction of 1 with oxygen and sulfur led to isolation of iPr\(_2\)Im-P(O)\(_2\)Ph (11) and iPr\(_2\)Im-P(S)\(_2\)Ph (12), whereas the reaction with elemental selenium and tellurium gave (NHC)PPh cleavage with formation of (iPr\(_2\)Im)Se (13), iPr\(_2\)ImTe (14) and different cyclo-oligophosphines. Furthermore, the complexes [{(iPr\(_2\)Im)PPh}W(CO)\(_5\)] (15), [Co(CO)\(_2\)(NO){(iPr\(_2\)Im)PPh}] (16) and [(η\(^5\)-C\(_5\)Me\(_2\))Co(η\(^2\)-C\(_2\)H\(_4\)){(iPr\(_2\)Im)PPh}] (17) have been prepared starting from 1 and a suitable transition metal complex precursor. The complexes 16 and 17 decompose in solution upon heating to ca. 80 °C to yield the NHC complexes [Co(iPr\(_2\)Im)(CO)\(_2\)(NO)] and [(η\(^5\)-C\(_5\)Me\(_5\))Co(iPr\(_2\)Im)(η\(^2\)-C\(_2\)H\(_4\))] with formation of cyclo-oligophosphines. The reaction of 1 with [Ni(COD)\(_2\)] afforded the diphosphene complex [Ni(iPr\(_2\)Im)\(_2\)(trans-PhP=PPh)] 18.}, language = {en} } @article{FoehrenbacherZehKrahfussetal.2021, author = {F{\"o}hrenbacher, Steffen A. and Zeh, Vivien and Krahfuss, Mirjam J. and Ignat'ev, Nikolai V. and Finze, Maik and Radius, Udo}, title = {Tris(pentafluoroethyl)difluorophosphorane and N-Heterocyclic Carbenes: Adduct Formation and Frustrated Lewis Pair Reactivity}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {20}, doi = {10.1002/ejic.202100183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257386}, pages = {1941-1960}, year = {2021}, abstract = {The synthesis and characterization of Lewis acid/base adducts between tris(pentafluoroethyl)difluorophosphorane PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) and selected N-heterocyclic carbenes (NHCs) R\(_{2}\)Im (1,3-di-organyl-imidazolin-2-ylidene) and phosphines are reported. For NHCs with small alkyl substituents at nitrogen (R=Me, nPr, iPr) the adducts NHC ⋅ PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) (2 a-h) were isolated. The reaction with the sterically more demanding NHCs Dipp\(_{2}\)Im (1,3-bis-(2,6-di-iso-propylphenyl)-imidazolin-2-ylidene) (1 i) and tBu\(_{2}\)Im (1,3-di-tert-butyl-imidazolin-2-ylidene) (1 j) afforded the aNHC adducts 3 i and 3 j (a denotes "abnormal" NHC coordination via a backbone carbon atom). The use of tBuMeIm (1-tert-butyl-3-methyl-imidazolin-2-ylidene) (1 m) led to partial decomposition of the NHC and formation of the salt [tBuMeIm-H][MeIm ⋅ PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)] (4 m). The phosphorane PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) forms adducts with PMe\(_{3}\) but does not react with PPh\(_{3}\) or PCy\(_{3}\). The mer-cis isomer of literature-known Me\(_{3}\)P ⋅ PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) (5 a) was structurally characterized. Mixtures of the phosphorane PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) and the sterically encumbered NHCs tBu\(_{2}\)Im, Dipp\(_{2}\)Im, and Dipp\(_{2}\)Im\(^{H2}\) (1,3-bis-(2,6-di-iso-propylphenyl)-imidazolidin-2-ylidene) (1 k) showed properties of FLPs (Frustrated Lewis Pairs) as these mixtures were able to open the ring of THF (tetrahydrofuran) to yield NHC-(CH\(_{2}\))\(_{4}\)O-PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\) 6 i-k. Furthermore, the deprotonation of the weak C-H acids CH\(_{3}\)CN, acetone, and ethyl acetate was achieved, which led to the formation of the corresponding imidazolium salts and the phosphates [PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)(CH\(_{2}\)CN)]\(^{-}\) (7), [PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)(OC(=CH\(_{2}\))CH\(_{3}\))]\(^{-}\) (8) and [PF\(_{2}\)(C\(_{2}\)F\(_{5}\))\(_{3}\)(CH\(_{2}\)CO\(_{2}\)Et)]\(^{-}\) (9).}, language = {en} }