@article{CavalettoFaccoliMarinietal.2020, author = {Cavaletto, Giacomo and Faccoli, Massimo and Marini, Lorenzo and Spaethe, Johannes and Magnani, Gianluca and Rassati, Davide}, title = {Effect of trap color on captures of bark- and wood-boring beetles (Coleoptera; Buprestidae and Scolytinae) and associated predators}, series = {Insects}, volume = {11}, journal = {Insects}, number = {11}, issn = {2075-4450}, doi = {10.3390/insects11110749}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216325}, year = {2020}, abstract = {Traps baited with attractive lures are increasingly used at entry-points and surrounding natural areas to intercept exotic wood-boring beetles accidentally introduced via international trade. Several trapping variables can affect the efficacy of this activity, including trap color. In this study, we tested whether species richness and abundance of jewel beetles (Buprestidae), bark and ambrosia beetles (Scolytinae), and their common predators (i.e., checkered beetles, Cleridae) can be modified using trap colors different to those currently used for surveillance of jewel beetles and bark and ambrosia beetles (i.e., green or black). We show that green and black traps are generally efficient, but also that many flower-visiting or dark-metallic colored jewel beetles and certain bark beetles are more attracted by other colors. In addition, we show that checkered beetles have color preferences similar to those of their Scolytinae preys, which limits using trap color to minimize their inadvertent removal. Overall, this study confirmed that understanding the color perception mechanisms in wood-boring beetles can lead to important improvements in trapping techniques and thereby increase the efficacy of surveillance programs.}, language = {en} } @article{LichtensteinGruebelSpaethe2018, author = {Lichtenstein, Leonie and Gr{\"u}bel, Kornelia and Spaethe, Johannes}, title = {Opsin expression patterns coincide with photoreceptor development during pupal development in the honey bee, Apis mellifera}, series = {BMC Developmental Biology}, volume = {18}, journal = {BMC Developmental Biology}, number = {1}, doi = {10.1186/s12861-018-0162-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175665}, year = {2018}, abstract = {Background: The compound eyes of insects allow them to catch photons and convert the energy into electric signals. All compound eyes consist of numerous ommatidia, each comprising a fixed number of photoreceptors. Different ommatidial types are characterized by a specific set of photoreceptors differing in spectral sensitivity. In honey bees, males and females possess different ommatidial types forming distinct retinal mosaics. However, data are lacking on retinal ontogeny and the mechanisms by which the eyes are patterned. In this study, we investigated the intrinsic temporal and circadian expression patterns of the opsins that give rise to the ultraviolet, blue and green sensitive photoreceptors, as well as the morphological maturation of the retina during pupal development of honey bees. Results: qPCR and histological labeling revealed that temporal opsin mRNA expression differs between sexes and correlates with rhabdom elongation during photoreceptor development. In the first half of the pupal stage, when the rhabdoms of the photoreceptors are still short, worker and (dorsal) drone retinae exhibit similar expression patterns with relatively high levels of UV (UVop) and only marginal levels of blue (BLop) and green (Lop1) opsin mRNA. In the second half of pupation, when photoreceptors and rhabdoms elongate, opsin expression in workers becomes dominated by Lop1 mRNA. In contrast, the dorsal drone eye shows high expression levels of UVop and BLop mRNA, whereas Lop1 mRNA level decreases. Interestingly, opsin expression levels increase up to 22-fold during early adult life. We also found evidence that opsin expression in adult bees is under the control of the endogenous clock. Conclusions: Our data indicate that the formation of the sex-specific retinal composition of photoreceptors takes place during the second half of the pupal development, and that opsin mRNA expression levels continue to increase in young bees, which stands in contrast to Drosophila, where the highest expression levels are found during the late pupal stage and remain constant in adults. From an evolutionary perspective, we hypothesize that the delayed retinal maturation during the early adult phase is linked to the delayed transition from indoor to outdoor activities in bees, when vision becomes important.}, language = {en} }