@article{GattenloehnerJoerissenHuhnetal.2010, author = {Gattenloehner, Stefan and Joerissen, H. and Huhn, M. and Vincent, A. and Beeson, D. and Tzartos, S. and Mamalaki, A. and Etschmann, B. and Muller-Hermelink, H. K. and Koscielniak, E. and Barth, S. and Marx, A.}, title = {A Human Recombinant Autoantibody-Based Immunotoxin Specific for the Fetal Acetylcholine Receptor Inhibits Rhabdomyosarcoma Growth In Vitro and in a Murine Transplantation Model [Research Article]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68200}, year = {2010}, abstract = {Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumor in children and is highly resistant to all forms of treatment currently available once metastasis or relapse has commenced. As it has recently been determined that the acetylcholine receptor (AChR) γ-subunit, which defines the fetal AChR (fAChR) isoform, is almost exclusively expressed in RMS post partum, we recombinantly fused a single chain variable fragment (scFv) derived from a fully human anti-fAChR Fab-fragment to Pseudomonas exotoxin A to generate an anti-fAChR immunotoxin (scFv35-ETA).While scFv35-ETA had no damaging effect on fAChR-negative control cell lines, it killed human embryonic and alveolar RMS cell lines in vitro and delayed RMS development in a murine transplantation model. These results indicate that scFv35-ETA may be a valuable new therapeutic tool as well as a relevant step towards the development of a fully human immunotoxin directed against RMS. Moreover, as approximately 20\% of metastatic malignant melanomas (MMs) display rhabdoid features including the expression of fAChR, the immunotoxin we developed may also prove to be of significant use in the treatment of these more common and most often fatal neoplasms.}, subject = {Medizin}, language = {en} } @article{DammertBraegelmannOlsenetal.2019, author = {Dammert, Marcel A. and Br{\"a}gelmann, Johannes and Olsen, Rachelle R. and B{\"o}hm, Stefanie and Monhasery, Niloufar and Whitney, Christopher P. and Chalishazar, Milind D. and Tumbrink, Hannah L. and Guthrie, Matthew R. and Klein, Sebastian and Ireland, Abbie S. and Ryan, Jeremy and Schmitt, Anna and Marx, Annika and Ozretić, Luka and Castiglione, Roberta and Lorenz, Carina and Jachimowicz, Ron D. and Wolf, Elmar and Thomas, Roman K. and Poirier, John T. and B{\"u}ttner, Reinhard and Sen, Triparna and Byers, Lauren A. and Reinhardt, H. Christian and Letai, Anthony and Oliver, Trudy G. and Sos, Martin L.}, title = {MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11371-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223569}, year = {2019}, abstract = {MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.}, language = {en} } @article{HuangBelharazemLietal.2013, author = {Huang, Bei and Belharazem, Djeda and Li, Li and Kneitz, Susanne and Schnabel, Philipp A. and Rieker, Ralf J. and K{\"o}rner, Daniel and Nix, Wilfried and Schalke, Berthold and M{\"u}ller-Hermelink, Hans Konrad and Ott, German and Rosenwald, Andreas and Str{\"o}bel, Philipp and Marx, Alexander}, title = {Anti-apoptotic signature in thymic squamous cell carcinomas - functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c}, series = {Frontiers in Oncology}, volume = {3}, journal = {Frontiers in Oncology}, number = {316}, doi = {10.3389/fonc.2013.00316}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132214}, year = {2013}, abstract = {The molecular pathogenesis of thymomas and thymic arcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important.This made us re-analyze historic expression data obtained in a spectrumof thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.}, language = {en} } @article{GordonDaneshianBouwstraetal.2015, author = {Gordon, Sarah and Daneshian, Mardas and Bouwstra, Joke and Caloni, Francesca and Constant, Samuel and Davies, Donna E. and Dandekar, Gudrun and Guzman, Carlos A. and Fabian, Eric and Haltner, Eleonore and Hartung, Thomas and Hasiwa, Nina and Hayden, Patrick and Kandarova, Helena and Khare, Sangeeta and Krug, Harald F. and Kneuer, Carsten and Leist, Marcel and Lian, Guoping and Marx, Uwe and Metzger, Marco and Ott, Katharina and Prieto, Pilar and Roberts, Michael S. and Roggen, Erwin L. and Tralau, Tewes and van den Braak, Claudia and Walles, Heike and Lehr, Claus-Michael}, title = {Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology}, series = {ALTEX: Alternatives to Animal Experimentation}, volume = {32}, journal = {ALTEX: Alternatives to Animal Experimentation}, number = {4}, doi = {10.14573/altex.1510051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144275}, pages = {327-378}, year = {2015}, abstract = {Models of the outer epithelia of the human body namely the skin, the intestine and the lung have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report.}, language = {en} }