@article{AboagyeWeberMerdianetal.2021, author = {Aboagye, B. and Weber, T. and Merdian, H. L. and Bartsch, D. and Lesch, K. P. and Waider, J.}, title = {Serotonin deficiency induced after brain maturation rescues consequences of early life adversity}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, issn = {2045-2322}, doi = {10.1038/s41598-021-83592-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258626}, year = {2021}, abstract = {Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKOxMS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders.}, language = {en} } @article{WaiderPoppLangeetal.2017, author = {Waider, J and Popp, S and Lange, MD and Kern, R and Kolter, JF and Kobler, J and Donner, NC and Lowe, KR and Malzbender, JH and Brazell, CJ and Arnold, MR and Aboagye, B and Schmitt-B{\"o}hrer, A and Lowry, CA and Pape, HC and Lesch, KP}, title = {Genetically driven brain serotonin deficiency facilitates panic-like escape behavior in mice}, series = {Translational Psychiatry}, volume = {7}, journal = {Translational Psychiatry}, number = {e1246}, doi = {10.1038/tp.2017.209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170239}, year = {2017}, abstract = {Multiple lines of evidence implicate brain serotonin (5-hydroxytryptamine; 5-HT) system dysfunction in the pathophysiology of stressor-related and anxiety disorders. Here we investigate the influence of constitutively deficient 5-HT synthesis on stressor-related anxiety-like behaviors using Tryptophan hydroxylase 2 (Tph2) mutant mice. Functional assessment of c-Fos after associated foot shock, electrophysiological recordings of GABAergic synaptic transmission, differential expression of the Slc6a4 gene in serotonergic neurons were combined with locomotor and anxiety-like measurements in different contextual settings. Our findings indicate that constitutive Tph2 inactivation and consequential lack of 5-HT synthesis in Tph2 null mutant mice (Tph2\(^{-/-}\)) results in increased freezing to associated foot shock and a differential c-Fos activity pattern in the basolateral complex of the amygdala. This is accompanied by altered GABAergic transmission as observed by recordings of inhibitory postsynaptic currents on principal neurons in the basolateral nucleus, which may explain increased fear associated with hyperlocomotion and escape-like responses in aversive inescapable contexts. In contrast, lifelong 5-HT deficiency as observed in Tph2 heterozygous mice (Tph\(^{+/-}\)) is able to be compensated through reduced GABAergic transmission in the basolateral nucleus of the amygdala based on Slc6a4 mRNA upregulation in subdivisions of dorsal raphe neurons. This results in increased activity of the basolateral nucleus of the amygdala due to associated foot shock. In conclusion, our results reflect characteristic syndromal dimensions of panic disorder and agoraphobia. Thus, constitutive lack of 5-HT synthesis influence the risk for anxiety- and stressor-related disorders including panic disorder and comorbid agoraphobia through the absence of GABAergic-dependent compensatory mechanisms in the basolateral nucleus of the amygdala.}, language = {en} }