@article{ManchiaAdliAkulaetal.2013, author = {Manchia, Mirko and Adli, Mazda and Akula, Nirmala and Arda, Raffaella and Aubry, Jean-Michel and Backlund, Lena and Banzato, Claudio E. M. and Baune, Bernhard T. and Bellivier, Frank and Bengesser, Susanne and Biernacka, Joanna M. and Brichant-Petitjean, Clara and Bui, Elise and Calkin, Cynthia V. and Cheng, Andrew Tai Ann and Chillotti, Caterina and Cichon, Sven and Clark, Scott and Czerski, Piotr M. and Dantas, Clarissa and Del Zompo, Maria and DePaulo, J. Raymond and Detera-Wadleigh, Sevilla D. and Etain, Bruno and Falkai, Peter and Fris{\´e}n, Louise and Frye, Mark A. and Fullerton, Jan and Gard, S{\´e}bastien and Garnham, Julie and Goes, Fernando S. and Grof, Paul and Gruber, Oliver and Hashimoto, Ryota and Hauser, Joanna and Heilbronner, Urs and Hoban, Rebecca and Hou, Liping and Jamain, St{\´e}phane and Kahn, Jean-Pierre and Kassem, Layla and Kato, Tadafumi and Kelsoe, John R. and Kittel-Schneider, Sarah and Kliwicki, Sebastian and Kuo, Po-Hsiu and Kusumi, Ichiro and Laje, Gonzalo and Lavebratt, Catharina and Leboyer, Marion and Leckband, Susan G. and L{\´o}pez Jaramillo, Carlos A. and Maj, Mario and Malafosse, Alain and Martinsson, Lina and Masui, Takuya and Mitchell, Philip B. and Mondimore, Frank and Monteleone, Palmiero and Nallet, Audrey and Neuner, Maria and Nov{\´a}k, Tom{\´a}s and O'Donovan, Claire and {\"O}sby, Urban and Ozaki, Norio and Perlis, Roy H. and Pfennig, Andrea and Potash, James B. and Reich-Erkelenz, Daniela and Reif, Andreas and Reininghaus, Eva and Richardson, Sara and Rouleau, Guy A. and Rybakowski, Janusz K. and Schalling, Martin and Schofield, Peter R. and Schubert, Oliver K. and Schweizer, Barbara and Seem{\"u}ller, Florian and Grigoroiu-Serbanescu, Maria and Severino, Giovanni and Seymour, Lisa R. and Slaney, Claire and Smoller, Jordan W. and Squassina, Alessio and Stamm, Thomas and Steele, Jo and Stopkova, Pavla and Tighe, Sarah K. and Tortorella, Alfonso and Turecki, Gustavo and Wray, Naomi R. and Wright, Adam and Zandi, Peter P. and Zilles, David and Bauer, Michael and Rietschel, Marcella and McMahon, Francis J. and Schulze, Thomas G. and Alda, Martin}, title = {Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0065636}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130938}, pages = {e65636}, year = {2013}, abstract = {Objective: The assessment of response to lithium maintenance treatment in bipolar disorder (BD) is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the "Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder" scale currently used in the Consortium on Lithium Genetics (ConLiGen) study. Materials and Methods: Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (\(\kappa\))] and reliability [intra-class correlation coefficient (ICC)] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling. Results: Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (\(\kappa\) = 0.66 and \(\kappa\) = 0.54, respectively), without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (\(ICC_1 = 0.71\) and \(ICC_2 = 0.75\), respectively). Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders). Conclusions: We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.}, language = {en} } @article{AdamAhrweilerSahaMoelleretal.1993, author = {Adam, W. and Ahrweiler, M. and Saha-M{\"o}ller, C. R. and Sauter, M. and Sch{\"o}nberger, A. and Epe, B. and M{\"u}ller, E. and Schiffmann, D. and Stopper, Helga and Wild, D.}, title = {Genotoxicity studies of benzofuran dioxetanes and epoxides with isolated DNA, bacteria and mammalian cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63420}, year = {1993}, abstract = {1.2-Dioxetanes, very reactive and high energy molecules. are involved as labile intermediates in dioxygenase- activated aerobic metabolism and in physiological processes. Various toxico1ogica1 tests reveal that dioxetanes are indeed genotoxic. In supercoiled DNA of bacteriophage PM2 they induce endonucleasesensitive sites, most of them are FPG protein-sensitive base modifications (8-hydroxyguanine, fonnamidopyrimidines). Pyrimidinedimersand sites ofbase loss (AP sites) which were probed by UV endonuclease and exonuclease 111 are minor lesions in this system. While the alky1-substituted dioxetanes do not show any significant mutagenic activity in different Salmonella typhimurium strains, heteroarene dioxetanes such as benzofuran and furocoumarin dioxetanes are strongly mutagenic in S. typhimurium strain TA I 00. DNA adducts formed with an intermediary alkyJating agent appear to be responsible for the mutagenic activity of benzofuran dioxetane. We assume that the benzofuran epoxides, generated in situ from benzofuran dioxetanes by deoxygenation are the ultimate mutagens of the latter. since benzofuran epoxides are highly mutagenic in the S. typhimurium strain TAIOO and they form DNA adducts. as detected by the 212Ppostlabelling technique. Our results imply that the type of D NA darnage promoted by dioxetanes is dependent on the structural feature of dioxetanes. Furthermore, the direct photochemical DNA darnage by energy transfer. i.e., pyrimidine dimers, plays a minor role in the genotoxicity of dioxetanes. Instead, photooxidation dominates in isolated DNA. while radical darnage and alkylation prevail in the cellular system.}, subject = {Toxikologie}, language = {en} } @article{SchartlWittbrodtMaeueleretal.1993, author = {Schartl, Manfred and Wittbrodt, J. and M{\"a}ueler, W. and Raulf, F. and Adam, D. and Hannig, G. and Telling, A. and Storch, F. and Andexinger, S. and Robertson, S. M.}, title = {Oncogenes and melanoma formation in Xiphoporus (Teleostei: Poeciliidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87149}, year = {1993}, abstract = {In Xiphophorus melanoma formation has been attributed by classical genetic findings to the overexpression of a cellular oncogene (Tu) due to elimination of the corresponding regulatory gene locus in hybrids. We have attempted to elucidate this phenomenon on the molecular biological level. Studies on the structure and expression of known proto-oncogenes revealed that several of these genes, especially the c-src gene of Xiphophorus, may act as effectors in establishing the neoplastic phenotype of the melanoma cells . However, these genes appear more to participate in secondary steps of tumorigenesis. Another gene, being termed Xmrk, which represents obviously a so far unknown proto-oncogene but with a cons iderably high similarity to the epidermal growth-factorreceptor gene, was mapped to the Tu-containing region of the chromosome. This gene shows features with respect to its structure and expression that seem to justify it to be regarded as a candidate for a gene involved in the primary processes leading to neoplastic transformation of pigment cells in Xiphophorus.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @incollection{AdamSchartlAndexingeretal.1991, author = {Adam, D. and Schartl, A. and Andexinger, S. and H{\"o}lter, S. and Wilde, B. and Schartl, Manfred}, title = {Genetic factors in tumour formation: The melanoma-inducing gene of Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86388}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1991}, abstract = {No abstract available.}, subject = {Humangenetik}, language = {en} } @article{WittbrodtAdamMalitscheketal.1989, author = {Wittbrodt, J. and Adam, D. and Malitschek, B. and Maueler, W. and Raulf, F. and Telling, A. and Robertson, M. and Schartl, Manfred}, title = {Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61800}, year = {1989}, abstract = {No abstract available}, subject = {Physiologische Chemie}, language = {en} } @article{AdamWittbrodtTellingetal.1988, author = {Adam, D. and Wittbrodt, J. and Telling, A. and Schartl, Manfred}, title = {RFLP for an EGF-receptor related gene associated with the melanoma oncogene locus of Xiphophorus maculatus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61822}, year = {1988}, abstract = {No abstract available}, subject = {Physiologische Chemie}, language = {en} }