@article{HoffmannEtzrodtWillkommetal.2015, author = {Hoffmann, Linda S. and Etzrodt, Jennifer and Willkomm, Lena and Sanyal, Abhishek and Scheja, Ludger and Fischer, Alexander W. C. and Stasch, Johannes-Peter and Bloch, Wilhelm and Friebe, Andreas and Heeren, Joerg and Pfeifer, Alexander}, title = {Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7235}, doi = {10.1038/ncomms8235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143127}, year = {2015}, abstract = {Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing \(\beta\)\(_{1}\)-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities.}, language = {en} } @article{BoesSpiegelVoepeletal.2015, author = {Boes, Alexander and Spiegel, Holger and Voepel, Nadja and Edgue, Gueven and Beiss, Veronique and Kapelski, Stephanie and Fendel, Rolf and Scheuermayer, Matthias and Pradel, Gabriele and Bolscher, Judith M. and Behet, Marije C. and Dechering, Koen J. and Hermsen, Cornelus C. and Sauerwein, Robert W. and Schillberg, Stefan and Reimann, Andreas and Fischer, Rainer}, title = {Analysis of a multi-component multi-stage malaria vaccine candidate—tackling the cocktail challenge}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0131456}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173092}, pages = {e0131456}, year = {2015}, abstract = {Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total) from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80\%), blood (up to 90\%) and sexual parasite stages (100\%). Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17-25 μg/ml), the blood stage (40-60 μg/ml) and the sexual stage (1.75 μg/ml). While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy.}, language = {en} } @article{FarmerStrzelczykFinisguerraetal.2021, author = {Farmer, Adam D. and Strzelczyk, Adam and Finisguerra, Alessandra and Gourine, Alexander V. and Gharabaghi, Alireza and Hasan, Alkomiet and Burger, Andreas M. and Jaramillo, Andr{\´e}s M. and Mertens, Ann and Majid, Arshad and Verkuil, Bart and Badran, Bashar W. and Ventura-Bort, Carlos and Gaul, Charly and Beste, Christian and Warren, Christopher M. and Quintana, Daniel S. and H{\"a}mmerer, Dorothea and Freri, Elena and Frangos, Eleni and Tobaldini, Eleonora and Kaniusas, Eugenijus and Rosenow, Felix and Capone, Fioravante and Panetsos, Fivos and Ackland, Gareth L. and Kaithwas, Gaurav and O'Leary, Georgia H. and Genheimer, Hannah and Jacobs, Heidi I. L. and Van Diest, Ilse and Schoenen, Jean and Redgrave, Jessica and Fang, Jiliang and Deuchars, Jim and Sz{\´e}les, Jozsef C. and Thayer, Julian F. and More, Kaushik and Vonck, Kristl and Steenbergen, Laura and Vianna, Lauro C. and McTeague, Lisa M. and Ludwig, Mareike and Veldhuizen, Maria G. and De Couck, Marijke and Casazza, Marina and Keute, Marius and Bikson, Marom and Andreatta, Marta and D'Agostini, Martina and Weymar, Mathias and Betts, Matthew and Prigge, Matthias and Kaess, Michael and Roden, Michael and Thai, Michelle and Schuster, Nathaniel M. and Montano, Nicola and Hansen, Niels and Kroemer, Nils B. and Rong, Peijing and Fischer, Rico and Howland, Robert H. and Sclocco, Roberta and Sellaro, Roberta and Garcia, Ronald G. and Bauer, Sebastian and Gancheva, Sofiya and Stavrakis, Stavros and Kampusch, Stefan and Deuchars, Susan A. and Wehner, Sven and Laborde, Sylvain and Usichenko, Taras and Polak, Thomas and Zaehle, Tino and Borges, Uirassu and Teckentrup, Vanessa and Jandackova, Vera K. and Napadow, Vitaly and Koenig, Julian}, title = {International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.568051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234346}, year = {2021}, abstract = {Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.}, language = {en} }