@article{OthmanNaseemAwadetal.2016, author = {Othman, Eman M. and Naseem, Muhammed and Awad, Eman and Dandekar, Thomas and Stopper, Helga}, title = {The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0168386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147983}, pages = {e0168386}, year = {2016}, abstract = {Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing.}, language = {en} } @article{AwadOthmanStopper2017, author = {Awad, Eman and Othman, Eman M. and Stopper, Helga}, title = {Effects of resveratrol, lovastatin and the mTOR-inhibitor RAD-001 on insulin-induced genomic damage in vitro}, series = {Molecules}, volume = {22}, journal = {Molecules}, number = {12}, doi = {10.3390/molecules22122207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159260}, pages = {2207}, year = {2017}, abstract = {Diabetes mellitus (DM) is one of the major current health problems due to lifestyle changes. Before diagnosis and in the early years of disease, insulin blood levels are elevated. However, insulin generates low levels of reactive oxygen species (ROS) which are integral to the regulation of a variety of intracellular signaling pathways, but excess levels of insulin may also lead to DNA oxidation and DNA damage. Three pharmaceutical compounds, resveratrol, lovastatin and the mTOR-inhibitor RAD-001, were investigated due to their known beneficial effects. They showed protective properties against genotoxic damage and significantly reduced ROS after in vitro treatment of cultured cells with insulin. Therefore, the selected pharmaceuticals may be attractive candidates to be considered for support of DM therapy.}, language = {en} } @phdthesis{Awad2019, author = {Awad, Eman Da'as}, title = {Modulation of insulin-induced genotoxicity in vitro and genomic damage in gestational diabetes}, doi = {10.25972/OPUS-16186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Diabetes mellitus is a global health problem, where the risk of diabetes increases rapidly due to the lifestyle changes. Patients with type II diabetes have many complications with increased risk of morbidity and mortality. High levels of insulin may lead to DNA oxidation and damage. Several studies proposed that hyperinsulinemia may be an important risk factor for various types of cancer. To investigate insulin signaling pathway inducing oxidative stress and genomic damage, pharmaceutical and natural compounds which can interfere with the insulin pathway including PI3K inhibitors, resveratrol, lovastatin, and RAD-001 were selected due to their beneficial effects against metabolic disorder. Thus, the anti-genotoxic potential of these compounds regarding insulin-mediated oxidative stress were investigated in normal rat kidney cells in vitro. Our compounds showed protective effect against genotoxic damage and significantly decreased reactive oxygen specious after treatment of cells with insulin with different mechanisms of protection between the compounds. Thus, these compounds may be attractive candidates for future support of diabetes mellitus therapy. Next, we explored the link between gestational diabetes mellitus and genomic damage in cells derived from human blood. Moreover, we investigated the influence of estradiol, progesterone, adrenaline and triiodothyronine on insulin-induced genomic damage in vitro. First, we studied the effect of these hormones in human promyelocytic leukemia cells and next ex vivo with non-stimulated and stimulated peripheral blood mononuclear cells. In parallel, we also measured the basal genomic damage using three conditions (whole blood, non-stimulated and stimulated peripheral blood mononuclear cells) in a small patient study including non-pregnant controls with/without hormonal contraceptives, with a subgroup of obese women, pregnant women, and gestational diabetes affected women. A second-time point after delivery was also applied for analysis of the blood samples. Our results showed that GDM subjects and obese individuals exhibited higher basal DNA damage compared to lower weight nonpregnant or healthy pregnant women in stimulated peripheral blood mononuclear cells in both comet and micronucleus assays. On the other hand, the DNA damage in GDM women had decreased at two months after birth. Moreover, the applied hormones also showed an influence in vitro in the enhancement of the genomic damage in cells of the control and pregnant groups but this damage did not exceed the damage which existed in obese and gestational diabetes mellitus patients with high level of genomic damage. In conclusion, insulin can induce genomic damage in cultured cells, which can be modulated by pharmaceutical and naturals substances. This may be for future use in the protection of diabetic patients, who suffer from hyperinsulinemia during certain disease stages. A particular form of diabetes, GDM, was shown to lead to elevated DNA damage in affected women, which is reduced again after delivery. Cells of affected women do not show an enhanced, but rather a reduced sensitivity for further DNA damage induction by hormonal treatment in vitro. A potential reason may be an existence of a maximally inducible damage by hormonal influences.}, subject = {Gestationsdiabetes}, language = {en} }