@article{BousquetAntoAkdisetal.2016, author = {Bousquet, J. and Anto, J. M. and Akdis, M. and Auffray, C. and Keil, T. and Momas, I. and Postma, D. S. and Valenta, R. and Wickman, M. and Cambon-Thomsen, A. and Haahtela, T. and Lambrecht, B. N. and Lodrup Carlsen, K. C. and Koppelman, G. H. and Sunyer, J. and Zuberbier, T. and Annesi-Maesano, I. and Arno, A. and Bindslev-Jensen, C. and De Carlo, G. and Forastiere, F. and Heinrich, J. and Kowalski, M. L. and Maier, D. and Melen, E. and Palkonen, S. and Smit, H. A. and Standl, M. and Wright, J. and Asarnoj, A. and Benet, M. and Ballardini, N. and Garcia-Aymerich, J. and Gehring, U. and Guerra, S. and Hohman, C. and Kull, I. and Lupinek, C. and Pinart, M. and Skrindo, I. and Westman, M. and Smagghe, D. and Akdis, C. and Albang, R. and Anastasova, V. and Anderson, N. and Bachert, C. and Ballereau, S. and Ballester, F. and Basagana, X. and Bedbrook, A. and Bergstrom, A. and von Berg, A. and Brunekreef, B. and Burte, E. and Carlsen, K.H. and Chatzi, L. and Coquet, J.M. and Curin, M. and Demoly, P. and Eller, E. and Fantini, M.P. and Gerhard, B. and Hammad, H. and von Hertzen, L. and Hovland, V. and Jacquemin, B. and Just, J. and Keller, T. and Kerkhof, M. and Kiss, R. and Kogevinas, M. and Koletzko, S. and Lau, S. and Lehmann, I. and Lemonnier, N. and McEachan, R. and Makela, M. and Mestres, J. and Minina, E. and Mowinckel, P. and Nadif, R. and Nawijn, M. and Oddie, S. and Pellet, J. and Pin, I. and Porta, D. and Ranci{\`e}re, F. and Rial-Sebbag, A. and Schuijs, M.J. and Siroux, V. and Tischer, C.G. and Torrent, M. and Varraso, R. and De Vocht, J. and Wenger, K. and Wieser, S. and Xu, C.}, title = {Paving the way of systems biology and precision medicine in allergic diseases: the MeDALL success story Mechanisms of the Development of ALLergy; EUFP7-CP-IP; Project No: 261357; 2010-2015}, series = {Allergy}, volume = {71}, journal = {Allergy}, number = {11}, doi = {10.1111/all.12880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186858}, pages = {1513-1525}, year = {2016}, abstract = {MeDALL (Mechanisms of the Development of ALLergy; EU FP7-CP-IP; Project No: 261357; 2010-2015) has proposed an innovative approach to develop early indicators for the prediction, diagnosis, prevention and targets for therapy. MeDALL has linked epidemiological, clinical and basic research using a stepwise, large-scale and integrative approach: MeDALL data of precisely phenotyped children followed in 14 birth cohorts spread across Europe were combined with systems biology (omics, IgE measurement using microarrays) and environmental data. Multimorbidity in the same child is more common than expected by chance alone, suggesting that these diseases share causal mechanisms irrespective of IgE sensitization. IgE sensitization should be considered differently in monosensitized and polysensitized individuals. Allergic multimorbidities and IgE polysensitization are often associated with the persistence or severity of allergic diseases. Environmental exposures are relevant for the development of allergy-related diseases. To complement the population-based studies in children, MeDALL included mechanistic experimental animal studies and in vitro studies in humans. The integration of multimorbidities and polysensitization has resulted in a new classification framework of allergic diseases that could help to improve the understanding of genetic and epigenetic mechanisms of allergy as well as to better manage allergic diseases. Ethics and gender were considered. MeDALL has deployed translational activities within the EU agenda.}, language = {en} } @article{JiangChenBelimovetal.2012, author = {Jiang, Fan and Chen, Lin and Belimov, Andrey A. and Shaposhnikov, Alexander I. and Gong, Fan and Meng, Xu and Hartung, Wolfram and Jeschke, Dieter W. and Davies, William J. and Dodd, Ian C.}, title = {Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum}, series = {Journal of Experimental Botany}, volume = {63}, journal = {Journal of Experimental Botany}, number = {18}, doi = {10.1093/jxb/ers301}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127011}, pages = {6421-6430}, year = {2012}, abstract = {Resolving the physiological mechanisms by which rhizobacteria enhance plant growth is difficult, since many such bacteria contain multiple plant growth-promoting properties. To understand further how the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCd)-containing rhizobacterium Variovorax paradoxus 5C-2 affects plant growth, the flows and partitioning of mineral nutrients and abscisic acid (ABA) and ABA metabolism were studied in pea (Pisum sativum) plants following rhizosphere bacterial inoculation. Although root architecture was not affected, inoculation increased root and shoot biomass, and stomatal conductance, by 20, 15, and 24\%, respectively, and increased N, P, K, Ca, and Mg uptake by 16, 81, 50, 46, and 58\%, respectively. P deposition in inoculated plant roots was 4.9 times higher than that in uninoculated controls. Rhizobacterial inoculation increased root to shoot xylem flows and shoot to root phloem flows of K by 1.8- and 2.1-fold, respectively. In control plants, major sinks for K deposition were the roots and upper shoot (43\% and 49\% of total uptake, respectively), while rhizobacterial inoculation increased K distribution to the lower shoot at the expense of other compartments (xylem, phloem, and upper shoot). Despite being unable to metabolize ABA in vitro, V. paradoxus 5C-2 decreased root ABA concentrations and accumulation by 40-60\%. Although inoculation decreased xylem ABA flows, phloem ABA flows increased. Whether bacterial ACCd attenuates root to shoot ABA signalling requires further investigation, since ABA is critical to maintain growth of droughted plants, and ACCd-containing organisms have been advocated as a means of minimizing growth inhibition of plants in drying soil.}, language = {en} }