@article{SundermeyerRadiusBurschka1992, author = {Sundermeyer, Joerg and Radius, Udo and Burschka, Christian}, title = {Organometall-Imide - h{\"o}hervalente Derivate der d-Metall-S{\"a}uren, 3. Synthese ond Reaktionen von (Pentamethylcyclopentadienyl)(imido)-Komplexen des Molybd{\"a}ns und Wolframs und eine effiziente Strategie zur Synthese der Organometallate NBu\(_4\)[Cp*MO\(_3\)] (M = Mo, W)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31884}, year = {1992}, abstract = {A convenient and new entry into the chemistry of highvalent pentamethylcyclopentadienyl halfsandwich complexes of molybdenum and tungsten is described. The reaction of Mo-(NtBu)\(_2\)Cl\(_2\) or W(NtBu)\(_2\)Cl\(_2\)(py)\(_2\) with Cp*Li (Cp* = \(\eta^5\)-C\(_5\)Me\(_5\)) provides a high-yield route to new complexes Cp*Mo-(NtBu)\(_2\)CI (la) and Cp*W(NtBu)\(_2\)Cl (1 b) which are converted into a variety of diimido, monoimido, and oxo derivatives. Treatment of 1 a, b with MeLi yields the highly volatile methyl derivatives Cp*Mo(NtBu)\(_2\)Me (2a) and Cp*W(NtBu)\(_2\)Me (2b), while protolysis of 1 a, b with an excess of HCI gas leads to selective cleavage of only one imido function with formation of Cp*Mo(NtBu)Cl\(_3\) (3a) and Cp*W(NtBu)Cl\(_3\) (3b). In contrast, protolysis of 1 a, b with aqueous HCI provides a high-yield route to the well-known organometallic oxides [Cp*MoO\(_2\)](μ-0) (4a) and [Cp*WO\(_2\)](\(\mu\)-0) (4b). These two key compounds are easily converted into the organomolybdate and organotungstate salts NBu\(_4\)[Cp*MoO\(_3\)] (5a) and NBu\(_4\)[Cp*WO\(_3\)] (Sb) by cleavage of the M - 0 - M bridge with NBu\(_4\)[OH]. The Xray structure of 3a is reported.}, subject = {Pentamethylcyclopentadienderivate}, language = {de} } @article{RettingerBurschkaScheebenetal.1991, author = {Rettinger, Klaus and Burschka, Christian and Scheeben, Peter and Fuchs, Heike and Mosandl, Armin}, title = {Chiral 2-alkylbranched acids, esters and alcohols. Preparation and stereospecific flavour evaluation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31898}, year = {1991}, abstract = {Racemic 2-alkylbranched acids are transformed to diastereomeric derivatives with (S)-2-hydroxy-3-phenylpropionic acid-N-methylamide or (S)-(-)-l-phenylethylamine and separated by liquid chromatography to pure diastereoisomers, which are subsequently hydrolyzed to yield optically pure acids. Enantiomeric alcohols are generated by LiAlH4-reduction of the corresponding acids, esters are synthesized by different methods. The odour impression of the enantiomeric compounds is investigated.}, subject = {S{\"a}ure}, language = {en} } @article{HeStolteBurschkaetal.2015, author = {He, Tao and Stolte, Matthias and Burschka, Christian and Hansen, Nis Hauke and Musiol, Thomas and K{\"a}lblein, Daniel and Pflaum, Jens and Tao, Xutang and Brill, Jochen and W{\"u}rthner, Frank}, title = {Single-crystal field-effect transistors of new Cl\(_{2}\)-NDI polymorph processed by sublimation in air}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {5954}, doi = {10.1038/ncomms6954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149255}, year = {2015}, abstract = {Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (\(\beta\)-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (\(\alpha\)-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\alpha\)-phase) and up to 3.5 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\beta\)-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on \(\beta\)-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\). The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps.}, language = {en} }