@article{CucherMaricontiManciullietal.2023, author = {Cucher, Marcela A. and Mariconti, Mara and Manciulli, Tommaso and Vola, Ambra and Rosenzvit, Mara C. and Brehm, Klaus and Kamenetzky, Laura and Brunetti, Enrico}, title = {Circulating small RNA profiling of patients with alveolar and cystic echinococcosis}, series = {Biology}, volume = {12}, journal = {Biology}, number = {5}, issn = {2079-7737}, doi = {10.3390/biology12050715}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319270}, year = {2023}, abstract = {Alveolar (AE) and cystic (CE) echinococcosis are two parasitic diseases caused by the tapeworms Echinococcus multilocularis and E. granulosus sensu lato (s. l.), respectively. Currently, AE and CE are mainly diagnosed by means of imaging techniques, serology, and clinical and epidemiological data. However, no viability markers that indicate parasite state during infection are available. Extracellular small RNAs (sRNAs) are short non-coding RNAs that can be secreted by cells through association with extracellular vesicles, proteins, or lipoproteins. Circulating sRNAs can show altered expression in pathological states; hence, they are intensively studied as biomarkers for several diseases. Here, we profiled the sRNA transcriptomes of AE and CE patients to identify novel biomarkers to aid in medical decisions when current diagnostic procedures are inconclusive. For this, endogenous and parasitic sRNAs were analyzed by sRNA sequencing in serum from disease negative, positive, and treated patients and patients harboring a non-parasitic lesion. Consequently, 20 differentially expressed sRNAs associated with AE, CE, and/or non-parasitic lesion were identified. Our results represent an in-depth characterization of the effect E. multilocularis and E. granulosus s. l. exert on the extracellular sRNA landscape in human infections and provide a set of novel candidate biomarkers for both AE and CE detection.}, language = {en} } @article{MacchiaroliPrezaGastonPerezetal.2021, author = {Macchiaroli, Natalia and Preza, Mat{\´i}as and Gast{\´o}n P{\´e}rez, Mat{\´i}as and Kamenetzky, Laura and Cucher, Marcela and Koziol, Uriel and Castillo, Estela and Berriman, Matthew and Brehm, Klaus and Rosenzvit, Mara Cecilia}, title = {Expression profiling of Echinococcus multilocularis miRNAs throughout metacestode development in vitro}, series = {PLOS Neglected Tropical Diseases}, volume = {15}, journal = {PLOS Neglected Tropical Diseases}, doi = {10.1371/journal.pntd.0009297}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-370046}, year = {2021}, abstract = {The neglected zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode stage of the tapeworm parasite Echinococcus multilocularis. MicroRNAs (miRNAs) are small non-coding RNAs with a major role in regulating gene expression in key biological processes. We analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro, determined the spatial expression of miR-71 in metacestodes cultured in vitro and predicted miRNA targets. Small cDNA libraries from different samples of E. multilocularis were sequenced. We confirmed the expression of 37 miRNAs in E. multilocularis being some of them absent in the host, such as miR-71. We found a few miRNAs highly expressed in all life cycle stages and conditions analyzed, whereas most miRNAs showed very low expression. The most expressed miRNAs were miR-71, miR-9, let-7, miR-10, miR-4989 and miR-1. The high expression of these miRNAs was conserved in other tapeworms, suggesting essential roles in development, survival, or host-parasite interaction. We found highly regulated miRNAs during the different transitions or cultured conditions analyzed, which might suggest a role in the regulation of developmental timing, host-parasite interaction, and/or in maintaining the unique developmental features of each developmental stage or condition. We determined that miR-71 is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. MiRNA target prediction of the most highly expressed miRNAs and in silico functional analysis suggested conserved and essential roles for these miRNAs in parasite biology. We found relevant targets potentially involved in development, cell growth and death, lifespan regulation, transcription, signal transduction and cell motility. The evolutionary conservation and expression analyses of E. multilocularis miRNAs throughout metacestode development along with the in silico functional analyses of their predicted targets might help to identify selective therapeutic targets for treatment and control of AE.}, language = {en} }