@article{WagnerDrouetTeschnerWolschkeetal.2021, author = {Wagner-Drouet, Eva and Teschner, Daniel and Wolschke, Christine and Sch{\"a}fer-Eckart, Kerstin and G{\"a}rtner, Johannes and Mielke, Stephan and Schreder, Martin and Kobbe, Guido and Hilgendorf, Inken and Klein, Stefan and Verbeek, Mareike and Ditschkowski, Markus and Koch, Martina and Lindemann, Monika and Schmidt, Traudel and Rascle, Anne and Barabas, Sascha and Deml, Ludwig and Wagner, Ralf and Wolff, Daniel}, title = {Comparison of cytomegalovirus-specific immune cell response to proteins versus peptides using an IFN-γ ELISpot assay after hematopoietic stem cell transplantation}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {2}, issn = {2075-4418}, doi = {10.3390/diagnostics11020312}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228843}, year = {2021}, abstract = {Cytomegalovirus (CMV) infection is a major cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT). Measuring CMV-specific cellular immunity may improve the risk stratification and management of patients. IFN-γ ELISpot assays, based on the stimulation of peripheral blood mononuclear cells with CMV pp65 and IE-1 proteins or peptides, have been validated in clinical settings. However, it remains unclear to which extend the T-cell response to synthetic peptides reflect that mediated by full-length proteins processed by antigen-presenting cells. We compared the stimulating ability of pp65 and IE-1 proteins and corresponding overlapping peptides in 16 HSCT recipients using a standardized IFN-γ ELISpot assay. Paired qualitative test results showed an overall 74.4\% concordance. Discordant results were mainly due to low-response tests, with one exception. One patient with early CMV reactivation and graft-versus-host disease, sustained CMV DNAemia and high CD8\(^+\) counts showed successive negative protein-based ELISpot results but a high and sustained response to IE-1 peptides. Our results suggest that the response to exogenous proteins, which involves their uptake and processing by antigen-presenting cells, more closely reflects the physiological response to CMV infection, while the response to exogenous peptides may lead to artificial in vitro T-cell responses, especially in strongly immunosuppressed patients.}, language = {en} } @article{UeceylerSchaeferMackenrodtetal.2016, author = {{\"U}{\c{c}}eyler, Nurcan and Sch{\"a}fer, Kristina A. and Mackenrodt, Daniel and Sommer, Claudia and M{\"u}llges, Wolfgang}, title = {High-Resolution Ultrasonography of the Superficial Peroneal Motor and Sural Sensory Nerves May Be a Non-invasive Approach to the Diagnosis of Vasculitic Neuropathy}, series = {Frontiers in Neurology}, volume = {7}, journal = {Frontiers in Neurology}, number = {48}, doi = {10.3389/fneur.2016.00048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146671}, year = {2016}, abstract = {High-resolution ultrasonography (HRUS) is an emerging new tool in the investigation of peripheral nerves. We set out to assess the utility of HRUS performed at lower extremity nerves in peripheral neuropathies. Nerves of 26 patients with polyneuropathies of different etiologies and 26 controls were investigated using HRUS. Patients underwent clinical, laboratory, electrophysiological assessment, and a diagnostic sural nerve biopsy as part of the routine work-up. HRUS was performed at the sural, tibial, and the common, superficial, and deep peroneal nerves. The superficial peroneal nerve longitudinal diameter (LD) distinguished best between the groups: patients with immune-mediated neuropathies (n = 13, including six with histology-proven vasculitic neuropathy) had larger LD compared to patients with non-immune-mediated neuropathies (p < 0.05) and to controls (p < 0.001). Among all subgroups, patients with vasculitic neuropathy showed the largest superficial peroneal nerve LD (p < 0.001) and had a larger sural nerve cross-sectional area when compared with disease controls (p < 0.001). Enlargement of the superficial peroneal and sural nerves as detected by HRUS may be a useful additional finding in the differential diagnosis of vasculitic and other immune-mediated neuropathies.}, language = {en} } @phdthesis{Schaefer2009, author = {Sch{\"a}fer, Daniel}, title = {Eine Punktmutation in saeS ist verantwortlich f{\"u}r die ver{\"a}nderte Stressantwort von Staphylococcus aureus Newman gegen{\"u}ber Desinfektionsmitteln}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42875}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Staphylococcus aureus reagiert auf ver{\"a}nderte Umweltbedingungen wie Hitze, pH und Chemikalien mit Hilfe globaler Regulatoren wie dem Sae (S. aureus exoprotein expression) Zweikomponenten-System. Subinhibitorische Konzentrationen einiger Antibiotika k{\"o}nnen die Expression von Virulenzfaktoren erh{\"o}hen. In dieser Arbeit wurde die Stressantwort von S. aureus auf subletale Konzentrationen des gel{\"a}ufigen Desinfektionsmittels Perform® untersucht. Dazu wurden biochemische Methoden wie SDS-PAGE und Massen-Spektrometrie sowie molekularbiologische Methoden wie qRT-PCR und Promotoraktivit{\"a}ts-Assays eingesetzt. Davon abh{\"a}ngige, funktionelle Ver{\"a}nderungen wurden in durchfluss-zytometrischen Invasions-Assays analysiert. Perform wirkt durch die Bildung von reaktiven Sauerstoff-Spezies (ROS). Das Wachstum von S. aureus in Medien mit subletalen Konzentrationen von Perform verringerte in den St{\"a}mmen 6850, COL und ISP479C die Expression mehrerer Proteine, wohingegen im Stamm Newman eine gesteigerte Expression mehrerer Proteine festgestellt werden konnte. In der Literatur werden diese vermehrt exprimierten Proteine als sae-abh{\"a}ngig beschrieben. Der Effekt von Perform konnte durch das im Desinfektionsmittel enthaltene Detergenz SDS nachgeahmt werden, jedoch nicht durch Paraquat oder weitere Detergenzien wie Triton X-100 oder Tween 20. Eine Solubilisierungsreaktion durch die Detergenz-Wirkung konnte ausgeschlossen werden, da der beobachtete Effekt von lebenden Bakterien abh{\"a}ngt. F{\"u}r Eap (extracellular adherence protein) konnte die deutlichste Steigerung der Proteinexpression festgestellt werden und eine Transkriptionsanalyse best{\"a}tigte die gesteigerte Eap-Expression. Die Promotoraktivit{\"a}t des sae Promotors P1 wurde sowohl durch Perform als auch durch SDS verst{\"a}rkt. Die Anwesenheit von Perform und SDS hatte auch funktionelle {\"A}nderungen zur Folge: In durchflusszytometrischen Experimenten erh{\"o}hte sich beispielsweise die Invasivit{\"a}t auf das 2,5- bzw. 3,2-fache und die beobachteten Unterschiede konnten durch Lysostaphin Protektions Versuche best{\"a}tigt werden. Weiterhin konnte gezeigt werden, dass die gesteigerte Invasivit{\"a}t in Stamm Newman von Eap und dem sae-System abh{\"a}ngig war, w{\"a}hrend agr, sarA, sigB und FnBPs keinen entscheidenden Einfluss auf die Invasivit{\"a}t hatten. In dieser Arbeit wurde außerdem aufgedeckt, dass die Besonderheit des Stammes Newman durch eine Mutation in saeS (Sensor-Histidinkinase) bedingt war. Obwohl postuliert wird, dass diese Punktmutation ein konstitutiv aktiviertes sae System zur Folge hat, konnte die hohe sae Aktivit{\"a}t durch Perform und SDS jedoch noch weiter gesteigert werden. Durch den Austausch des gesamten sae-Operons konnte gezeigt werden, dass sich der Stamm Newman saeISP479C wie der Stamm ISP479C, und der Stamm ISP479C saeNewman sich analog zu Stamm Newman verhielt. Zusammenfassend kann aus den vorliegenden Ergebnissen geschlussfolgert werden, dass ein Aminos{\"a}urenaustausch in der Sensor-Histidinkinase SaeS des Stammes Newman verantwortlich f{\"u}r die gesteigerte Expression von Eap und die daraus resultierende gesteigerte Invasivit{\"a}t nach der Inkubation mit subletalen Konzentrationen von Perform und SDS ist. Diese Daten k{\"o}nnen dazu beitragen, die Virulenzmechanismen im Stamm Newman, speziell die Rolle des Sae-Systems, aber auch die der generellen Regulation, besser verstehen zu k{\"o}nnen.}, subject = {Desinfektion}, language = {de} } @article{AntoniouKuchenbaeckerSoucyetal.2012, author = {Antoniou, Antonis C. and Kuchenbaecker, Karoline B. and Soucy, Penny and Beesley, Jonathan and Chen, Xiaoqing and McGuffog, Lesley and Lee, Andrew and Barrowdale, Daniel and Healey, Sue and Sinilnikova, Olga M. and Caligo, Maria A. and Loman, Niklas and Harbst, Katja and Lindblom, Annika and Arver, Brita and Rosenquist, Richard and Karlsson, Per and Nathanson, Kate and Domchek, Susan and Rebbeck, Tim and Jakubowska, Anna and Lubinski, Jan and Jaworska, Katarzyna and Durda, Katarzyna and Zlowowcka-Perłowska, Elżbieta and Osorio, Ana and Dur{\´a}n, Mercedes and Andr{\´e}s, Raquel and Ben{\´i}tez, Javier and Hamann, Ute and Hogervorst, Frans B. and van Os, Theo A. and Verhoef, Senno and Meijers-Heijboer, Hanne E. J. and Wijnen, Juul and Garcia, Encarna B. G{\´o}mez and Ligtenberg, Marjolijn J. and Kriege, Mieke and Coll{\´e}e, Margriet and Ausems, Margreet G. E. M. and Oosterwijk, Jan C. and Peock, Susan and Frost, Debra and Ellis, Steve D. and Platte, Radka and Fineberg, Elena and Evans, D. Gareth and Lalloo, Fiona and Jacobs, Chris and Eeles, Ros and Adlard, Julian and Davidson, Rosemarie and Cole, Trevor and Cook, Jackie and Paterson, Joan and Douglas, Fiona and Brewer, Carole and Hodgson, Shirley and Morrison, Patrick J. and Walker, Lisa and Rogers, Mark T. and Donaldson, Alan and Dorkins, Huw and Godwin, Andrew K. and Bove, Betsy and Stoppa-Lyonnet, Dominique and Houdayer, Claude and Buecher, Bruno and de Pauw, Antoine and Mazoyer, Sylvie and Calender, Alain and L{\´e}on{\´e}, M{\´e}lanie and Bressac-de Paillerets, Brigitte and Caron, Olivier and Sobol, Hagay and Frenay, Marc and Prieur, Fabienne and Ferrer, Sandra Fert and Mortemousque, Isabelle and Buys, Saundra and Daly, Mary and Miron, Alexander and Terry, Mary Beth and Hopper, John L. and John, Esther M. and Southey, Melissa and Goldgar, David and Singer, Christian F. and Fink-Retter, Anneliese and Muy-Kheng, Tea and Geschwantler Kaulich, Daphne and Hansen, Thomas V. O. and Nielsen, Finn C. and Barkardottir, Rosa B. and Gaudet, Mia and Kirchhoff, Tomas and Joseph, Vijai and Dutra-Clarke, Ana and Offit, Kenneth and Piedmonte, Marion and Kirk, Judy and Cohn, David and Hurteau, Jean and Byron, John and Fiorica, James and Toland, Amanda E. and Montagna, Marco and Oliani, Cristina and Imyanitov, Evgeny and Isaacs, Claudine and Tihomirova, Laima and Blanco, Ignacio and Lazaro, Conxi and Teul{\´e}, Alex and Del Valle, J. and Gayther, Simon A. and Odunsi, Kunle and Gross, Jenny and Karlan, Beth Y. and Olah, Edith and Teo, Soo-Hwang and Ganz, Patricia A. and Beattie, Mary S. and Dorfling, Cecelia M. and Jansen van Rensburg, Elizabeth and Diez, Orland and Kwong, Ava and Schmutzler, Rita K. and Wappenschmidt, Barbara and Engel, Christoph and Meindl, Alfons and Ditsch, Nina and Arnold, Norbert and Heidemann, Simone and Niederacher, Dieter and Preisler-Adams, Sabine and Gadzicki, Dorothea and Varon-Mateeva, Raymonda and Deissler, Helmut and Gehrig, Andrea and Sutter, Christian and Kast, Karin and Fiebig, Britta and Sch{\"a}fer, Dieter and Caldes, Trinidad and de la Hoya, Miguel and Nevanlinna, Heli and Muranen, Taru A. and Lesp{\´e}rance, Bernard and Spurdle, Amanda B. and Neuhausen, Susan L. and Ding, Yuan C. and Wang, Xianshu and Fredericksen, Zachary and Pankratz, Vernon S. and Lindor, Noralane M. and Peterlongo, Paulo and Manoukian, Siranoush and Peissel, Bernard and Zaffaroni, Daniela and Bonanni, Bernardo and Bernard, Loris and Dolcetti, Riccardo and Papi, Laura and Ottini, Laura and Radice, Paolo and Greene, Mark H. and Loud, Jennifer T. and Andrulis, Irene L. and Ozcelik, Hilmi and Mulligan, Anna Marie and Glendon, Gord and Thomassen, Mads and Gerdes, Anne-Marie and Jensen, Uffe B. and Skytte, Anne-Bine and Kruse, Torben A. and Chenevix-Trench, Georgia and Couch, Fergus J. and Simard, Jacques and Easton, Douglas F.}, title = {Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers}, series = {Breast Cancer Research}, volume = {14}, journal = {Breast Cancer Research}, number = {R33}, organization = {CIMBA; SWE-BRCA; HEBON; EMBRACE; GEMO Study Collaborators; kConFab Investigators}, doi = {10.1186/bcr3121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130449}, year = {2012}, abstract = {Introduction: Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods: To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results: Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95\% CI: 0.81 to 0.94, P-trend = 3 x 10\(^{-4}\)). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95\% CI: 0.74 to 0.90, P-trend = 3.1 x 10\(^{-5}\), P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df P = 0.007; rs1292011 2df P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95\% CI: 0.74 to 0.90, P-trend = 4 x 10\(^{-5}\)) and there was marginal evidence of association with ER- negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95\% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions: The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers.}, language = {en} } @article{MakgotlhoMarincolaSchaeferetal.2013, author = {Makgotlho, Phuti E. and Marincola, Gabriella and Sch{\"a}fer, Daniel and Liu, Quian and Bae, Taeok and Geiger, Tobias and Wasserman, Elizabeth and Wolz, Christine and Ziebuhr, Wilma and Sinha, Bhanu}, title = {SDS Interferes with SaeS Signaling of Staphylococcus aureus Independently of SaePQ}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {8}, issn = {1932-6203}, doi = {10.1371/journal.pone.0071644}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128469}, pages = {e71644}, year = {2013}, abstract = {The Staphylococcus aureus regulatory saePQRS system controls the expression of numerous virulence factors, including extracellular adherence protein (Eap), which amongst others facilitates invasion of host cells. The saePQRS operon codes for 4 proteins: the histidine kinase SaeS, the response regulator SaeR, the lipoprotein SaeP and the transmembrane protein SaeQ. S. aureus strain Newman has a single amino acid substitution in the transmembrane domain of SaeS (L18P) which results in constitutive kinase activity. SDS was shown to be one of the signals interfering with SaeS activity leading to inhibition of the sae target gene eap in strains with SaeS(L) but causing activation in strains containing SaeS(P). Here, we analyzed the possible involvement of the SaeP protein and saePQ region in SDS-mediated sae/eap expression. We found that SaePQ is not needed for SDS-mediated SaeS signaling. Furthermore, we could show that SaeS activity is closely linked to the expression of Eap and the capacity to invade host cells in a number of clinical isolates. This suggests that SaeS activity might be directly modulated by structurally non-complex environmental signals, as SDS, which possibly altering its kinase/phosphatase activity.}, language = {en} }