@phdthesis{Dorner2008, author = {Dorner, Daniela}, title = {Observations of PG 1553+113 with the MAGIC telescope}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28196}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Blazars are among the most luminous sources in the universe. Their extreme short-time variability indicates emission processes powered by a supermassive black hole. With the current generation of Imaging Air Cherenkov Telescopes, these sources are explored at very high energies. Lowering the threshold below 100 GeV and improving the sensitivity of the telescopes, more and more blazars are discovered in this energy regime. For the MAGIC telescope, a low energy analysis has been developed allowing to reach energies of 50 GeV for the first time. The method is presented in this thesis at the example of PG 1553+113 measuring a spectrum between 50 GeV and 900 GeV. In the energy regime observed by MAGIC, strong attenuation of the gamma-rays is expected from pair production due to interactions of gamma-rays with low-energy photons from the extragalactic background light. For PG 1553+113, this provides the possibility to constrain the redshift of the source, which is still unknown. Well studied from radio to x-ray energies, PG 1553+113 was discovered in 2005 in the very high energy regime. In total, it was observed with the MAGIC telescope for 80~hours between April 2005 and April 2007. From more than three years of data taking, the MAGIC telescope provides huge amounts of data and a large number of files from various sources. To handle this data volume and to provide monitoring of the data quality, an automatic procedure is essential. Therefore, a concept for automatic data processing and management has been developed. Thanks to its flexibility, the concept is easily applicable to future projects. The implementation of an automatic analysis is running stable since three years in the data center in W{\"u}rzburg and provides consistent results of all MAGIC data, i.e. equal processing ensures comparability. In addition, this database controlled system allows for easy tests of new analysis methods and re-processing of all data with a new software version at the push of a button. At any stage, not only the availability of the data and its processing status is known, but also a large set of quality parameters and results can be queried from the database, facilitating quality checks, data selection and continuous monitoring of the telescope performance. By using the automatic analysis, the whole data sample can be analyzed in a reasonable amount of time, and the analyzers can concentrate on interpreting the results instead. For PG 1553+113, the tools and results of the automatic analysis were used. Compared to the previously published results, the software includes improvements as absolute pointing correction, absolute light calibration and improved quality and background-suppression cuts. In addition, newly developed analysis methods taking into account timing information were used. Based on the automatically produced results, the presented analysis was enhanced using a special low energy analysis. Part of the data were affected by absorption due to the Saharan Air Layer, i.e. sanddust in the atmosphere. Therefore, a new method has been developed, correcting for the effect of this meteorological phenomenon. Applying the method, the affected data could be corrected for apparent flux variations and effects of absorption on the spectrum, allowing to use the result for further studies. This is especially interesting, as these data were taken during a multi-wavelength campaign. For the whole data sample of 54 hours after quality checks, a signal from the position of PG 1553+113 was found with a significance of 15 standard deviations. Fitting a power law to the combined spectrum between 75 GeV and 900 GeV, yields a spectral slope of 4.1 +/- 0.2. Due to the low energy analysis, the spectrum could be extended to below 50 GeV. Fitting down to 48 GeV, the flux remains the same, but the slope changes to 3.7 +/- 0.1. The determined daily light curve shows that the integral flux above 150 GeV is consistent with a constant flux. Also for the spectral shape no significant variability was found in three years of observations. In July 2006, a multi-wavelength campaign was performed. Simultaneous data from the x-ray satellite Suzaku, the optical telescope KVA and the two Cherenkov experiments MAGIC and H.E.S.S. are available. Suzaku measured for the first time a spectrum up to 30 keV. The source was found to be at an intermediate flux level compared to previous x-ray measurements, and no short time variability was found in the continuous data sample of 41.1 ksec. Also in the gamma regime, no variability was found during the campaign. Assuming a maximum slope of 1.5 for the intrinsic spectrum, an upper limit of z < 0.74 was determined by deabsorbing the measured spectrum for the attenuation of photons by the extragalactic background light. For further studies, a redshift of z = 0.3 was assumed. Collecting various data from radio, infrared, optical, ultraviolet, x-ray and gama-ray energies, a spectral energy distribution was determined, including the simultaneous data of the multi-wavelength campaign. Fitting the simultaneous data with different synchrotron-self-compton models shows that the observed spectral shape can be explained with synchrotron-self-compton processes. The best result was obtained with a model assuming a log-parabolic electron distribution.}, subject = {Aktiver galaktischer Kern}, language = {en} } @article{RomoliChakrabortyDorneretal.2018, author = {Romoli, Carlo and Chakraborty, Nachiketa and Dorner, Daniela and Taylor, Andrew and Blank, Michael}, title = {Flux Distribution of Gamma-Ray Emission in Blazars: The Example of Mrk 501}, series = {Galaxies}, volume = {6}, journal = {Galaxies}, number = {4}, organization = {FACT and H.E.S.S. Collaborations}, issn = {2075-4434}, doi = {10.3390/galaxies6040135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197580}, year = {2018}, abstract = {Flux distribution is an important tool to understand the variability processes in activegalactic nuclei. We now have available a great deal of observational evidences pointing towards thepresence of log-normal components in the high energy light curves, and different models have beenproposed to explain these data. Here, we collect some of the recent developments on this topic usingthe well-known blazar Mrk 501 as example of complex and interesting aspects coming from its fluxdistribution in different energy ranges and at different timescales. The observational data we refer toare those collected in a complementary manner by Fermi-LAT over multiple years, and by the FirstG-APD Cherenkov Telescope (FACT) telescope and the H.E.S.S. array in correspondence of the brightflare of June 2014}, language = {en} } @article{SchleicherArbetEngelsBaacketal.2019, author = {Schleicher, Bernd and Arbet-Engels, Axel and Baack, Dominik and Balbo, Matteo and Biland, Adrian and Blank, Michael and Bretz, Thomas and Bruegge, Kai and Bulinski, Michael and Buss, Jens and Doerr, Manuel and Dorner, Daniela and Elsaesser, Dominik and Grischagin, Sergej and Hildebrand, Dorothee and Linhoff, Lena and Mannheim, Karl and Mueller, Sebastian Achim and Neise, Dominik and Neronov, Andrii and Noethe, Maximilian and Paravac, Aleksander and Rhode, Wolfgang and Schulz, Florian and Sedlaczek, Kevin and Shukla, Amit and Sliusar, Vitalii and Willert, Elan and Walter, Roland}, title = {Fractional Variability—A Tool to Study Blazar Variability}, series = {Galaxies}, volume = {7}, journal = {Galaxies}, number = {2}, issn = {2075-4434}, doi = {10.3390/galaxies7020062}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197348}, year = {2019}, abstract = {Active Galactic Nuclei emit radiation over the whole electromagnetic spectrum up to TeV energies. Blazars are one subtype with their jets pointing towards the observer. One of their typical features is extreme variability on timescales, from minutes to years. The fractional variability is an often used parameter for investigating the degree of variability of a light curve. Different detection methods and sensitivities of the instruments result in differently binned data and light curves with gaps. As they can influence the physics interpretation of the broadband variability, the effects of these differences on the fractional variability need to be studied. In this paper, we study the systematic effects of completeness in time coverage and the sampling rate. Using public data from instruments monitoring blazars in various energy ranges, we study the variability of the bright TeV blazars Mrk 421 and Mrk 501 over the electromagnetic spectrum, taking into account the systematic effects, and compare our findings with previous results. Especially in the TeV range, the fractional variability is higher than in previous studies, which can be explained by the much longer (seven years compared to few weeks) and more complete data sample.}, language = {en} } @article{TemmeAdamAhnenetal.2017, author = {Temme, Fabian and Adam, Jan and Ahnen, Max L. and Baack, Dominik and Balbo, Matteo and Bergmann, Matthias and Biland, Adrian and Blank, Michael and Bretz, Thomas and Br{\"u}gge, Kai A. and Buss, Jens and Dmytriiev, Anton and Dorner, Daniela and Einecke, Sabrina and Hempfling, Christina and Hildebrand, Dorothee and Hughes, Gareth and Linhoff, Lena and Mannheim, Karl and M{\"u}ller, Sebastian and Neise, Dominik and Neronov, Andrii and N{\"o}the, Max and Paravac, Aleksander and Pauss, Felicitas and Rhode, Wolfgang and Shukla, Amit and Thaele, Julia and Walter, Roland}, title = {Long-Term monitoring of bright blazars in the multi-GeV to TeV range with FACT}, series = {Galaxies}, volume = {5}, journal = {Galaxies}, number = {1}, publisher = {MDPI}, issn = {2075-4434}, doi = {10.3390/galaxies5010018}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198088}, pages = {18}, year = {2017}, abstract = {Blazars like Markarian 421 or Markarian 501 are active galactic nuclei (AGN), with their jets orientated towards the observer. They are among the brightest objects in the very high energy (VHE) gamma ray regime (>100 GeV). Their emitted gamma-ray fluxes are extremely variable, with changing activity levels on timescales between minutes, months, and even years. Several questions are part of the current research, such as the question of the emission regions or the engine of the AGN and the particle acceleration. A dedicated longterm monitoring program is necessary to investigate the properties of blazars in detail. A densely sampled and unbiased light curve allows for observation of both high and low states of the sources, and the combination with multi-wavelength observation could contribute to the answer of several questions mentioned above. FACT (First G-APD Cherenkov Telescope) is the first operational telescope using silicon photomultiplier (SiPM, also known as Geigermode—Avalanche Photo Diode, G-APD) as photon detectors. SiPM have a very homogenous and stable longterm performance, and allow operation even during full moon without any filter, leading to a maximal duty cycle for an Imaging Air Cherenkov Telescope (IACT). Hence, FACT is an ideal device for such a longterm monitoring of bright blazars. A small set of sources (e.g., Markarian 421, Markarian 501, 1ES 1959+650, and 1ES 2344+51.4) is currently being monitored. In this contribution, the FACT telescope and the concept of longterm monitoring of bright blazars will be introduced. The results of the monitoring program will be shown, and the advantages of densely sampled and unbiased light curves will be discussed.}, language = {en} } @article{GonzalezDornerBretzetal.2019, author = {Gonz{\´a}lez, Mar{\´i}a Magdalena and Dorner, Daniela and Bretz, Thomas and Garc{\´i}a-Gonz{\´a}lez, Jos{\´e} Andr{\´e}s}, title = {Unbiased long-term monitoring at TeV energies}, series = {Galaxies}, volume = {7}, journal = {Galaxies}, number = {2}, issn = {2075-4434}, doi = {10.3390/galaxies7020051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197389}, year = {2019}, abstract = {For the understanding of the variable, transient and non-thermal universe, unbiased long-term monitoring is crucial. To constrain the emission mechanisms at the highest energies, it is important to characterize the very high energy emission and its correlation with observations at other wavelengths. At very high energies, only a limited number of instruments is available. This article reviews the current status of monitoring of the extra-galactic sky at TeV energies.}, language = {en} } @article{DornerMostafaSatalecka2021, author = {Dorner, Daniela and Mostaf{\´a}, Miguel and Satalecka, Konstancja}, title = {High-energy alerts in the multi-messenger era}, series = {Universe}, volume = {7}, journal = {Universe}, number = {11}, issn = {2218-1997}, doi = {10.3390/universe7110393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248496}, year = {2021}, abstract = {The observation of electromagnetic counterparts to both high energy neutrinos and gravitational waves marked the beginning of a new era in astrophysics. The multi-messenger approach allows us to gain new insights into the most energetic events in the Universe such as gamma-ray bursts, supernovas, and black hole mergers. Real-time multi-messenger alerts are the key component of the observational strategies to unravel the transient signals expected from astrophysical sources. Focusing on the high-energy regime, we present a historical perspective of multi-messenger observations, the detectors and observational techniques used to study them, the status of the multi-messenger alerts and the most significant results, together with an overview of the future prospects in the field.}, language = {en} }