@article{SolDehmHechtetal.2018, author = {Sol, Jeroen A. H. P. and Dehm, Volker and Hecht, Reinhard and W{\"u}rthner, Frank and Schenning, Albertus P. H. J. and Debije, Michael G.}, title = {Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix}, series = {Angewandte Chemie International Edition}, volume = {57}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.201710487}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238778}, pages = {1030-1033}, year = {2018}, abstract = {Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the F{\"o}rster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy.}, language = {en} }