@article{DietrichMeisterDietrichetal.2019, author = {Dietrich, Laura and Meister, Julia and Dietrich, Oliver and Notroff, Jens and Kiep, Janika and Heeb, Julia and Beuger, Andr{\´e} and Sch{\"u}tt, Brigitta}, title = {Cereal processing at Early Neolithic G{\"o}bekli Tepe, southeastern Turkey}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0215214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201504}, pages = {e0215214}, year = {2019}, abstract = {We analyze the processing of cereals and its role at Early Neolithic G{\"o}bekli Tepe, southeastern Anatolia (10th / 9th millennium BC), a site that has aroused much debate in archaeological discourse. To date, only zooarchaeological evidence has been discussed in regard to the subsistence of its builders. G{\"o}bekli Tepe consists of monumental round to oval buildings, erected in an earlier phase, and smaller rectangular buildings, built around them in a partially contemporaneous and later phase. The monumental buildings are best known as they were in the focus of research. They are around 20 m in diameter and have stone pillars that are up to 5.5 m high and often richly decorated. The rectangular buildings are smaller and-in some cases-have up to 2 m high, mostly undecorated, pillars. Especially striking is the number of tools related to food processing, including grinding slabs/bowls, handstones, pestles, and mortars, which have not been studied before. We analyzed more than 7000 artifacts for the present contribution. The high frequency of artifacts is unusual for contemporary sites in the region. Using an integrated approach of formal, experimental, and macro- / microscopical use-wear analyses we show that Neolithic people at G{\"o}bekli Tepe have produced standardized and efficient grinding tools, most of which have been used for the processing of cereals. Additional phytolith analysis confirms the massive presence of cereals at the site, filling the gap left by the weakly preserved charred macro-rests. The organization of work and food supply has always been a central question of research into G{\"o}bekli Tepe, as the construction and maintenance of the monumental architecture would have necessitated a considerable work force. Contextual analyses of the distribution of the elements of the grinding kit on site highlight a clear link between plant food preparation and the rectangular buildings and indicate clear delimitations of working areas for food production on the terraces the structures lie on, surrounding the circular buildings. There is evidence for extensive plant food processing and archaeozoological data hint at large-scale hunting of gazelle between midsummer and autumn. As no large storage facilities have been identified, we argue for a production of food for immediate use and interpret these seasonal peaks in activity at the site as evidence for the organization of large work feasts.}, language = {en} } @article{LundtKlembtCherotchenkoetal.2016, author = {Lundt, Nils and Klembt, Sebastian and Cherotchenko, Evgeniia and Betzold, Simon and Iff, Oliver and Nalitov, Anton V. and Klaas, Martin and Dietrich, Christof P. and Kavokin, Alexey V. and H{\"o}fling, Sven and Schneider, Christian}, title = {Room-temperature Tamm-plasmon exciton-polaritons with a WSe\(_{2}\) monolayer}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13328}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169470}, year = {2016}, abstract = {Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe\(_{2}\), hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy-momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons.}, language = {en} } @article{RoedelBredeHirschfeldetal.2013, author = {R{\"o}del, Mark-Oliver and Brede, Christian and Hirschfeld, Mareike and Schmitt, Thomas and Favreau, Philippe and St{\"o}cklin, Reto and Wunder, Cora and Mebs, Dietrich}, title = {Chemical Camouflage - A Frog's Strategy to Co-Exist with Aggressive Ants}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0081950}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128181}, pages = {e81950}, year = {2013}, abstract = {Whereas interspecific associations receive considerable attention in evolutionary, behavioural and ecological literature, the proximate bases for these associations are usually unknown. This in particular applies to associations between vertebrates with invertebrates. The West-African savanna frog Phrynomantis microps lives in the underground nest of ponerine ants (Paltothyreus tarsatus). The ants usually react highly aggressively when disturbed by fiercely stinging, but the frog is not attacked and lives unharmed among the ants. Herein we examined the proximate mechanisms for this unusual association. Experiments with termites and mealworms covered with the skin secretion of the frog revealed that specific chemical compounds seem to prevent the ants from stinging. By HPLC-fractionation of an aqueous solution of the frogs' skin secretion, two peptides of 1,029 and 1,143 Da were isolated and found to inhibit the aggressive behaviour of the ants. By de novo sequencing using tandem mass spectrometry, the amino acid sequence of both peptides consisting of a chain of 9 and 11 residues, respectively, was elucidated. Both peptides were synthesized and tested, and exhibited the same inhibitory properties as the original frog secretions. These novel peptides most likely act as an appeasement allomone and may serve as models for taming insect aggression.}, language = {en} } @article{DaeullaryImdahlDietrichetal.2023, author = {D{\"a}ullary, Thomas and Imdahl, Fabian and Dietrich, Oliver and Hepp, Laura and Krammer, Tobias and Fey, Christina and Neuhaus, Winfried and Metzger, Marco and Vogel, J{\"o}rg and Westermann, Alexander J. and Saliba, Antoine-Emmanuel and Zdzieblo, Daniela}, title = {A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection}, series = {Gut Microbes}, volume = {15}, journal = {Gut Microbes}, number = {1}, doi = {10.1080/19490976.2023.2186109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350451}, year = {2023}, abstract = {Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay.}, language = {en} } @article{DietrichGoetzeGeier2016, author = {Dietrich, Christoph G. and G{\"o}tze, Oliver and Geier, Andreas}, title = {Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance}, series = {World Journal of Gastroenterology}, volume = {22}, journal = {World Journal of Gastroenterology}, number = {1}, doi = {10.3748/wjg.v22.i1.72}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191136}, pages = {72-88}, year = {2016}, abstract = {Liver cirrhosis is the common endpoint of many hepatic diseases and represents a relevant risk for liver failure and hepatocellular carcinoma. The progress of liver fibrosis and cirrhosis is accompanied by deteriorating liver function. This review summarizes the regulatory and functional changes in phase I and phase II metabolic enzymes as well as transport proteins and provides an overview regarding lipid and glucose metabolism in cirrhotic patients. Interestingly, phase I enzymes are generally downregulated transcriptionally, while phase II enzymes are mostly preserved transcriptionally but are reduced in their function. Transport proteins are regulated in a specific way that resembles the molecular changes observed in obstructive cholestasis. Lipid and glucose metabolism are characterized by insulin resistance and catabolism, leading to the disturbance of energy expenditure and wasting. Possible non-invasive tests, especially breath tests, for components of liver metabolism are discussed. The heterogeneity and complexity of changes in hepatic metabolism complicate the assessment of liver function in individual patients. Additionally, studies in humans are rare, and species differences preclude the transferability of data from rodents to humans. In clinical practice, some established global scores or criteria form the basis for the functional evaluation of patients with liver cirrhosis, but difficult treatment decisions such as selection for transplantation or resection require further research regarding the application of existing non-invasive tests and the development of more specific tests.}, language = {en} } @phdthesis{Dietrich2024, author = {Dietrich, Oliver}, title = {Integrating single-cell multi-omics to decipher host-pathogen interactions}, doi = {10.25972/OPUS-36013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360138}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Interactions between host and pathogen determine the development, progression and outcomes of disease. Medicine benefits from better descriptions of these interactions through increased precision of prevention, diagnosis and treatment of diseases. Single-cell genomics is a disruptive technology revolutionizing science by increasing the resolution with which we study diseases. Cell type specific changes in abundance or gene expression are now routinely investigated in diseases. Meanwhile, detecting cellular phenotypes across diseases can connect scientific fields and fuel discovery. Insights acquired through systematic analysis of high resolution data will soon be translated into clinical practice and improve decision making. Therefore, the continued use of single-cell technologies and their application towards clinical samples will improve molecular interpretation, patient stratification, and the prediction of outcomes. In the past years, I was fortunate to participate in interdisciplinary research groups bridging biology, clinical research and data science. I was able to contribute to diverse projects through computational analysis and biological interpretation of sequencing data. Together, we were able to discover cellular phenotypes that influence disease progression and outcomes as well as the response to treatment. Here, I will present four studies that I have conducted in my PhD. First, we performed a case study of relapse from cell-based immunotherapy in Multiple Myeloma. We identified genomic deletion of the epitope as mechanism of immune escape and implicate heterozygosity or monosomy of the genomic locus at baseline as a potential risk factor. Second, we investigated the pathomechanisms of severe COVID-19 at the earliest stage of the COVID- 19 pandemic in Germany in March 2020. We discovered that profibrotic macrophages and lung fibrosis can be caused by SARS-CoV-2 infection. Third, we used a mouse model of chronic infection with Staphylococcus aureus that causes Osteomyelitis similar to the human disease. We were able to identify dysregulated immunometabolism associated with the generation of myeloid-derived suppressor cells (MDSC). Fourth, we investigated Salmonella infection of the human small intestine in an in vitro model and describe features of pathogen invasion and host response. Overall, I have been able to successfully employ single-cell sequencing to discover important aspects of diseases ranging from development to treatment and outcome. I analyzed samples from the clinics, human donors, mouse models and organoid models to investigate different aspects of diseases and managed to integrate data across sample types, technologies and diseases. Based on successful studies, we increased our efforts to combine data from multiple sources to build comprehensive references for the integration of large collections of clinical samples. Our findings exemplify how single-cell sequencing can improve clinical research and highlights the potential of mechanistic discoveries to drive precision medicine.}, subject = {Einzelzellanalyse}, language = {en} } @article{AlZabenMedyukhinaDietrichetal.2019, author = {Al-Zaben, Naim and Medyukhina, Anna and Dietrich, Stefanie and Marolda, Alessandra and H{\"u}nniger, Kerstin and Kurzai, Oliver and Figge, Marc Thilo}, title = {Automated tracking of label-free cells with enhanced recognition of whole tracks}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-39725-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221093}, year = {2019}, abstract = {Migration and interactions of immune cells are routinely studied by time-lapse microscopy of in vitro migration and confrontation assays. To objectively quantify the dynamic behavior of cells, software tools for automated cell tracking can be applied. However, many existing tracking algorithms recognize only rather short fragments of a whole cell track and rely on cell staining to enhance cell segmentation. While our previously developed segmentation approach enables tracking of label-free cells, it still suffers from frequently recognizing only short track fragments. In this study, we identify sources of track fragmentation and provide solutions to obtain longer cell tracks. This is achieved by improving the detection of low-contrast cells and by optimizing the value of the gap size parameter, which defines the number of missing cell positions between track fragments that is accepted for still connecting them into one track. We find that the enhanced track recognition increases the average length of cell tracks up to 2.2-fold. Recognizing cell tracks as a whole will enable studying and quantifying more complex patterns of cell behavior, e.g. switches in migration mode or dependence of the phagocytosis efficiency on the number and type of preceding interactions. Such quantitative analyses will improve our understanding of how immune cells interact and function in health and disease.}, language = {en} }