@article{BleilevensSoppertHoffmannetal.2021, author = {Bleilevens, Christian and Soppert, Josefin and Hoffmann, Adrian and Breuer, Thomas and Bernhagen, J{\"u}rgen and Martin, Lukas and Stiehler, Lara and Marx, Gernot and Dreher, Michael and Stoppe, Christian and Simon, Tim-Philipp}, title = {Macrophage migration inhibitory factor (MIF) plasma concentration in critically ill COVID-19 patients: a prospective observational study}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {2}, issn = {2075-4418}, doi = {10.3390/diagnostics11020332}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228967}, year = {2021}, abstract = {Mortality in critically ill coronavirus disease 2019 (COVID-19) patients is high and pharmacological treatment strategies remain limited. Early-stage predictive biomarkers are needed to identify patients with a high risk of severe clinical courses and to stratify treatment strategies. Macrophage migration inhibitory factor (MIF) was previously described as a potential predictor for the outcome of critically ill patients and for acute respiratory distress syndrome (ARDS), a hallmark of severe COVID-19 disease. This prospective observational study evaluates the predictive potential of MIF for the clinical outcome after severe COVID-19 infection. Plasma MIF concentrations were measured in 36 mechanically ventilated COVID-19 patients over three days after intensive care unit (ICU) admission. Increased compared to decreased MIF was significantly associated with aggravated organ function and a significantly lower 28-day survival (sequential organ failure assessment (SOFA) score; 8.2 ± 4.5 to 14.3 ± 3, p = 0.009 vs. 8.9 ± 1.9 to 12 ± 2, p = 0.296; survival: 56\% vs. 93\%; p = 0.003). Arterial hypertension was the predominant comorbidity in 85\% of patients with increasing MIF concentrations (vs. decreasing MIF: 39\%; p = 0.015). Without reaching significance, more patients with decreasing MIF were able to improve their ARDS status (p = 0.142). The identified association between an early MIF response, aggravation of organ function and 28-day survival may open future perspectives for biomarker-based diagnostic approaches for ICU management of COVID-19 patients.}, language = {en} } @article{BrixnerPawłowskaGoetzetal.2014, author = {Brixner, Tobias and Pawłowska, Monika and Goetz, Sebastian and Dreher, Christian and Wurdack, Matthias and Krauss, Enno and Razinskas, Gary and Geisler, Peter and Hecht, Bert}, title = {Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective}, doi = {10.1364/OE.22.031496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111120}, year = {2014}, abstract = {We describe a setup consisting of a 4 f pulse shaper and a microscope with a high-NA objective lens and discuss the spects most relevant for an undistorted spatiotemporal profile of the focused beam. We demonstrate shaper-assisted pulse compression in focus to a sub-10-fs duration using phase-resolved interferometric spectral modulation (PRISM). We introduce a nanostructure-based method for sub-diffraction spatiotemporal characterization of strongly focused pulses. The distortions caused by optical aberrations and space-time coupling from the shaper can be reduced by careful setup design and alignment to about 10 nm in space and 1 fs in time.}, language = {en} }