@phdthesis{Seres2005, author = {Seres, Enik{\~o}}, title = {Ultraschnelle zeitaufgel{\"o}ste Absorptionsspektroskopie im weichen R{\"o}ntgenbereich}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16417}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Bis in die 50er Jahren wurden ausschließliche R{\"o}ntgenr{\"o}hren in der R{\"o}ntgenspektroskopie benutzt. (Parratt, 1938). In den 50er Jahren wurden die ersten Synchrotrons gebaut und f{\"u}r die Spektroskopie im R{\"o}ntgenbereich angewendet. (Blocker et al., 1950). Die auch noch heute verwendeten Techniken wurden zum ersten Mal 1948 (Elder et al. 1948) in der Literatur beschrieben. Doch es dauerte Jahrzehnte, bis mit den neu zur Verf{\"u}gung stehenden Synchrotrons die statische R{\"o}ngendiffraktometrie zur r{\"o}ntgenspektroskopischen Strukturaufkl{\"a}rung routinem{\"a}ßig benutzt werden konnte. Diese Entwicklungen werden bis heute fortgef{\"u}hrt und ebneten den Weg f{\"u}r viele Anwendungen. W{\"a}hrend dieser Zeit ist auch ein anderer Wissenschaftszweig entstanden, die Lasertechnik. Diese ist seit dieser Zeit auch enorm gewachsen, und jetzt fordert sie auch die Synchrotrons bei der zeitaufgel{\"o}sten R{\"o}ntgenspektroskopie heraus. Die Laserstrahlung war am Anfang kontinuierlich. Erst durch die sp{\"a}teren Entwicklungen konnte ein gepulster Betrieb realisiert werden. Mit der Zeit wurden die Laserpulse immer k{\"u}rzer und die Pulsenergie ist immer mehr gewachsen. Die kurze Pulsdauer der Laser wird in so genannten Pump-Probe Messungen verwendet: damit k{\"o}nnen schnelle {\"A}nderungen, die von einem Pumppuls ausgel{\"o}st werden mit einem Probepuls verfolgt werden. Die Aufl{\"o}sung der Messung ist durch die Pulsdauer gegeben. Die Pulsdauer wurde in den letzten Jahrzehnten vom Nanosekunden- bis in den Femtosekundenbereich reduziert. Hier ergibt sich aber nicht etwa eine technologische Grenze sondern eine fundamentale. Die zurzeit k{\"u}rzesten Laserpulse haben eine Dauer von einigen wenigen Femtosekunden und sind damit schon sehr nahe der Periodendauer einer optischen Schwingung, die ebenfalls 1 bis 2fs betr{\"a}gt. Allerdings zeigt sich auch, dass mit den zur Verf{\"u}gung stehenden Laserpulsen die Zeitaufl{\"o}sung ausreicht um fast alle Vorg{\"a}ngen zu beobachten. Nur ist die Interpretation manchmal sehr schwierig, wenn es gilt das gemessene Signal einer atomaren Bewegung zuzuordnen. Abhilfe schafft hier die Verwendung von R{\"o}ntgenstrahlung, die hervorragend geeignet ist Strukturinformation direkt zu erhalten. Wenn die Strahlung gepulst ist kann damit auch die Dynamik der Struktur erfasst werden. Ein Erfolg versprechender Ansatz zur Erzeugung von R{\"o}ntgenpulsen mit einer Dauer von einigen Femtosekunden ist die Konversion von ultrakurzen Laserpulsen in den R{\"o}ntgenbereich. Heute dazu erfolgreich demonstrierte Techniken sind die Laser-Plasmaquellen oder die hoher Harmonische Erzeugung (HHG). Die Plasmaquellen erzeugen im keV Energiebereich R{\"o}ntgenphotonen - aber nur mit einer Pulsdauer von einigen 100fs. HHG ist hingegen eine interessante Alternative, die Pulse mit einer Dauer im Attosekundenbereich erzeugen kann. Allerdings war der Spektralbereich bis vor kurzem auf einige 100eV beschr{\"a}nkt. Eine Ausweitung des Spektrums von HHG Strahlung in den keV Bereich macht die Quelle aber erst wirklich einsetzbar f{\"u}r Messungen an technisch und wissenschaftlich interessanten Systemen. Im Energiebereich des Wasserfensters (ca 300 bis 600eV) k{\"o}nnen biologische Prozesse mit einer Zeitaufl{\"o}sung im ps-fs Bereich verfolgt werden. Im h{\"o}heren Energiebereich von ca. 700eV kann man die magnetischen Eigenschaften von Selten-Erdmetallen beobachten. Diese Arbeit ist der Entwicklung einer laserbasierten HH-Quelle und deren Anwendung in der zeitaufgel{\"o}sten Spektroskopie gewidmet. Es sollte herausgefunden werden, welche Anforderungen werden an das Lasersystem in Bezug auf Pulsparameter gestellt, um damit Spektroskopie in einem Bereich bis zu 1keV zu machen. Auch sollte gekl{\"a}rt werden, welche spektroskopischen Methoden sind m{\"o}glich und wo liegen ihre Grenzen. In dieser Arbeit wurde sehr viel Neuland betreten, sowohl auf dem Gebiet der Lasertechnik als auch auf der Entwicklung der HH Quelle. Dar{\"u}ber hinaus ist diese Arbeit die erste Arbeit die sich mit Anwendung von HH-Strahlung f{\"u}r zeitaufgel{\"o}ste R{\"o}ntgenabsorptionsspektroskopie befasst. Das zweite Kapitel befasst sich mit den Grundlagen der R{\"o}ntgenspektroskopie. Bei der Wechselwirkung von R{\"o}ntgenstrahlung mit Materie wird die elektronische Struktur, die Elektronenverteilungen der Atome oder Molek{\"u}le ver{\"a}ndert: Man kann die Elektronen in das Valenzband oder in das Kontinuum anregen. Die in das Kontinuum anregten Elektronen k{\"o}nnen gleichzeitig mit den Nachbaratomen wechselwirken, und von diesen r{\"u}ckstreuen. Diese Wechselwirkung wird durch elektronische Struktur, die elektronische Verteilung der Atome und Molek{\"u}le beeinflusst. Diese Vorg{\"a}nge ver{\"a}ndern die R{\"o}ntgenabsorption des Materials. Durch die Messung der Ver{\"a}nderung der R{\"o}ntgenabsorption kann man auf die atomare Struktur, die atomare Abst{\"a}nde folgern. Diese Messungen wurden bisher mit Synchrotronstrahlung durchgef{\"u}hrt, deren Pulsdauer bisher nicht k{\"u}rzer als einige ps war, und damit nicht den schnellsten {\"A}nderungen folgen konnte. Ein Lasersystem mit h{\"o}herer Energie und k{\"u}rzerer Pulsdauern ist der Schl{\"u}ssel zu hochzeitaufgel{\"o}sten Experimenten. Die Entwicklung eines solchen Lasersystems ist im dritten Kapitel beschrieben. Erster Teil des Kapitels erkl{\"a}rt die Probleme, die durch den Verst{\"a}rkungsprozess auftreten. Die spektrale Einengung und der Energieverlust sind immer die am schwierigsten zu l{\"o}senden Probleme in einem Verst{\"a}rkersystem. Wegen der n{\"o}tigen zeitliche Pulsdehnung und der folgenden Pulskompression erleidet der Puls einen Energieverlust. Die nichtlinearen Effekte verursachen spektrale Einengung im Verst{\"a}rkerkristall. Um diese Nachteile zu vermeiden dienen die unterschiedlichen Techniken, wie die Verwendung einer gasgef{\"u}llten Hohlfaser zur nichtlinearen spektralen Verbreiterung und unterschiedlicher Pulsformungstechniken (akustooptische Modulator, LCD,…). Der verbleibende Teil des Kapitels stellt diese Methoden, ihre Vorteilen und Nachteile dar. Abschließend sind die Erfolge bei der Entwicklung des Lasersystems vorgestellt: Nach allen Optimierungen wurden Pulse mit einer Energie von 3mJ und einer Dauer von 12fs realisiert. Die erste Verwendung des neuen Systems war die Erzeugung hoher Harmonischer mit konventioneller Technik. Diese Technik basiert auf einem Aufbau mit einem Gastarget in das die Laserpulse fokussiert werden. Das vierte Kapitel beschreibt die Theorie und Schwierigkeiten des Erzeugungsprozesses durch die Erkl{\"a}rung der grundlegenden mikroskopischen (Erzeugung) und die makroskopischen Effekte (Ausbreitungseffekte) im Gastarget. Das Problem der niederen Konversionseffizienz im hochenergetischen Bereich kann gel{\"o}st werden, wenn die neu entwickelte Technik, die als nichtadiabatische Phasenanpassung schon in der Literatur existiert hat, angewendet wird. Sie beruht auf einer starken Fokussierung von extrem kurzen Pulsen und erm{\"o}glicht Erzeugung von R{\"o}ntgenphotonen mit Energien bis zu 3,5keV. Mit diesen sch{\"o}nen Erfolgen wurden die ersten statischen spektroskopischen Experimente durchgef{\"u}hrt. Die aufgenommenen Spektren zeigen sch{\"o}ne Absorptionskanten bei Titan, Kupfer, und Neon, Platin. Die Auswertungen dieser Spektren zeigen, dass es gen{\"u}gend Photonen bis 1keV gibt und erm{\"o}glichen so die Anwendung der so genannten EXAFS Technik. Im f{\"u}nften Kapitel werden die gemessene R{\"o}ntgenspektren und die mit der EXAFS Methode ermittelten atomaren Abst{\"a}nden von Silizium, Titan und Kupfer, dargestellt. Dieses Kapitel beschreibt ferner unsere ersten erfolgreichen Experimenten zur zeitaufgel{\"o}ste R{\"o}ntgenabsorptionsspektroskopie in der N{\"a}he der Silizium L-Kante bei 100eV. Die Zeitaufl{\"o}sung, die mit Hilfe der Pump-Probe Technik erzielt werden konnte war besser als 20fs. Die Messungen wurden in einem weiten Energie - und Zeitbereichen durchgef{\"u}hrt: im Bereich von 0-100ps und 0-1ps, sowie von ca. 70eV bis 500eV. Die bestimmten Zeitkonstanten, stimmen mit in der Literatur angegebenen Werten f{\"u}r die unterschiedlichen Relaxationsprozessen sehr gut {\"u}berein.}, subject = {R{\"o}ntgenabsorptionsspektroskopie}, language = {de} }