@article{GrabenhenrichReichFischeretal.2014, author = {Grabenhenrich, Linus B. and Reich, Andreas and Fischer, Felix and Zepp, Fred and Forster, Johannes and Schuster, Antje and Bauer, Carl-Peter and Bergmann, Renate L. and Bergmann, Karl E. and Wahn, Ulrich and Keil, Thomas and Lau, Susanne}, title = {The Novel 10-Item Asthma Prediction Tool: External Validation in the German MAS Birth Cohort}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0115852}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114202}, pages = {e115852}, year = {2014}, abstract = {Background: A novel non-invasive asthma prediction tool from the Leicester Cohort, UK, forecasts asthma at age 8 years based on 10 predictors assessed in early childhood, including current respiratory symptoms, eczema, and parental history of asthma. Objective: We aimed to externally validate the proposed asthma prediction method in a German birth cohort. Methods: The MAS-90 study (Multicentre Allergy Study) recorded details on allergic diseases prospectively in about yearly follow-up assessments up to age 20 years in a cohort of 1,314 children born 1990. We replicated the scoring method from the Leicester cohort and assessed prediction, performance and discrimination. The primary outcome was defined as the combination of parent-reported wheeze and asthma drugs (both in last 12 months) at age 8. Sensitivity analyses assessed model performance for outcomes related to asthma up to age 20 years. Results: For 140 children parents reported current wheeze or cough at age 3 years. Score distribution and frequencies of later asthma resembled the Leicester cohort: 9\% vs. 16\% (MAS-90 vs. Leicester) of children at low risk at 3 years had asthma at 8 years, at medium risk 45\% vs. 48\%. Performance of the asthma prediction tool in the MAS-90 cohort was similar (Brier score 0.22 vs. 0.23) and discrimination slightly better than in the original cohort (area under the curve, AUC 0.83 vs. 0.78). Prediction and discrimination were robust against changes of inclusion criteria, scoring and outcome definitions. The secondary outcome 'physicians' diagnosed asthma at 20 years' showed the highest discrimination (AUC 0.89). Conclusion: The novel asthma prediction tool from the Leicester cohort, UK, performed well in another population, a German birth cohort, supporting its use and further development as a simple aid to predict asthma risk in clinical settings.}, language = {en} } @article{JiBaderRamanathanetal.2021, author = {Ji, Changhe and Bader, Jakob and Ramanathan, Pradhipa and Hennlein, Luisa and Meissner, Felix and Jablonka, Sibylle and Mann, Matthias and Fischer, Utz and Sendtner, Michael and Briese, Michael}, title = {Interaction of 7SK with the Smn complex modulates snRNP production}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-21529-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259125}, pages = {1278}, year = {2021}, abstract = {Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand.}, language = {en} } @article{WohlfarthSchmitteckertHaertleetal.2017, author = {Wohlfarth, Carolin and Schmitteckert, Stefanie and H{\"a}rtle, Janina D. and Houghton, Lesley A. and Dweep, Harsh and Fortea, Marina and Assadi, Ghazaleh and Braun, Alexander and Mederer, Tanja and P{\"o}hner, Sarina and Becker, Philip P. and Fischer, Christine and Granzow, Martin and M{\"o}nnikes, Hubert and Mayer, Emeran A. and Sayuk, Gregory and Boeckxstaens, Guy and Wouters, Mira M. and Simr{\´e}n, Magnus and Lindberg, Greger and Ohlsson, Bodil and Schmidt, Peter Thelin and Dlugosz, Aldona and Agreus, Lars and Andreasson, Anna and D'Amato, Mauro and Burwinkel, Barbara and Bermejo, Justo Lorenzo and R{\"o}th, Ralph and Lasitschka, Felix and Vicario, Maria and Metzger, Marco and Santos, Javier and Rappold, Gudrun A. and Martinez, Cristina and Niesler, Beate}, title = {miR-16 and miR-103 impact 5-HT4 receptor signalling and correlate with symptom profile in irritable bowel syndrome}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-13982-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173478}, year = {2017}, abstract = {Irritable bowel syndrome (IBS) is a gut-brain disorder involving alterations in intestinal sensitivity and motility. Serotonin 5-HT4 receptors are promising candidates in IBS pathophysiology since they regulate gut motor function and stool consistency, and targeted 5-HT4R selective drug intervention has been proven beneficial in subgroups of patients. We identified a single nucleotide polymorphism (SNP) (rs201253747) c.*61 T > C within the 5-HT4 receptor gene \(HTR4\) to be predominantly present in diarrhoea-IBS patients (IBS-D). It affects a binding site for the miR-16 family and miR-103/miR-107 within the isoforms \({HTR4b/i}\) and putatively impairs \(HTR4\) expression. Subsequent miRNA profiling revealed downregulation of miR-16 and miR-103 in the jejunum of IBS-D patients correlating with symptoms. \(In\) \(vitro\) assays confirmed expression regulation via three 3′UTR binding sites. The novel isoform \(HTR4b\_2\) lacking two of the three miRNA binding sites escapes miR-16/103/107 regulationin SNP carriers. We provide the first evidence that \(HTR4\) expression is fine-tuned by miRNAs, and that this regulation is impaired either by the SNP c.*61 T > C or bydiminished levels of miR-16 and miR-103 suggesting that \(HTR4\) might be involved in the development of IBS-D.}, language = {en} } @article{FarmerStrzelczykFinisguerraetal.2021, author = {Farmer, Adam D. and Strzelczyk, Adam and Finisguerra, Alessandra and Gourine, Alexander V. and Gharabaghi, Alireza and Hasan, Alkomiet and Burger, Andreas M. and Jaramillo, Andr{\´e}s M. and Mertens, Ann and Majid, Arshad and Verkuil, Bart and Badran, Bashar W. and Ventura-Bort, Carlos and Gaul, Charly and Beste, Christian and Warren, Christopher M. and Quintana, Daniel S. and H{\"a}mmerer, Dorothea and Freri, Elena and Frangos, Eleni and Tobaldini, Eleonora and Kaniusas, Eugenijus and Rosenow, Felix and Capone, Fioravante and Panetsos, Fivos and Ackland, Gareth L. and Kaithwas, Gaurav and O'Leary, Georgia H. and Genheimer, Hannah and Jacobs, Heidi I. L. and Van Diest, Ilse and Schoenen, Jean and Redgrave, Jessica and Fang, Jiliang and Deuchars, Jim and Sz{\´e}les, Jozsef C. and Thayer, Julian F. and More, Kaushik and Vonck, Kristl and Steenbergen, Laura and Vianna, Lauro C. and McTeague, Lisa M. and Ludwig, Mareike and Veldhuizen, Maria G. and De Couck, Marijke and Casazza, Marina and Keute, Marius and Bikson, Marom and Andreatta, Marta and D'Agostini, Martina and Weymar, Mathias and Betts, Matthew and Prigge, Matthias and Kaess, Michael and Roden, Michael and Thai, Michelle and Schuster, Nathaniel M. and Montano, Nicola and Hansen, Niels and Kroemer, Nils B. and Rong, Peijing and Fischer, Rico and Howland, Robert H. and Sclocco, Roberta and Sellaro, Roberta and Garcia, Ronald G. and Bauer, Sebastian and Gancheva, Sofiya and Stavrakis, Stavros and Kampusch, Stefan and Deuchars, Susan A. and Wehner, Sven and Laborde, Sylvain and Usichenko, Taras and Polak, Thomas and Zaehle, Tino and Borges, Uirassu and Teckentrup, Vanessa and Jandackova, Vera K. and Napadow, Vitaly and Koenig, Julian}, title = {International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.568051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234346}, year = {2021}, abstract = {Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.}, language = {en} } @article{SalehiZarePrezzaetal.2023, author = {Salehi, Saeede and Zare, Abdolhossein and Prezza, Gianluca and Bader, Jakob and Schneider, Cornelius and Fischer, Utz and Meissner, Felix and Mann, Matthias and Briese, Michael and Sendtner, Michael}, title = {Cytosolic Ptbp2 modulates axon growth in motoneurons through axonal localization and translation of Hnrnpr}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-39787-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357639}, year = {2023}, abstract = {The neuronal RNA-binding protein Ptbp2 regulates neuronal differentiation by modulating alternative splicing programs in the nucleus. Such programs contribute to axonogenesis by adjusting the levels of protein isoforms involved in axon growth and branching. While its functions in alternative splicing have been described in detail, cytosolic roles of Ptbp2 for axon growth have remained elusive. Here, we show that Ptbp2 is located in the cytosol including axons and growth cones of motoneurons, and that depletion of cytosolic Ptbp2 affects axon growth. We identify Ptbp2 as a major interactor of the 3' UTR of Hnrnpr mRNA encoding the RNA-binding protein hnRNP R. Axonal localization of Hnrnpr mRNA and local synthesis of hnRNP R protein are strongly reduced when Ptbp2 is depleted, leading to defective axon growth. Ptbp2 regulates hnRNP R translation by mediating the association of Hnrnpr with ribosomes in a manner dependent on the translation factor eIF5A2. Our data thus suggest a mechanism whereby cytosolic Ptbp2 modulates axon growth by fine-tuning the mRNA transport and local synthesis of an RNA-binding protein.}, language = {en} }