@article{ScholzGehringGuanetal.2015, author = {Scholz, Nicole and Gehring, Jennifer and Guan, Chonglin and Ljaschenko, Dmitrij and Fischer, Robin and Lakshmanan, Vetrivel and Kittel, Robert J. and Langenhan, Tobias}, title = {The adhesion GPCR Latrophilin/CIRL shapes mechanosensation}, series = {Cell Reports}, volume = {11}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2015.04.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148626}, pages = {866-874}, year = {2015}, abstract = {G-protein-coupled receptors (GPCRs) are typically regarded as chemosensors that control cellular states in response to soluble extracellular cues. However, the modality of stimuli recognized through adhesion GPCR (aGPCR), the second largest class of the GPCR superfamily, is unresolved. Our study characterizes the Drosophila aGPCR Latrophilin/dCirl, a prototype member of this enigmatic receptor class. We show that dCirl shapes the perception of tactile, proprioceptive, and auditory stimuli through chordotonal neurons, the principal mechanosensors of Drosophila. dCirl sensitizes these neurons for the detection of mechanical stimulation by amplifying their input-output function. Our results indicate that aGPCR may generally process and modulate the perception of mechanical signals, linking these important stimuli to the sensory canon of the GPCR superfamily.}, language = {en} } @article{FuxArndtLangenmayeretal.2019, author = {Fux, Robert and Arndt, Daniela and Langenmayer, Martin C. and Schwaiger, Julia and Ferling, Hermann and Fischer, Nicole and Indenbirken, Daniela and Grundhoff, Adam and D{\"o}lken, Lars and Adamek, Mikolaj and Steinhagen, Dieter and Sutter, Gerd}, title = {Piscine orthoreovirus 3 is not the causative pathogen of proliferative darkening syndrome (PDS) of brown trout (Salmo trutta fario)}, series = {Viruses}, volume = {11}, journal = {Viruses}, number = {2}, issn = {1999-4915}, doi = {10.3390/v11020112}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196991}, year = {2019}, abstract = {The proliferative darkening syndrome (PDS) is a lethal disease of brown trout (Salmo trutta fario) which occurs in several alpine Bavarian limestone rivers. Because mortality can reach 100\%, PDS is a serious threat for affected fish populations. Recently, Kuehn and colleagues reported that a high throughput RNA sequencing approach identified a piscine orthoreovirus (PRV) as a causative agent of PDS. We investigated samples from PDS-affected fish obtained from two exposure experiments performed at the river Iller in 2008 and 2009. Using a RT-qPCR and a well-established next-generation RNA sequencing pipeline for pathogen detection, PRV-specific RNA was not detectable in PDS fish from 2009. In contrast, PRV RNA was readily detectable in several organs from diseased fish in 2008. However, similar virus loads were detectable in the control fish which were not exposed to Iller water and did not show any signs of the disease. Therefore, we conclude that PRV is not the causative agent of PDS of brown trout in the rhithral region of alpine Bavarian limestone rivers. The abovementioned study by Kuehn used only samples from the exposure experiment from 2008 and detected a subclinical PRV bystander infection. Work is ongoing to identify the causative agent of PDS.}, language = {en} }