@article{KressHuettenhoferLandryetal.2013, author = {Kress, Michaela and H{\"u}ttenhofer, Alexander and Landry, Marc and Kuner, Rohini and Favereaux, Alexandre and Greenberg, David and Bednarik, Josef and Heppenstall, Paul and Kronenberg, Florian and Malcangio, Marzia and Rittner, Heike and {\"U}{\c{c}}eyler, Nurcan and Trajanoski, Zlatko and Mouritzen, Peter and Birklein, Frank and Sommer, Claudia and Soreq, Hermona}, title = {microRNAs in nociceptive circuits as predictors of future clinical applications}, series = {Frontiers in Molecular Neuroscience}, volume = {6}, journal = {Frontiers in Molecular Neuroscience}, number = {33}, doi = {10.3389/fnmol.2013.00033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154597}, year = {2013}, abstract = {Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs - and microRNAs (miRNAs) in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioral components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals.}, language = {en} } @article{BreuerMattheisenFranketal.2018, author = {Breuer, Ren{\´e} and Mattheisen, Manuel and Frank, Josef and Krumm, Bertram and Treutlein, Jens and Kassem, Layla and Strohmaier, Jana and Herms, Stefan and M{\"u}hleisen, Thomas W. and Degenhardt, Franziska and Cichon, Sven and N{\"o}then, Markus M. and Karypis, George and Kelsoe, John and Greenwood, Tiffany and Nievergelt, Caroline and Shilling, Paul and Shekhtman, Tatyana and Edenberg, Howard and Craig, David and Szelinger, Szabolcs and Nurnberger, John and Gershon, Elliot and Alliey-Rodriguez, Ney and Zandi, Peter and Goes, Fernando and Schork, Nicholas and Smith, Erin and Koller, Daniel and Zhang, Peng and Badner, Judith and Berrettini, Wade and Bloss, Cinnamon and Byerley, William and Coryell, William and Foroud, Tatiana and Guo, Yirin and Hipolito, Maria and Keating, Brendan and Lawson, William and Liu, Chunyu and Mahon, Pamela and McInnis, Melvin and Murray, Sarah and Nwulia, Evaristus and Potash, James and Rice, John and Scheftner, William and Z{\"o}llner, Sebastian and McMahon, Francis J. and Rietschel, Marcella and Schulze, Thomas G.}, title = {Detecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex genetics}, series = {International Journal of Bipolar Disorders}, volume = {6}, journal = {International Journal of Bipolar Disorders}, doi = {10.1186/s40345-018-0132-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220509}, year = {2018}, abstract = {Background Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype-phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. Results Two of these rules—one associated with eating disorder and the other with anxiety—remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings. Conclusion Our approach detected novel specific genotype-phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype-phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts.}, language = {en} }