@phdthesis{Fuchs2009, author = {Fuchs, Lorenz}, title = {Interaktion von Kir2-Kan{\"a}len mit 7-Helix-Rezeptoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Einw{\"a}rtsgleichrichtende Kaliumkan{\"a}le (Kir), aktuell in die 7 Unterfamilien Kir1-Kir7 eingeteilt, sind an der Regulation einer Vielzahl von K{\"o}rperfunktionen, beispielsweise Herzfrequenz, Erregbarkeit von Nervenzellen, Tonus von Gef{\"a}ßmuskelzellen, Hormonsekretion oder Aktivierung von Immunzellen, beteiligt. F{\"u}r die Kontrolle dieser Funktionen ist es von entscheidender Bedeutung, dass die Leitf{\"a}higkeit dieser Kan{\"a}le beeinflusst werden kann. Die Kir3-Unterfamilie (fr{\"u}her GIRK f{\"u}r G-protein-activated-K+-channels) wird beispielsweise obligat durch die direkte Bindung der beta/gamma-Untereinheit des trimeren Gi/0-Proteins aktiviert (Karschin, 1999). Es gibt Hinweise in der Literatur, dass auch die stark einw{\"a}rts gleichrichtenden Kan{\"a}le der Kir2-Familie durch G-Proteine der Gq-Familie reguliert sein k{\"o}nnen. Dabei widersprechen sich insbesondere zwei Untersuchungen zur Spezifit{\"a}t der Interaktion (Jones, 1996; Chuang et al., 1997). Ebenso ist der intrazellul{\"a}re Signalweg bislang nicht hinreichend gekl{\"a}rt. Um dies genauer zu untersuchen, wurden in dieser Arbeit die Kir-Kan{\"a}le Kir2.1-Kir2.4 jeweils mit 5 verschiedenen Gq-gekoppelten Rezeptoren in Xenopus-Oozyten koexprimiert und mit der Technik der „Zwei-Elektroden-Spannungsklemme" der Strom {\"u}ber die Kir-Kan{\"a}le vor und nach Rezeptoraktivierung mit dem jeweils physiologischen Rezeptoragonisten gemessen. Es zeigte sich, dass ausschließlich Kir2.3 nach Aktivierung des M1-Acetylcholinrezeptors inhibiert wird. Eine Sequenzanalyse zeigte in der Extrazellul{\"a}rregion von Kir2.3 eine zu den anderen Kir2-Kan{\"a}len abweichende Aminos{\"a}uresequenz, welche durch Mutation aber als potentielle Bindestelle zur Vermittlung des inhibitorischen Effektes ausgeschlossen werden konnte. Nachdem bereits gezeigt werden konnte, dass die Koexpression von Kir2.3 und M1-Acetylcholinrezeptor in bestimmten Gehirnregionen der Kontrolle neuronaler Erregbarkeit dient (Shen et al., 2007), ist es wahrscheinlich, dass derselbe Mechanismus auch in ventrikul{\"a}ren Kardiomyozyten existiert und dort als Schutzmechanismus vor vagaler {\"U}berstimulation fungiert.}, subject = {Ionenkanal}, language = {de} } @article{VeyKapsnerFuchsetal.2019, author = {Vey, Johannes and Kapsner, Lorenz A. and Fuchs, Maximilian and Unberath, Philipp and Veronesi, Giulia and Kunz, Meik}, title = {A toolbox for functional analysis and the systematic identification of diagnostic and prognostic gene expression signatures combining meta-analysis and machine learning}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {10}, issn = {2072-6694}, doi = {10.3390/cancers11101606}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193240}, year = {2019}, abstract = {The identification of biomarker signatures is important for cancer diagnosis and prognosis. However, the detection of clinical reliable signatures is influenced by limited data availability, which may restrict statistical power. Moreover, methods for integration of large sample cohorts and signature identification are limited. We present a step-by-step computational protocol for functional gene expression analysis and the identification of diagnostic and prognostic signatures by combining meta-analysis with machine learning and survival analysis. The novelty of the toolbox lies in its all-in-one functionality, generic design, and modularity. It is exemplified for lung cancer, including a comprehensive evaluation using different validation strategies. However, the protocol is not restricted to specific disease types and can therefore be used by a broad community. The accompanying R package vignette runs in ~1 h and describes the workflow in detail for use by researchers with limited bioinformatics training.}, language = {en} }