@article{ZhangBeckerZhangetal.1994, author = {Zhang, X. F. and Becker, Charles R. and Zhang, H. and He, L. and Landwehr, G.}, title = {Investigation of a short period (001) HgTe-Hg\(_{0.6}\)Cd\(_{0.4}\)Te superlattice by transmission electron microscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38029}, year = {1994}, abstract = {No abstract available}, language = {en} } @article{WuBeckerWaagetal.1993, author = {Wu, Y. S. and Becker, Charles R. and Waag, A. and Bicknell-Tassius, R. N. and Landwehr, G.}, title = {Removal of oxygen and reduction of carbon contamination on (100) Cd\(_{0.96}\)Zn\(_{0.04}\)Te}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38014}, year = {1993}, abstract = {No abstract available}, language = {en} } @article{EinfeldtHeinkeBehringeretal.1994, author = {Einfeldt, S. and Heinke, H. and Behringer, M. and Becker, Charles R. and Kurtz, E. and Hommel, D. and Landwehr, G.}, title = {The growth of HgSe by molecular beam epitaxy for ohmic contacts to p-ZnSe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38001}, year = {1994}, abstract = {The structural properties of HgSe grown by molecular beam epitaxy (MBE) are investigated for different lattice mismatches to the substrate and various growth conditions. The growth rate is shown to depend strongly on the growth temperature above lOO°C as well as on the Hg/Se flux ratio. It has been found that the crystalline perfection and the electrical properties are mainly determined by the layer thickness, especially for the growth on highly lattice mismatched substrates. Changes in the surface morphology are related to growth parameters. Differences between the electrical behavior of MBE-grown and bulk HgSe are discussed. The electrical properties of HgSe contacts on p-ZnSe are investigated as a function of different annealing procedures.}, language = {en} } @article{SchikoraHausleitnerEinfeldtetal.1994, author = {Schikora, D. and Hausleitner, H. and Einfeldt, S. and Becker, Charles R. and Widmer, T. and Giftige, C. and Lischka, K. and von Ortenburg, M. and Landwehr, G.}, title = {Epitaxial overgrowth of II-VI compounds on patterned substrates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37985}, year = {1994}, abstract = {The selected area epitaxial overgrowth of narrow gap HgTe as well as wide gap CdTe and ZnTe on CdTe/GaAs substrates, which had been structured by dry etching techniques, has been investigated. A plasma etching process using a barrel reactor with CH\(_4\)-CH\(_2\) gases has been employed to prepare stripes with a width of about 1 μm with anisotropic as well as isotropic etching profiles. It has been found, that the selected area HgTe overgrowth takes place with a high local selectivity to the low index planes of the patterned surface. In contrast, the selected area overgrowth of the wide gap CdTe and ZnTe is controlled by anisotropic growth kinetics provided that the substrate temperature is not lower than 220°C and the starting surface consists of well developed low index crystallographic planes.}, language = {en} } @article{HeBeckerBicknellTassiusetal.1993, author = {He, L. and Becker, Charles R. and Bicknell-Tassius, R. N. and Scholl, S. and Landwehr, G.}, title = {Molecular beam epitaxial growth and evaluation of intrinsic and extrinsically doped (100) Hg\(_{0.8}\)Cd\(_{0.2}\)Te on (100) Cd\(_{0.96}\)Zn\(_{0.04}\)Te}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37885}, year = {1993}, abstract = {No abstract available.}, language = {en} } @article{KrausRegnetBeckeretal.1992, author = {Kraus, M. M. and Regnet, M. M. and Becker, Charles R. and Bicknell-Tassius, R. N. and Landwehr, G.}, title = {Comparison of band structure calculations and photoluminescence experiments on HgTe/CdTe superlattices grown by molecular beam epitaxy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37878}, year = {1992}, abstract = {We have grown HgTe/CdTe superlattices by molecular beam epitaxy; barrier thicknesses were in the range from 15 to 91 {\AA} and the well thickness was maintained at a constant value of 30 {\AA}. The infrared photoluminescence was investigated by means of Fourier transform infrared spectroscopy in the temperature range from 4.2 to 300 K. All superlattices showed pronounced photoluminescence at temperatures up to 300 K. To gain more detailed insight into the band structure of the HgTe/CdTe superlattices, band structure calculations were performed. The concept of the envelope function approximation was followed. Employing the transfer matrix method, the calculations were completed taking into account an eight band k·p model. An important parameter in these calculations is the natural valence band offset (VBO) between the well and barrier materials. As a general trend, the value for the direct gap decreases with increasing VBO. The experimentally determined energies of the band gap are in reasonable agreement with the values obtained by the theoretical calculations. A comparison between theory and experiment shows that the observed transition energies are closer to calculations employing a large offset (350 meV) as opposed to a small VBO (40 meV).}, language = {en} } @article{WuBeckerWaagetal.1993, author = {Wu, Y. S. and Becker, Charles R. and Waag, A. and Schmiedl, R. and Einfeldt, S. and Landwehr, G.}, title = {Oxygen on the (100) CdTe surface}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37869}, year = {1993}, abstract = {We have investigated oxygen on CdTe substrates by means of x-ray photoelectron spectroscopy (XPS) and reflection high-energy electron diffraction (RHEED). A Te oxide layer that was at least 15 A thick was found on the surface of as-delivered CdTe substrates that were mechanically polished. This oxide is not easily evaporated at temperatures lower than 350°C. Furthermore, heating in air, which further oxidizes the CdTe layer, should be avoided. Etching with HCI acid (15\% HCl) for at least 20 s and then rinsing with de-ionized water reduces the Te oxide layer on the surface down to 4\% of a monoatomic layer. However, according to XPS measurements of the 0 Is peak, 20\%-30\% of a monoatomic layer of oxygen remains on the surface, which can be eliminated by heating at temperatures ranging between 300 and 340 cC. The RHEED patterns for a molecular beam epitaxially (MBE)-grown CdTe film on a (lOO) CdTe substrate with approximately one monoatomic layer of oxidized Te on the surface lose the characteristics of the normal RHEED pattems for a MBE-grown CdTe film on an oxygen-free CdTe substrate.}, language = {en} } @article{BeckerHeRegnetetal.1993, author = {Becker, Charles R. and He, L. and Regnet, M. M. and Kraus, M.M. and Wu, Y. S. and Landwehr, G. and Zhang, X. F. and Zhang, H.}, title = {The growth and structure of short period (001) Hg\(_{1-x}\)Cd\(_x\)Te-HgTe superlattices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37858}, year = {1993}, abstract = {Molecular beam epitaxially grown short period (001) Hg\(_{1_x}\)Cd\(_x\)Te-HgTe superlattices have been systematically investigated. Several narrow well widths were chosen, e.g., 30, 35 and 40 {\AA}, and the barrier widths were varied between 24 and 90 {\AA} for a particular well width. Both the well width and the total period were determined directly by means of x-ray diffraction. The well width was determined by exploiting the high reflectivity from HgTe and the low reflectivity from CdTe for the (002) Bragg reflection. Knowing the well and barrier widths we have been able to set an upper limit on the average Cd concentration of the barriers, \(\overline x_b\), by annealing several superlattices and then measuring the composition of the resulting alloy. \(\overline x_b\) was shown to decrease exponentially with decreasing barrier width. The structure of a very short period superlattice, i.e., 31.4 {\AA}, was also investigated by transmission electron microscopy, corroborating the x-ray diffraction results.}, language = {en} } @article{QiuHeLietal.1993, author = {Qiu, Yueming and He, Li and Li, Jie and Yuan, Shixin and Becker, Charles R. and Landwehr, G.}, title = {Infrared photoconductor fabricated with HgTe/CdTe superlattice grown by molecular beam epitaxy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37772}, year = {1993}, abstract = {An infrared photoconductor fabricated with a HgTe/CdTe superlattice grown on a GaAs substrate by molecular beam epitaxy is described here for the first time. The growth procedure, device fabrication, and measurement results are described. The results show that the device has relatively high uniformity and 1000 K black-body detectivity 2.4 X 10\(^9\) cm Hz\(^{1/2}\) W\(^{-1}\) . The photoconductivity decay method was used for determining carrier lifetime of the HgTe/CdTe superlattice, the measured lifetime is 12\(\mu\)s at 77 K, which is the longest lifetime ever reported for HgTe/CdTe superlattices and we believe that the increase of lifetime is mainly due to the reduction of dimensions.}, language = {en} } @article{WuBeckerWaagetal.1991, author = {Wu, Y.S. and Becker, Charles R. and Waag, A. and Kraus, M. M. and Bicknell-Tassius, R. N. and Landwehr, G.}, title = {Correlation of the Cd-to-Te ratio on CdTe surfaces with the surface structure}, isbn = {0163-1829}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37789}, year = {1991}, abstract = {We report here that reconstruction on (100), (1lIlA, and (1l1lB CdTe surfaces is either C(2X2), (2X2), and (l X I) or (2X I), (l X I), and (l X I) when they are Cd or Te stabilized, respectively. There is a mixed region between Cd and Te stabilization in which the reflected high-energy electron-diffraction (RHEED) patterns contain characteristics of both Cd- and Te-stabilized surfaces. We have also found that the Cd-to-Te ratio of the x-ray photoelectron intensities of their 3d\(_{3/ 2}\) core levels is about 20\% larger for a Cd-stabilized (1lIlA, (1lIlB, or (100) CdTe surface than for a Te-stabilized one. According to a simple model calculation, which was normalized by means of the photoelectron intensity ratio of a Cd-stabilized (lll)A and aTe-stabilized (1l1lB CdTe surface, the experimental data for CdTe surfaces can be explained by a linear dependence of the photoelectron-intensity ratio on the fraction of Cd in the uppermost monatomic layer. This surface composition can be correlated with the surface structure, i.e., the corresponding RHEED patterns. This correlation can in turn be employed to determine Te and Cd evaporation rates. The Te reevaporation rate is increasingly slower for the Te-stabilized (Ill) A, (l1l)B, and (100) surfaces, while the opposite is true for Cd from Cd-stabilized (Ill) A and (Ill)B surfaces. In addition, Te is much more easily evaporated from all the investigated surfaces than is Cd, if the substrate is kept at normal molecular-beam-epitaxy growth temperatures ranging from 2oo·C to 300 ·C.}, subject = {Festk{\"o}rperphysik}, language = {en} }