@article{MajounieRentonMoketal.2012, author = {Majounie, Elisa and Renton, Alan E. and Mok, Kin and Dopper, Elise G. P. and Waite, Adrian and Rollinson, Sara and Chi{\`o}, Adriano and Restagno, Gabriella and Nicolaou, Nayia and Simon-Sanchez, Javier and van Swieten, John C. and Abramzon, Yevgeniya and Johnson, Janel O. and Sendtner, Michael and Pamphlett, Roger and Orrell, Richard W. and Mead, Simon and Sidle, Katie C. and Houlden, Henry and Rohrer, Jonathan D. and Morrison, Karen E. and Pall, Hardev and Talbot, Kevin and Ansorge, Olaf and Hernandez, Dena G. and Arepalli, Sampath and Sabatelli, Mario and Mora, Gabriele and Corbo, Massimo and Giannini, Fabio and Calvo, Andrea and Englund, Elisabet and Borghero, Giuseppe and Floris, Gian Luca and Remes, Anne M. and Laaksovirta, Hannu and McCluskey, Leo and Trojanowski, John Q. and Van Deerlin, Vivianna M. and Schellenberg, Gerard D. and Nalls, Michael A. and Drory, Vivian E. and Lu, Chin-Song and Yeh, Tu-Hsueh and Ishiura, Hiroyuki and Takahashi, Yuji and Tsuji, Shoji and Le Ber, Isabelle and Brice, Alexis and Drepper, Carsten and Williams, Nigel and Kirby, Janine and Shaw, Pamela and Hardy, John and Tienari, Pentti J. and Heutink, Peter and Morris, Huw R. and Pickering-Brown, Stuart and Traynor, Bryan J.}, title = {Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study}, series = {The Lancet Neurology}, volume = {11}, journal = {The Lancet Neurology}, doi = {10.1016/S1474-4422(12)70043-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154644}, pages = {323 -- 330}, year = {2012}, abstract = {Background We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. Findings In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0\%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1\%) of 49 black individuals from the USA, and six (8·3\%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3\%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0\%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8\%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50\% penetrant by 58 years, and almost fully penetrant by 80 years. Interpretation A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases.}, language = {en} } @article{SilvestriBarrowdaleMulliganetal.2016, author = {Silvestri, Valentina and Barrowdale, Daniel and Mulligan, Anna Marie and Neuhausen, Susan L. and Fox, Stephen and Karlan, Beth Y. and Mitchell, Gillian and James, Paul and Thull, Darcy L. and Zorn, Kristin K. and Carter, Natalie J. and Nathanson, Katherine L. and Domchek, Susan M. and Rebbeck, Timothy R. and Ramus, Susan J. and Nussbaum, Robert L. and Olopade, Olufunmilayo I. and Rantala, Johanna and Yoon, Sook-Yee and Caligo, Maria A. and Spugnesi, Laura and Bojesen, Anders and Pedersen, Inge Sokilde and Thomassen, Mads and Jensen, Uffe Birk and Toland, Amanda Ewart and Senter, Leigha and Andrulis, Irene L. and Glendon, Gord and Hulick, Peter J. and Imyanitov, Evgeny N. and Greene, Mark H. and Mai, Phuong L. and Singer, Christian F. and Rappaport-Fuerhauser, Christine and Kramer, Gero and Vijai, Joseph and Offit, Kenneth and Robson, Mark and Lincoln, Anne and Jacobs, Lauren and Machackova, Eva and Foretova, Lenka and Navratilova, Marie and Vasickova, Petra and Couch, Fergus J. and Hallberg, Emily and Ruddy, Kathryn J. and Sharma, Priyanka and Kim, Sung-Won and Teixeira, Manuel R. and Pinto, Pedro and Montagna, Marco and Matricardi, Laura and Arason, Adalgeir and Johannsson, Oskar Th and Barkardottir, Rosa B. and Jakubowska, Anna and Lubinski, Jan and Izquierdo, Angel and Pujana, Miguel Angel and Balma{\~n}a, Judith and Diez, Orland and Ivady, Gabriella and Papp, Janos and Olah, Edith and Kwong, Ava and Nevanlinna, Heli and Aittom{\"a}ki, Kristiina and Segura, Pedro Perez and Caldes, Trinidad and Van Maerken, Tom and Poppe, Bruce and Claes, Kathleen B. M. and Isaacs, Claudine and Elan, Camille and Lasset, Christine and Stoppa-Lyonnet, Dominique and Barjhoux, Laure and Belotti, Muriel and Meindl, Alfons and Gehrig, Andrea and Sutter, Christian and Engel, Christoph and Niederacher, Dieter and Steinemann, Doris and Hahnen, Eric and Kast, Karin and Arnold, Norbert and Varon-Mateeva, Raymonda and Wand, Dorothea and Godwin, Andrew K. and Evans, D. Gareth and Frost, Debra and Perkins, Jo and Adlard, Julian and Izatt, Louise and Platte, Radka and Eeles, Ros and Ellis, Steve and Hamann, Ute and Garber, Judy and Fostira, Florentia and Fountzilas, George and Pasini, Barbara and Giannini, Giuseppe and Rizzolo, Piera and Russo, Antonio and Cortesi, Laura and Papi, Laura and Varesco, Liliana and Palli, Domenico and Zanna, Ines and Savarese, Antonella and Radice, Paolo and Manoukian, Siranoush and Peissel, Bernard and Barile, Monica and Bonanni, Bernardo and Viel, Alessandra and Pensotti, Valeria and Tommasi, Stefania and Peterlongo, Paolo and Weitzel, Jeffrey N. and Osorio, Ana and Benitez, Javier and McGuffog, Lesley and Healey, Sue and Gerdes, Anne-Marie and Ejlertsen, Bent and Hansen, Thomas V. O. and Steele, Linda and Ding, Yuan Chun and Tung, Nadine and Janavicius, Ramunas and Goldgar, David E. and Buys, Saundra S. and Daly, Mary B. and Bane, Anita and Terry, Mary Beth and John, Esther M. and Southey, Melissa and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C. and Ottini, Laura}, title = {Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2}, series = {Breast Cancer Research}, volume = {18}, journal = {Breast Cancer Research}, number = {15}, doi = {10.1186/s13058-016-0671-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164769}, year = {2016}, abstract = {Background BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs arising in BRCA1/2 mutation carriers display specific pathologic features and whether these features differ from those of BRCA1/2 female BCs (FBCs). Methods We characterised the pathologic features of 419 BRCA1/2 MBCs and, using logistic regression analysis, contrasted those with data from 9675 BRCA1/2 FBCs and with population-based data from 6351 MBCs in the Surveillance, Epidemiology, and End Results (SEER) database. Results Among BRCA2 MBCs, grade significantly decreased with increasing age at diagnosis (P = 0.005). Compared with BRCA2 FBCs, BRCA2 MBCs were of significantly higher stage (P for trend = 2 × 10-5) and higher grade (P for trend = 0.005) and were more likely to be oestrogen receptor-positive [odds ratio (OR) 10.59; 95 \% confidence interval (CI) 5.15-21.80] and progesterone receptor-positive (OR 5.04; 95 \% CI 3.17-8.04). With the exception of grade, similar patterns of associations emerged when we compared BRCA1 MBCs and FBCs. BRCA2 MBCs also presented with higher grade than MBCs from the SEER database (P for trend = 4 × 10-12). Conclusions On the basis of the largest series analysed to date, our results show that BRCA1/2 MBCs display distinct pathologic characteristics compared with BRCA1/2 FBCs, and we identified a specific BRCA2-associated MBC phenotype characterised by a variable suggesting greater biological aggressiveness (i.e., high histologic grade). These findings could lead to the development of gender-specific risk prediction models and guide clinical strategies appropriate for MBC management.}, language = {en} }