@article{GalluzziBravoSanPedroVitaleetal.2015, author = {Galluzzi, L. and Bravo-San Pedro, J. M. and Vitale, I. and Aaronson, S. A. and Abrams, J. M. and Adam, D. and Alnemri, E. S. and Altucci, L. and Andrews, D. and Annicchiarico-Petruzelli, M. and Baehrecke, E. H. and Bazan, N. G. and Bertrand, M. J. and Bianchi, K. and Blagosklonny, M. V. and Blomgren, K. and Borner, C. and Bredesen, D. E. and Brenner, C. and Campanella, M. and Candi, E. and Cecconi, F. and Chan, F. K. and Chandel, N. S. and Cheng, E. H. and Chipuk, J. E. and Cidlowski, J. A. and Ciechanover, A. and Dawson, T. M. and Dawson, V. L. and De Laurenzi, V. and De Maria, R. and Debatin, K. M. and Di Daniele, N. and Dixit, V. M. and Dynlacht, B. D. and El-Deiry, W. S. and Fimia, G. M. and Flavell, R. A. and Fulda, S. and Garrido, C. and Gougeon, M. L. and Green, D. R. and Gronemeyer, H. and Hajnoczky, G. and Hardwick, J. M. and Hengartner, M. O. and Ichijo, H. and Joseph, B. and Jost, P. J. and Kaufmann, T. and Kepp, O. and Klionsky, D. J. and Knight, R. A. and Kumar, S. and Lemasters, J. J. and Levine, B. and Linkermann, A. and Lipton, S. A. and Lockshin, R. A. and L{\´o}pez-Ot{\´i}n, C. and Lugli, E. and Madeo, F. and Malorni, W. and Marine, J. C. and Martin, S. J. and Martinou, J. C. and Medema, J. P. and Meier, P. and Melino, S. and Mizushima, N. and Moll, U. and Mu{\~n}oz-Pinedo, C. and Nu{\~n}ez, G. and Oberst, A. and Panaretakis, T. and Penninger, J. M. and Peter, M. E. and Piacentini, M. and Pinton, P. and Prehn, J. H. and Puthalakath, H. and Rabinovich, G. A. and Ravichandran, K. S. and Rizzuto, R. and Rodrigues, C. M. and Rubinsztein, D. C. and Rudel, T. and Shi, Y. and Simon, H. U. and Stockwell, B. R. and Szabadkai, G. and Tait, S. W. and Tang, H. L. and Tavernarakis, N. and Tsujimoto, Y. and Vanden Berghe, T. and Vandenabeele, P. and Villunger, A. and Wagner, E. F. and Walczak, H. and White, E. and Wood, W. G. and Yuan, J. and Zakeri, Z. and Zhivotovsky, B. and Melino, G. and Kroemer, G.}, title = {Essential versus accessory aspects of cell death: recommendations of the NCCD 2015}, series = {Cell Death and Differentiation}, volume = {22}, journal = {Cell Death and Differentiation}, doi = {10.1038/cdd.2014.137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121207}, pages = {58-73}, year = {2015}, abstract = {Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as 'accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. 'Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.}, language = {en} } @article{DumontWeberLassalleJolyBeauparlantetal.2022, author = {Dumont, Martine and Weber-Lassalle, Nana and Joly-Beauparlant, Charles and Ernst, Corinna and Droit, Arnaud and Feng, Bing-Jian and Dubois, St{\´e}phane and Collin-Deschesnes, Annie-Claude and Soucy, Penny and Vall{\´e}e, Maxime and Fournier, Fr{\´e}d{\´e}ric and Lema{\c{c}}on, Audrey and Adank, Muriel A. and Allen, Jamie and Altm{\"u}ller, Janine and Arnold, Norbert and Ausems, Margreet G. E. M. and Berutti, Riccardo and Bolla, Manjeet K. and Bull, Shelley and Carvalho, Sara and Cornelissen, Sten and Dufault, Michael R. and Dunning, Alison M. and Engel, Christoph and Gehrig, Andrea and Geurts-Giele, Willemina R. R. and Gieger, Christian and Green, Jessica and Hackmann, Karl and Helmy, Mohamed and Hentschel, Julia and Hogervorst, Frans B. L. and Hollestelle, Antoinette and Hooning, Maartje J. and Horv{\´a}th, Judit and Ikram, M. Arfan and Kaulfuß, Silke and Keeman, Renske and Kuang, Da and Luccarini, Craig and Maier, Wolfgang and Martens, John W. M. and Niederacher, Dieter and N{\"u}rnberg, Peter and Ott, Claus-Eric and Peters, Annette and Pharoah, Paul D. P. and Ramirez, Alfredo and Ramser, Juliane and Riedel-Heller, Steffi and Schmidt, Gunnar and Shah, Mitul and Scherer, Martin and St{\"a}bler, Antje and Strom, Tim M. and Sutter, Christian and Thiele, Holger and van Asperen, Christi J. and van der Kolk, Lizet and van der Luijt, Rob B. and Volk, Alexander E. and Wagner, Michael and Waisfisz, Quinten and Wang, Qin and Wang-Gohrke, Shan and Weber, Bernhard H. F. and Devilee, Peter and Tavtigian, Sean and Bader, Gary D. and Meindl, Alfons and Goldgar, David E. and Andrulis, Irene L. and Schmutzler, Rita K. and Easton, Douglas F. and Schmidt, Marjanka K. and Hahnen, Eric and Simard, Jacques}, title = {Uncovering the contribution of moderate-penetrance susceptibility genes to breast cancer by whole-exome sequencing and targeted enrichment sequencing of candidate genes in women of European ancestry}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {14}, issn = {2072-6694}, doi = {10.3390/cancers14143363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281768}, year = {2022}, abstract = {Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.}, language = {en} } @article{MitchellMacarthurGanetal.2014, author = {Mitchell, Anna L. and Macarthur, Katie D. R. and Gan, Earn H. and Baggott, Lucy E. and Wolff, Anette S. B. and Skinningsrud, Beate and Platt, Hazel and Short, Andrea and Lobell, Anna and Kampe, Olle and Bensing, Sophie and Betterle, Corrado and Kasperlik-Zaluska, Anna and Zurawek, Magdalena and Fichna, Marta and Kockum, Ingrid and Eriksson, Gabriel Nordling and Ekwall, Olov and Wahlberg, Jeanette and Dahlqvist, Per and Hulting, Anna-Lena and Penna-Martinez, Marissa and Meyer, Gesine and Kahles, Heinrich and Badenhoop, Klaus and Hahner, Stephanie and Quinkler, Marcus and Falorni, Alberto and Phipps-Green, Amanda and Merriman, Tony R. and Ollier, William and Cordell, Heather J. and Undlien, Dag and Czarnocka, Barbara and Husebye, Eystein and Pearce, Simon H. S.}, title = {Association of Autoimmune Addison's Disease with Alleles of STAT4 and GATA3 in European Cohorts}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0088991}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117105}, pages = {e88991}, year = {2014}, abstract = {Background: Gene variants known to contribute to Autoimmune Addison's disease (AAD) susceptibility include those at the MHC, MICA, CIITA, CTLA4, PTPN22, CYP27B1, NLRP-1 and CD274 loci. The majority of the genetic component to disease susceptibility has yet to be accounted for. Aim: To investigate the role of 19 candidate genes in AAD susceptibility in six European case-control cohorts. Methods: A sequential association study design was employed with genotyping using Sequenom iPlex technology. In phase one, 85 SNPs in 19 genes were genotyped in UK and Norwegian AAD cohorts (691 AAD, 715 controls). In phase two, 21 SNPs in 11 genes were genotyped in German, Swedish, Italian and Polish cohorts (1264 AAD, 1221 controls). In phase three, to explore association of GATA3 polymorphisms with AAD and to determine if this association extended to other autoimmune conditions, 15 SNPs in GATA3 were studied in UK and Norwegian AAD cohorts, 1195 type 1 diabetes patients from Norway, 650 rheumatoid arthritis patients from New Zealand and in 283 UK Graves' disease patients. Meta-analysis was used to compare genotype frequencies between the participating centres, allowing for heterogeneity. Results: We report significant association with alleles of two STAT4 markers in AAD cohorts (rs4274624: P = 0.00016; rs10931481: P = 0.0007). In addition, nominal association of AAD with alleles at GATA3 was found in 3 patient cohorts and supported by meta-analysis. Association of AAD with CYP27B1 alleles was also confirmed, which replicates previous published data. Finally, nominal association was found at SNPs in both the NF-kappa B1 and IL23A genes in the UK and Italian cohorts respectively. Conclusions: Variants in the STAT4 gene, previously associated with other autoimmune conditions, confer susceptibility to AAD. Additionally, we report association of GATA3 variants with AAD: this adds to the recent report of association of GATA3 variants with rheumatoid arthritis.}, language = {en} }