@article{BousquetFarrellCrooksetal.2016, author = {Bousquet, J. and Farrell, J. and Crooks, G. and Hellings, P. and Bel, E. H. and Bewick, M. and Chavannes, N. H. and Correia de Sousa, J. and Cruz, A. A. and Haahtela, T. and Joos, G. and Khaltaev, N. and Malva, J. and Muraro, A. and Nogues, M. and Palkonen, S. and Pedersen, S. and Robalo-Cordeiro, C. and Samolinski, B. and Strandberg, T. and Valiulis, A. and Yorgancioglu, A. and Zuberbier, T. and Bedbrook, A. and Aberer, W. and Adachi, M. and Agusti, A. and Akdis, C. A. and Akdis, M. and Ankri, J. and Alonso, A. and Annesi-Maesano, I. and Ansotegui, I. J. and Anto, J. M. and Arnavielhe, S. and Arshad, H. and Bai, C. and Baiardini, I. and Bachert, C. and Baigenzhin, A. K. and Barbara, C. and Bateman, E. D. and Begh{\´e}, B. and Ben Kheder, A. and Bennoor, K. S. and Benson, M. and Bergmann, K. C. and Bieber, T. and Bindslev-Jensen, C. and Bjermer, L. and Blain, H. and Blasi, F. and Boner, A. L. and Bonini, M. and Bonini, S. and Bosnic-Anticevitch, S. and Boulet, L. P. and Bourret, R. and Bousquet, P. J. and Braido, F. and Briggs, A. H. and Brightling, C. E. and Brozek, J. and Buhl, R. and Burney, P. G. and Bush, A. and Caballero-Fonseca, F. and Caimmi, D. and Calderon, M. A. and Calverley, P. M. and Camargos, P. A. M. and Canonica, G. W. and Camuzat, T. and Carlsen, K. H. and Carr, W. and Carriazo, A. and Casale, T. and Cepeda Sarabia, A. M. and Chatzi, L. and Chen, Y. Z. and Chiron, R. and Chkhartishvili, E. and Chuchalin, A. G. and Chung, K. F. and Ciprandi, G. and Cirule, I. and Cox, L. and Costa, D. J. and Custovic, A. and Dahl, R. and Dahlen, S. E. and Darsow, U. and De Carlo, G. and De Blay, F. and Dedeu, T. and Deleanu, D. and De Manuel Keenoy, E. and Demoly, P. and Denburg, J. A. and Devillier, P. and Didier, A. and Dinh-Xuan, A. T. and Djukanovic, R. and Dokic, D. and Douagui, H. and Dray, G. and Dubakiene, R. and Durham, S. R. and Dykewicz, M. S. and El-Gamal, Y. and Emuzyte, R. and Fabbri, L. M. and Fletcher, M. and Fiocchi, A. and Fink Wagner, A. and Fonseca, J. and Fokkens, W. J. and Forastiere, F. and Frith, P. and Gaga, M. and Gamkrelidze, A. and Garces, J. and Garcia-Aymerich, J. and Gemicioğlu, B. and Gereda, J. E. and Gonz{\´a}lez Diaz, S. and Gotua, M. and Grisle, I. and Grouse, L. and Gutter, Z. and Guzm{\´a}n, M. A. and Heaney, L. G. and Hellquist-Dahl, B. and Henderson, D. and Hendry, A. and Heinrich, J. and Heve, D. and Horak, F. and Hourihane, J. O'. B. and Howarth, P. and Humbert, M. and Hyland, M. E. and Illario, M. and Ivancevich, J. C. and Jardim, J. R. and Jares, E. J. and Jeandel, C. and Jenkins, C. and Johnston, S. L. and Jonquet, O. and Julge, K. and Jung, K. S. and Just, J. and Kaidashev, I. and Kaitov, M. R. and Kalayci, O. and Kalyoncu, A. F. and Keil, T. and Keith, P. K. and Klimek, L. and Koffi N'Goran, B. and Kolek, V. and Koppelman, G. H. and Kowalski, M. L. and Kull, I. and Kuna, P. and Kvedariene, V. and Lambrecht, B. and Lau, S. and Larenas‑Linnemann, D. and Laune, D. and Le, L. T. T. and Lieberman, P. and Lipworth, B. and Li, J. and Lodrup Carlsen, K. and Louis, R. and MacNee, W. and Magard, Y. and Magnan, A. and Mahboub, B. and Mair, A. and Majer, I. and Makela, M. J. and Manning, P. and Mara, S. and Marshall, G. D. and Masjedi, M. R. and Matignon, P. and Maurer, M. and Mavale‑Manuel, S. and Mel{\´e}n, E. and Melo‑Gomes, E. and Meltzer, E. O. and Menzies‑Gow, A. and Merk, H. and Michel, J. P. and Miculinic, N. and Mihaltan, F. and Milenkovic, B. and Mohammad, G. M. Y. and Molimard, M. and Momas, I. and Montilla‑Santana, A. and Morais‑Almeida, M. and Morgan, M. and M{\"o}sges, R. and Mullol, J. and Nafti, S. and Namazova‑Baranova, L. and Naclerio, R. and Neou, A. and Neffen, H. and Nekam, K. and Niggemann, B. and Ninot, G. and Nyembue, T. D. and O'Hehir, R. E. and Ohta, K. and Okamoto, Y. and Okubo, K. and Ouedraogo, S. and Paggiaro, P. and Pali‑Sch{\"o}ll, I. and Panzner, P. and Papadopoulos, N. and Papi, A. and Park, H. S. and Passalacqua, G. and Pavord, I. and Pawankar, R. and Pengelly, R. and Pfaar, O. and Picard, R. and Pigearias, B. and Pin, I. and Plavec, D. and Poethig, D. and Pohl, W. and Popov, T. A. and Portejoie, F. and Potter, P. and Postma, D. and Price, D. and Rabe, K. F. and Raciborski, F. and Radier Pontal, F. and Repka‑Ramirez, S. and Reitamo, S. and Rennard, S. and Rodenas, F. and Roberts, J. and Roca, J. and Rodriguez Ma{\~n}as, L. and et al,}, title = {Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)}, series = {Clinical and Translational Allergy}, volume = {6}, journal = {Clinical and Translational Allergy}, number = {29}, doi = {10.1186/s13601-016-0116-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166874}, year = {2016}, abstract = {Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.}, language = {en} } @article{AguzziBothAnhauseretal.1992, author = {Aguzzi, A. and Both, K. and Anhauser, I. and Horak, I. and Rethwilm, Axel and Wagner, EF.}, title = {Expression of human foamy virus is differentially regulated during development in transgenic mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55290}, year = {1992}, abstract = {Tbe human foamy virus (HFV) is a recently characterized member ofthe spumavirus family. Although no diseases have been unequivocally associated with HFV infection, expression of HFV regulatory genes in transgenie mice induces a characteristic aeute neuro degenerative disease and a myopathy. To better eharaeterize the sequenee of events leading to disease, and to gain a better understanding of the underlying pathogenetic meehanisms, we have analyzed in detail the transgene expression pattern during development. Transcription of a construet containing all regulatory elements and aneillary genes of mv was analyzed by in situ hybridization and was shown to occur in two distinct phases. At midgestation, low but widespread expression was first deteeted in eells of extraembryonie tissues. Later, various tissues originating from embryonie mesoderm, neuroeetoderm, and neural erest transeribed the transgene at moderate levels. However, expression deereased dramatically during late gestation and was suppressed shortly after birth. After a latency period of up to 5 weeks, transeription of the transgene resumed in single eelJs distributed irregularly in the central nervous system and in the skeletal museIe. By the age of 8 weeks, an increasing number of eells displayed much higher expression levels than in embryonie Iife and eventually underwent severe degenerative ehanges. These findings demonstrate that HFV transgene expression is differentially regulated in development and that HFV cytotoxicity may be dose-dependent. Such biphasic pattern of expression differs from that of murine retroviruses and may be explained by the specificity of HFV regulatory elements in combination with cellular faetors. Future studies of this model system should, therefore, provide novel insights in the mechanisms controlling retrovirallatency.}, subject = {Virologie}, language = {en} } @article{JakobsonVaahteraToldseppetal.2016, author = {Jakobson, Liina and Vaahtera, Lauri and T{\~o}ldsepp, Kadri and Nuhkat, Maris and Wang, Cun and Wang, Yuh-Shuh and H{\~o}rak, Hanna and Valk, Ervin and Pechter, Priit and Sindarovska, Yana and Tang, Jing and Xiao, Chuanlei and Xu, Yang and Talas, Ulvi Gerst and Garc{\´i}a-Sosa, Alfonso T. and Kangasj{\"a}rvi, Saijaliisa and Maran, Uko and Remm, Maido and Roelfsema, M. Rob G. and Hu, Honghong and Kangasj{\"a}rvi, Jaakko and Loog, Mart and Schroeder, Julian I. and Kollist, Hannes and Brosch{\´e}, Mikael}, title = {Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO\(_{2}\) Signaling}, series = {PLoS Biology}, volume = {14}, journal = {PLoS Biology}, number = {12}, doi = {10.1371/journal.pbio.2000322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166657}, pages = {e2000322}, year = {2016}, abstract = {Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO\(_{2}\) for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO\(_{2}\)-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO\(_{2}\)-insensitivity phenotypes of a mutant cis (CO\(_{2}\)-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO\(_{2}\) signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO\(_{2}\) signaling controls plant water management.}, language = {en} }