@article{MeiningerBlumSchameletal.2017, author = {Meininger, Susanne and Blum, Carina and Schamel, Martha and Barralet, Jake E. and Ignatius, Anita and Gbureck, Uwe}, title = {Phytic acid as alternative setting retarder enhanced biological performance of dicalcium phosphate cement in vitro}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {558}, doi = {10.1038/s41598-017-00731-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171047}, year = {2017}, abstract = {Dicalcium phosphate cement preparation requires the addition of setting retarders to meet clinical requirements regarding handling time and processability. Previous studies have focused on the influence of different setting modifiers on material properties such as mechanical performance or injectability, while ignoring their influence on biological cement properties as they are used in low concentrations in the cement pastes and the occurrence of most compounds in human tissues. Here, analyses of both material and biological behavior were carried out on samples with common setting retardants (citric acid, sodium pyrophosphate, sulfuric acid) and novel (phytic acid). Cytocompatibility was evaluated by in vitro tests with osteoblastic (hFOB 1.19) and osteoclastic (RAW 264.7) cells. We found cytocompatibility was better for sodium pyrophosphate and phytic acid with a three-fold cell metabolic activity by WST-1 test, whereas samples set with citric acid showed reduced cell number as well as cell activity. The compressive strength (CS) of cements formed with phytic acid (CS = 13 MPa) were nearly equal to those formed with citric acid (CS = 15 MPa) and approximately threefold higher than for other setting retardants. Due to a proven cytocompatibility and high mechanical strength, phytic acid seems to be a candidate replacement setting retardant for dicalcium phosphate cements.}, language = {en} } @article{OuhaddiCharbonnierPorgeetal.2023, author = {Ouhaddi, Yassine and Charbonnier, Baptiste and Porge, Juliette and Zhang, Yu-Ling and Garcia, Isadora and Gbureck, Uwe and Grover, Liam and Gilardino, Mirko and Harvey, Edward and Makhoul, Nicholas and Barralet, Jake}, title = {Development of neovasculature in axially vascularized calcium phosphate cement scaffolds}, series = {Journal of Functional Biomaterials}, volume = {14}, journal = {Journal of Functional Biomaterials}, number = {2}, issn = {2079-4983}, doi = {10.3390/jfb14020105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304026}, year = {2023}, abstract = {Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7-3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials.}, language = {en} }