@article{BousquetAntoBachertetal.2021, author = {Bousquet, Jean and Anto, Josep M. and Bachert, Claus and Haahtela, Tari and Zuberbier, Torsten and Czarlewski, Wienczyslawa and Bedbrook, Anna and Bosnic-Anticevich, Sinthia and Walter Canonica, G. and Cardona, Victoria and Costa, Elisio and Cruz, Alvaro A. and Erhola, Marina and Fokkens, Wytske J. and Fonseca, Joao A. and Illario, Maddalena and Ivancevich, Juan-Carlos and Jutel, Marek and Klimek, Ludger and Kuna, Piotr and Kvedariene, Violeta and Le, LTT and Larenas-Linnemann, D{\´e}sir{\´e}e E. and Laune, Daniel and Louren{\c{c}}o, Olga M. and Mel{\´e}n, Erik and Mullol, Joaquim and Niedoszytko, Marek and Odemyr, Mika{\"e}la and Okamoto, Yoshitaka and Papadopoulos, Nikos G. and Patella, Vincenzo and Pfaar, Oliver and Pham-Thi, Nh{\^a}n and Rolland, Christine and Samolinski, Boleslaw and Sheikh, Aziz and Sofiev, Mikhail and Suppli Ulrik, Charlotte and Todo-Bom, Ana and Tomazic, Peter-Valentin and Toppila-Salmi, Sanna and Tsiligianni, Ioanna and Valiulis, Arunas and Valovirta, Erkka and Ventura, Maria-Teresa and Walker, Samantha and Williams, Sian and Yorgancioglu, Arzu and Agache, Ioana and Akdis, Cezmi A. and Almeida, Rute and Ansotegui, Ignacio J. and Annesi-Maesano, Isabella and Arnavielhe, Sylvie and Basaga{\~n}a, Xavier and D. Bateman, Eric and B{\´e}dard, Annabelle and Bedolla-Barajas, Martin and Becker, Sven and Bennoor, Kazi S. and Benveniste, Samuel and Bergmann, Karl C. and Bewick, Michael and Bialek, Slawomir and E. Billo, Nils and Bindslev-Jensen, Carsten and Bjermer, Leif and Blain, Hubert and Bonini, Matteo and Bonniaud, Philippe and Bosse, Isabelle and Bouchard, Jacques and Boulet, Louis-Philippe and Bourret, Rodolphe and Boussery, Koen and Braido, Fluvio and Briedis, Vitalis and Briggs, Andrew and Brightling, Christopher E. and Brozek, Jan and Brusselle, Guy and Brussino, Luisa and Buhl, Roland and Buonaiuto, Roland and Calderon, Moises A. and Camargos, Paulo and Camuzat, Thierry and Caraballo, Luis and Carriazo, Ana-Maria and Carr, Warner and Cartier, Christine and Casale, Thomas and Cecchi, Lorenzo and Cepeda Sarabia, Alfonso M. and H. Chavannes, Niels and Chkhartishvili, Ekaterine and Chu, Derek K. and Cingi, Cemal and Correia de Sousa, Jaime and Costa, David J. and Courbis, Anne-Lise and Custovic, Adnan and Cvetkosvki, Biljana and D'Amato, Gennaro and da Silva, Jane and Dantas, Carina and Dokic, Dejan and Dauvilliers, Yves and De Feo, Giulia and De Vries, Govert and Devillier, Philippe and Di Capua, Stefania and Dray, Gerard and Dubakiene, Ruta and Durham, Stephen R. and Dykewicz, Mark and Ebisawa, Motohiro and Gaga, Mina and El-Gamal, Yehia and Heffler, Enrico and Emuzyte, Regina and Farrell, John and Fauquert, Jean-Luc and Fiocchi, Alessandro and Fink-Wagner, Antje and Fontaine, Jean-Fran{\c{c}}ois and Fuentes Perez, Jos{\´e} M. and Gemicioğlu, Bilun and Gamkrelidze, Amiran and Garcia-Aymerich, Judith and Gevaert, Philippe and Gomez, Ren{\´e} Maximiliano and Gonz{\´a}lez Diaz, Sandra and Gotua, Maia and Guldemond, Nick A. and Guzm{\´a}n, Maria-Antonieta and Hajjam, Jawad and Huerta Villalobos, Yunuen R. and Humbert, Marc and Iaccarino, Guido and Ierodiakonou, Despo and Iinuma, Tomohisa and Jassem, Ewa and Joos, Guy and Jung, Ki-Suck and Kaidashev, Igor and Kalayci, Omer and Kardas, Przemyslaw and Keil, Thomas and Khaitov, Musa and Khaltaev, Nikolai and Kleine-Tebbe, Jorg and Kouznetsov, Rostislav and Kowalski, Marek L. and Kritikos, Vicky and Kull, Inger and La Grutta, Stefania and Leonardini, Lisa and Ljungberg, Henrik and Lieberman, Philip and Lipworth, Brian and Lodrup Carlsen, Karin C. and Lopes-Pereira, Catarina and Loureiro, Claudia C. and Louis, Renaud and Mair, Alpana and Mahboub, Bassam and Makris, Micha{\"e}l and Malva, Joao and Manning, Patrick and Marshall, Gailen D. and Masjedi, Mohamed R. and Maspero, Jorge F. and Carreiro-Martins, Pedro and Makela, Mika and Mathieu-Dupas, Eve and Maurer, Marcus and De Manuel Keenoy, Esteban and Melo-Gomes, Elisabete and Meltzer, Eli O. and Menditto, Enrica and Mercier, Jacques and Micheli, Yann and Miculinic, Neven and Mihaltan, Florin and Milenkovic, Branislava and Mitsias, Dimitirios I. and Moda, Giuliana and Mogica-Martinez, Maria-Dolores and Mohammad, Yousser and Montefort, Steve and Monti, Ricardo and Morais-Almeida, Mario and M{\"o}sges, Ralph and M{\"u}nter, Lars and Muraro, Antonella and Murray, Ruth and Naclerio, Robert and Napoli, Luigi and Namazova-Baranova, Leyla and Neffen, Hugo and Nekam, Kristoff and Neou, Angelo and Nordlund, Bj{\"o}rn and Novellino, Ettore and Nyembue, Dieudonn{\´e} and O'Hehir, Robyn and Ohta, Ken and Okubo, Kimi and Onorato, Gabrielle L. and Orlando, Valentina and Ouedraogo, Solange and Palamarchuk, Julia and Pali-Sch{\"o}ll, Isabella and Panzner, Peter and Park, Hae-Sim and Passalacqua, Gianni and P{\´e}pin, Jean-Louis and Paulino, Ema and Pawankar, Ruby and Phillips, Jim and Picard, Robert and Pinnock, Hilary and Plavec, Davor and Popov, Todor A. and Portejoie, Fabienne and Price, David and Prokopakis, Emmanuel P. and Psarros, Fotis and Pugin, Benoit and Puggioni, Francesca and Quinones-Delgado, Pablo and Raciborski, Filip and Rajabian-S{\"o}derlund, Rojin and Regateiro, Frederico S. and Reitsma, Sietze and Rivero-Yeverino, Daniela and Roberts, Graham and Roche, Nicolas and Rodriguez-Zagal, Erendira and Rolland, Christine and Roller-Wirnsberger, Regina E. and Rosario, Nelson and Romano, Antonino and Rottem, Menachem and Ryan, Dermot and Salim{\"a}ki, Johanna and Sanchez-Borges, Mario M. and Sastre, Joaquin and Scadding, Glenis K. and Scheire, Sophie and Schmid-Grendelmeier, Peter and Sch{\"u}nemann, Holger J. and Sarquis Serpa, Faradiba and Shamji, Mohamed and Sisul, Juan-Carlos and Sofiev, Mikhail and Sol{\´e}, Dirceu and Somekh, David and Sooronbaev, Talant and Sova, Milan and Spertini, Fran{\c{c}}ois and Spranger, Otto and Stellato, Cristiana and Stelmach, Rafael and Thibaudon, Michel and To, Teresa and Toumi, Mondher and Usmani, Omar and Valero, Antonio A. and Valenta, Rudolph and Valentin-Rostan, Marylin and Pereira, Marilyn Urrutia and van der Kleij, Rianne and Van Eerd, Michiel and Vandenplas, Olivier and Vasankari, Tuula and Vaz Carneiro, Antonio and Vezzani, Giorgio and Viart, Fr{\´e}d{\´e}ric and Viegi, Giovanni and Wallace, Dana and Wagenmann, Martin and Wang, De Yun and Waserman, Susan and Wickman, Magnus and Williams, Dennis M. and Wong, Gary and Wroczynski, Piotr and Yiallouros, Panayiotis K. and Yusuf, Osman M. and Zar, Heather J. and Zeng, St{\´e}phane and Zernotti, Mario E. and Zhang, Luo and Shan Zhong, Nan and Zidarn, Mihaela}, title = {ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice}, series = {Allergy}, volume = {76}, journal = {Allergy}, number = {1}, doi = {10.1111/all.14422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228339}, pages = {168 -- 190}, year = {2021}, abstract = {Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.}, language = {en} } @article{DiersAcarWagneretal.2022, author = {Diers, Johannes and Acar, Laura and Wagner, Johanna C. and Baum, Philip and Hankir, Mohammed and Flemming, Sven and Kastner, Carolin and Germer, Christoph-Thomas and L'hoest, Helmut and Marschall, Ursula and Lock, Johan Friso and Wiegering, Armin}, title = {Cancer diagnosis is one quarter lower than the expected cancer incidence in the first year of COVID-19 pandemic in Germany: A retrospective register-based cohort study}, series = {Cancer Communications}, volume = {42}, journal = {Cancer Communications}, number = {7}, doi = {10.1002/cac2.12314}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312862}, pages = {673-676}, year = {2022}, abstract = {No abstract available.}, language = {en} } @article{WagnerEikenHaubitzetal.2019, author = {Wagner, Johanna and Eiken, Barbara and Haubitz, Imme and Lichthardt, Sven and Matthes, Niels and L{\"o}b, Stefan and Klein, Ingo and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Suprapubic bladder drainage and epidural catheters following abdominal surgery—a risk for urinary tract infections?}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0209825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177731}, pages = {e0209825}, year = {2019}, abstract = {Background Epidural catheters are state of the art for postoperative analgesic in abdominal surgery. Due to neurolysis it can lead to postoperative urinary tract retention (POUR), which leads to prolonged bladder catheterization, which has an increased risk for urinary tract infections (UTI). Our aim was to identify the current perioperative management of urinary catheters and, second, to identify the optimal time of suprapubic bladder catheter removal in regard to the removal of the epidural catheter. Methods We sent a questionnaire to 102 German hospitals and analyzed the 83 received answers to evaluate the current handling of bladder drainage and epidural catheters. Then, we conducted a retrospective study including 501 patients, who received an epidural and suprapubic catheter after abdominal surgery at the University Hospital W{\"u}rzburg. We divided the patients into three groups according to the point in time of suprapubic bladder drainage removal in regard to the removal of the epidural catheter and analyzed the onset of a UTI. Results Our survey showed that in almost all hospitals (98.8\%), patients received an epidural catheter and a bladder drainage after abdominal surgery. The point in time of urinary catheter removal was equally distributed between before, simultaneously and after the removal of the epidural catheter (respectively: ~28-29\%). The retrospective study showed a catheter-associated UTI in 6.7\%. Women were affected significantly more often than men (10,7\% versus 2,5\%, p<0.001). There was a non-significant trend to more UTIs when the suprapubic catheter was removed after the epidural catheter (before: 5.7\%, after: 8.4\%). Conclusion The point in time of suprapubic bladder drainage removal in relation to the removal of the epidural catheter does not seem to correlate with the rate of UTIs. The current handling in Germany is inhomogeneous, so further studies to standardize treatment are recommended.}, language = {en} } @article{LichthardtWagnerLoebetal.2020, author = {Lichthardt, Sven and Wagner, Johanna and L{\"o}b, Stefan and Matthes, Niels and Kastner, Caroline and Anger, Friedrich and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Pathological complete response due to a prolonged time interval between preoperative chemoradiation and surgery in locally advanced rectal cancer: analysis from the German StuDoQ|Rectalcarcinoma registry}, series = {BMC Cancer}, volume = {20}, journal = {BMC Cancer}, number = {1}, doi = {10.1186/s12885-020-6538-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229334}, year = {2020}, abstract = {Background Preoperative chemoradiotherapy is the recommended standard of care for patients with local advanced rectal cancer. However, it remains unclear, whether a prolonged time interval to surgery results in an increased perioperative morbidity, reduced TME quality or better pathological response. Aim of this study was to determine the time interval for best pathological response and perioperative outcome compared to current recommended interval of 6 to 8 weeks. Methods This is a retrospective analysis of the German StuDoQ|Rectalcarcinoma registry. Patients were grouped for the time intervals of "less than 6 weeks", "6 to 8 weeks", "8 to 10 weeks" and "more than 10 weeks". Primary endpoint was pathological response, secondary endpoint TME quality and complications according to Clavien-Dindo classification. Results Due to our inclusion criteria (preoperative chemoradiation, surgery in curative intention, M0), 1.809 of 9.560 patients were suitable for analysis. We observed a trend for increased rates of pathological complete response (pCR: ypT0ypN0) and pathological good response (pGR: ypT0-1ypN0) for groups with a prolonged time interval which was not significant. Ultimately, it led to a steady state of pCR (16.5\%) and pGR (22.6\%) in "8 to 10" and "more than 10" weeks. We were not able to observe any differences between the subgroups in perioperative morbidity, proportion of rectal extirpation (for cancer of the lower third) or difference in TME quality. Conclusion A prolonged time interval between neoadjuvant chemoradiation can be performed, as the rate of pCR seems to be increased without influencing perioperative morbidity.}, language = {en} } @article{WiegeringRiegelWagneretal.2017, author = {Wiegering, Armin and Riegel, Johannes and Wagner, Johanna and Kunzmann, Volker and Baur, Johannes and Walles, Thorsten and Dietz, Ulrich and Loeb, Stefan and Germer, Christoph-Thomas and Steger, Ulrich and Klein, Ingo}, title = {The impact of pulmonary metastasectomy in patients with previously resected colorectal cancer liver metastases}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0173933}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158036}, pages = {e0173933}, year = {2017}, abstract = {Background 40-50\% of patients with colorectal cancer (CRC) will develop liver metastases (CRLM) during the course of the disease. One third of these patients will additionally develop pulmonary metastases. Methods 137 consecutive patients with CRLM, were analyzed regarding survival data, clinical, histological data and treatment. Results were stratified according to the occurrence of pulmonary metastases and metastases resection. Results 39\% of all patients with liver resection due to CRLM developed additional lung metastases. 44\% of these patients underwent subsequent pulmonary resection. Patients undergoing pulmonary metastasectomy showed a significantly better five-year survival compared to patients not qualified for curative resection (5-year survival 71.2\% vs. 28.0\%; p = 0.001). Interestingly, the 5-year survival of these patients was even superior to all patients with CRLM, who did not develop pulmonary metastases (77.5\% vs. 63.5\%; p = 0.015). Patients, whose pulmonary metastases were not resected, were more likely to redevelop liver metastases (50.0\% vs 78.6\%; p = 0.034). However, the rate of distant metastases did not differ between both groups (54.5 vs.53.6; p = 0.945). Conclusion The occurrence of colorectal lung metastases after curative liver resection does not impact patient survival if pulmonary metastasectomy is feasible. Those patients clearly benefit from repeated resections of the liver and the lung metastases.}, language = {en} } @article{KoehlerHendricksKastneretal.2021, author = {K{\"o}hler, Franziska and Hendricks, Anne and Kastner, Carolin and M{\"u}ller, Sophie and Boerner, Kevin and Wagner, Johanna C. and Lock, Johan F. and Wiegering, Armin}, title = {Laparoscopic appendectomy versus antibiotic treatment for acute appendicitis-a systematic review}, series = {International Journal of Colorectal Disease}, volume = {36}, journal = {International Journal of Colorectal Disease}, number = {10}, issn = {1432-1262}, doi = {10.1007/s00384-021-03927-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266616}, pages = {2283-2286}, year = {2021}, abstract = {Background Over the last years, laparoscopic appendectomy has progressively replaced open appendectomy and become the current gold standard treatment for suspected, uncomplicated appendicitis. At the same time, though, it is an ongoing discussion that antibiotic therapy can be an equivalent treatment for patients with uncomplicated appendicitis. The aim of this systematic review was to determine the safety and efficacy of antibiotic therapy and compare it to the laparoscopic appendectomy for acute, uncomplicated appendicitis. Methods The PubMed database, Embase database, and Cochrane library were scanned for studies comparing laparoscopic appendectomy with antibiotic treatment. Two independent reviewers performed the study selection and data extraction. The primary endpoint was defined as successful treatment of appendicitis. Secondary endpoints were pain intensity, duration of hospitalization, absence from work, and incidence of complications. Results No studies were found that exclusively compared laparoscopic appendectomy with antibiotic treatment for acute, uncomplicated appendicitis. Conclusions To date, there are no studies comparing antibiotic treatment to laparoscopic appendectomy for patients with acute uncomplicated appendicitis, thus emphasizing the lack of evidence and need for further investigation.}, language = {en} } @article{WagnerWetzWiegeringetal.2021, author = {Wagner, Johanna C. and Wetz, Anja and Wiegering, Armin and Lock, Johan F. and L{\"o}b, Stefan and Germer, Christoph-Thomas and Klein, Ingo}, title = {Successful surgical closure of infected abdominal wounds following preconditioning with negative pressure wound therapy}, series = {Langenbeck's Archives of Surgery}, volume = {406}, journal = {Langenbeck's Archives of Surgery}, number = {7}, issn = {1435-2451}, doi = {10.1007/s00423-021-02221-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267541}, pages = {2479-2487}, year = {2021}, abstract = {Purpose Traditionally, previous wound infection was considered a contraindication to secondary skin closure; however, several case reports describe successful secondary wound closure of wounds "preconditioned" with negative pressure wound therapy (NPWT). Although this has been increasingly applied in daily practice, a systematic analysis of its feasibility has not been published thus far. The aim of this study was to evaluate secondary skin closure in previously infected abdominal wounds following treatment with NPWT. Methods Single-center retrospective analysis of patients with infected abdominal wounds treated with NPWT followed by either secondary skin closure referenced to a group receiving open wound therapy. Endpoints were wound closure rate, wound complications (such as recurrent infection or hernia), and perioperative data (such as duration of NPWT or hospitalization parameters). Results One hundred ninety-eight patients during 2013-2016 received a secondary skin closure after NPWT and were analyzed and referenced to 67 patients in the same period with open wound treatment after NPWT. No significant difference in BMI, chronic immunosuppressive medication, or tobacco use was found between both groups. The mean duration of hospital stay was 30 days with a comparable duration in both patient groups (29 versus 33 days, p = 0.35). Interestingly, only 7.7\% of patients after secondary skin closure developed recurrent surgical site infection and in over 80\% of patients were discharged with closed wounds requiring only minimal outpatient wound care. Conclusion Surgical skin closure following NPWT of infected abdominal wounds is a good and safe alternative to open wound treatment. It prevents lengthy outpatient wound therapy and is expected to result in a higher quality of life for patients and reduce health care costs.}, language = {en} } @article{PelzWagnerLichthardtetal.2018, author = {Pelz, J{\"o}rg O. W. and Wagner, Johanna and Lichthardt, Sven and Baur, Johannes and Kastner, Caroline and Matthes, Niels and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Laparoscopic right-sided colon resection for colon cancer - has the control group so far been chosen correctly?}, series = {World Journal of Surgical Oncology}, volume = {16}, journal = {World Journal of Surgical Oncology}, number = {117}, doi = {10.1186/s12957-018-1417-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176186}, year = {2018}, abstract = {Background: The treatment strategies for colorectal cancer located in the right side of the colon have changed dramatically during the last decade. Due to the introduction of complete mesocolic excision (CME) with central ligation of the vessels and systematic lymph node dissection, the long-term survival of affected patients has increased significantly. It has also been proposed that right-sided colon resection can be performed laparoscopically with the same extent of resection and equal long-term results. Methods: A retrospective evaluation of a prospectively expanded database on right-sided colorectal cancer or adenoma treated at the University Hospital of Wuerzburg between 2009 and 2016 was performed. All patients underwent CME. This data was analyzed alone and in comparison to the published data describing laparoscopic right-sided colon resection for colon cancer. Results: The database contains 279 patients, who underwent right-sided colon resection due to colorectal cancer or colorectal adenoma (255 open; 24 laparoscopic). Operation data (time, length of stay, time on ICU) was equal or superior to laparoscopy, which is comparable to the published results. Surprisingly, the surrogate parameter for correct CME (the number of removed lymph nodes) was significantly higher in the open group. In a subgroup analysis only including patients who were feasible for laparoscopic resection and had been operated with an open procedure by an experienced surgeon, operation time was significantly shorter and the number of removed lymph nodes is significantly higher in the open group. Conclusion: So far, several studies demonstrate that laparoscopic right-sided colon resection is comparable to open resection. Our data suggests that a consequent CME during an open operation leads to significantly more removed lymph nodes than in laparoscopically resected patients and in several so far published data of open control groups from Europe. Further prospective randomized trials comparing the long-term outcome are urgently needed before laparoscopy for right-sided colon resection can be recommended ubiquitously.}, language = {en} } @article{GotruvanGeffenNagyetal.2019, author = {Gotru, Sanjeev Kiran and van Geffen, Johanna P. and Nagy, Magdolna and Mammadova-Bach, Elmina and Eilenberger, Julia and Volz, Julia and Manukjan, Georgi and Schulze, Harald and Wagner, Leonard and Eber, Stefan and Schambeck, Christian and Deppermann, Carsten and Brouns, Sanne and Nurden, Paquita and Greinacher, Andreas and Sachs, Ulrich and Nieswandt, Bernhard and Hermanns, Heike M. and Heemskerk, Johan W. M. and Braun, Attila}, title = {Defective Zn2+ homeostasis in mouse and human platelets with α- and δ-storage pool diseases}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-44751-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227455}, year = {2019}, abstract = {Zinc (Zn2+) can modulate platelet and coagulation activation pathways, including fibrin formation. Here, we studied the (patho)physiological consequences of abnormal platelet Zn2+ storage and release. To visualize Zn2+ storage in human and mouse platelets, the Zn2+ specific fluorescent dye FluoZin3 was used. In resting platelets, the dye transiently accumulated into distinct cytosolic puncta, which were lost upon platelet activation. Platelets isolated from Unc13d-/- mice, characterized by combined defects of α/δ granular release, showed a markedly impaired Zn2+ release upon activation. Platelets from Nbeal2-/- mice mimicking Gray platelet syndrome (GPS), characterized by primarily loss of the α-granule content, had strongly reduced Zn2+ levels, which was also confirmed in primary megakaryocytes. In human platelets isolated from patients with GPS, Hermansky-Pudlak Syndrome (HPS) and Storage Pool Disease (SPD) altered Zn2+ homeostasis was detected. In turbidity and flow based assays, platelet-dependent fibrin formation was impaired in both Nbeal2-/- and Unc13d-/- mice, and the impairment could be partially restored by extracellular Zn2+. Altogether, we conclude that the release of ionic Zn2+ store from secretory granules upon platelet activation contributes to the procoagulant role of Zn2+ in platelet-dependent fibrin formation.}, language = {en} }