@article{MoustafaFouadIbrahimetal.2023, author = {Moustafa, Moataz A. M. and Fouad, Eman A. and Ibrahim, Emad and Erdei, Anna Laura and K{\´a}rp{\´a}ti, Zsolt and F{\´o}nagy, Adrien}, title = {The comparative toxicity, biochemical and physiological impacts of chlorantraniliprole and indoxacarb on Mamestra brassicae (Lepidoptera: Noctuidae)}, series = {Toxics}, volume = {11}, journal = {Toxics}, number = {3}, issn = {2305-6304}, doi = {10.3390/toxics11030212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303931}, year = {2023}, abstract = {Background: The cabbage moth, Mamestra brassicae, is a polyphagous pest that attacks several crops. Here, the sublethal and lethal effects of chlorantraniliprole and indoxacarb were investigated on the developmental stages, detoxification enzymes, reproductive activity, calling behavior, peripheral physiology, and pheromone titer of M. brasssicae. Methods: To assess pesticide effects, the second instar larvae were maintained for 24 h on a semi-artificial diet containing insecticides at their LC\(_{10}\), LC\(_{30}\), and LC\(_{50}\) concentrations. Results: M. brassicae was more susceptible to chlorantraniliprole (LC\(_{50}\) = 0.35 mg/L) than indoxacarb (LC\(_{50}\) = 1.71 mg/L). A significantly increased developmental time was observed with both insecticides at all tested concentrations but decreases in pupation rate, pupal weight, and emergence were limited to the LC50 concentration. Reductions in both the total number of eggs laid per female and the egg viability were observed with both insecticides at their LC\(_{30}\) and LC\(_{50}\) concentrations. Both female calling activity and the sex pheromone (Z11-hexadecenyl acetate and hexadecenyl acetate) titer were significantly reduced by chlorantraniliprole in LC\(_{50}\) concentration. Antennal responses of female antennae to benzaldehyde and 3-octanone were significantly weaker than controls after exposure to the indoxocarb LC\(_{50}\) concentration. Significant reductions in the enzymatic activity of glutathione S-transferases, mixed-function oxidases, and carboxylesterases were observed in response to both insecticides.}, language = {en} } @article{KarpatiDeutschKissetal.2023, author = {K{\´a}rp{\´a}ti, Zsolt and Deutsch, Ferenc and Kiss, Bal{\´a}zs and Schmitt, Thomas}, title = {Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-32652-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358095}, year = {2023}, abstract = {Seasonal plasticity in insects is often triggered by temperature and photoperiod changes. When climatic conditions become sub-optimal, insects might undergo reproductive diapause, a form of seasonal plasticity delaying the development of reproductive organs and activities. During the reproductive diapause, the cuticular hydrocarbon (CHC) profile, which covers the insect body surface, might also change to protect insects from desiccation and cold temperature. However, CHCs are often important cues and signals for mate recognition and changes in CHC composition might affect mate recognition. In the present study, we investigated the CHC profile composition and the mating success of Drosophila suzukii in 1- and 5-day-old males and females of summer and winter morphs. CHC compositions differed with age and morphs. However, no significant differences were found between the sexes of the same age and morph. The results of the behavioral assays show that summer morph pairs start to mate earlier in their life, have a shorter mating duration, and have more offspring compared to winter morph pairs. We hypothesize that CHC profiles of winter morphs are adapted to survive winter conditions, potentially at the cost of reduced mate recognition cues.}, language = {en} } @article{OtienoKarpatiPetersetal.2023, author = {Otieno, Mark and Karpati, Zsolt and Peters, Marcell K. and Duque, Laura and Schmitt, Thomas and Steffan-Dewenter, Ingolf}, title = {Elevated ozone and carbon dioxide affects the composition of volatile organic compounds emitted by Vicia faba (L.) and visitation by European orchard bee (Osmia cornuta)}, series = {PLoS One}, volume = {18}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0283480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350020}, year = {2023}, abstract = {Recent studies link increased ozone (O\(_3\)) and carbon dioxide (CO\(_2\)) levels to alteration of plant performance and plant-herbivore interactions, but their interactive effects on plant-pollinator interactions are little understood. Extra floral nectaries (EFNs) are essential organs used by some plants for stimulating defense against herbivory and for the attraction of insect pollinators, e.g., bees. The factors driving the interactions between bees and plants regarding the visitation of bees to EFNs are poorly understood, especially in the face of global change driven by greenhouse gases. Here, we experimentally tested whether elevated levels of O\(_3\) and CO\(_2\) individually and interactively alter the emission of Volatile Organic Compound (VOC) profiles in the field bean plant (Vicia faba, L., Fabaceae), EFN nectar production and EFN visitation by the European orchard bee (Osmia cornuta, Latreille, Megachilidae). Our results showed that O\(_3\) alone had significant negative effects on the blends of VOCs emitted while the treatment with elevated CO\(_2\) alone did not differ from the control. Furthermore, as with O\(_3\) alone, the mixture of O\(_3\) and CO\(_2\) also had a significant difference in the VOCs' profile. O\(_3\) exposure was also linked to reduced nectar volume and had a negative impact on EFN visitation by bees. Increased CO\(_2\) level, on the other hand, had a positive impact on bee visits. Our results add to the knowledge of the interactive effects of O\(_3\) and CO\(_2\) on plant volatiles emitted by Vicia faba and bee responses. As greenhouse gas levels continue to rise globally, it is important to take these findings into consideration to better prepare for changes in plant-insect interactions.}, language = {en} }