@article{LapaReiterKircheretal.2016, author = {Lapa, Constantin and Reiter, Theresa and Kircher, Malte and Schirbel, Andreas and Werner, Rudolf A. and Pelzer, Theo and Pizarro, Carmen and Skowasch, Dirk and Thomas, Lena and Schlesinger-Irsch, Ulrike and Thomas, Daniel and Bundschuh, Ralph A. and Bauer, Wolfgang R. and Gartner, Florian C.}, title = {Somatostatin receptor based PET/CT in patients with the suspicion of cardiac sarcoidosis: an initial comparison to cardiac MRI}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {47}, doi = {10.18632/oncotarget.12799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175423}, pages = {77807-77814}, year = {2016}, abstract = {Diagnosis of cardiac sarcoidosis is often challenging. Whereas cardiac magnetic resonance imaging (CMR) and positron emission tomography/computed tomography (PET/CT) with \(^{18}\)F-fluorodeoxyglucose (FDG) are most commonly used to evaluate patients, PET/CT using radiolabeled somatostatin receptor (SSTR) ligands for visualization of inflammation might represent a more specific alternative. This study aimed to investigate the feasibility of SSTR-PET/CT for detecting cardiac sarcoidosis in comparison to CMR. 15 patients (6 males, 9 females) with sarcoidosis and suspicion on cardiac involvement underwent SSTR-PET/CT imaging and CMR. Images were visually scored. The AHA 17-segment model of the left myocardium was used for localization and comparison of inflamed myocardium for both imaging modalities. In semi-quantitative analysis, mean (SUV\(_{mean}\)) and maximum standardized uptake values (SUV\(_{max}\)) of affected myocardium were calculated and compared with both remote myocardium and left ventricular (LV) cavity. SSTR-PET was positive in 7/15, CMR in 10/15 patients. Of the 3 CMR+/PET- subjects, one patient with minor involvement (<25\% of wall thickness in CMR) was missed by PET. The remaining two CMR+/PET- patients displayed no adverse cardiac events during follow-up. In the 17-segment model, PET/CT yielded 27 and CMR 29 positive segments. Overall concordance of the 2 modalities was 96.1\% (245/255 segments analyzed). SUV\(_{mean}\) and SUV\(_{max}\) in inflamed areas were 2.0±1.2 and 2.6±1.2, respectively. The lesion-to-remote myocardium and lesion-to-LV cavity ratios were 1.8±0.2 and 1.9±0.2 for SUV\(_{mean}\) and 2.0±0.3 and 1.7±0.3 for SUV\(_{max}\), respectively. Detection of cardiac sarcoidosis by SSTR-PET/CT is feasible. Our data warrant further analysis in larger prospective series.}, language = {en} } @article{WernerWeichKircheretal.2018, author = {Werner, Rudolf A. and Weich, Alexander and Kircher, Malte and Solnes, Lilja B. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Pomper, Martin G. and Rowe, Steven and Lapa, Constantin}, title = {The theranostic promise for neuroendocrine tumors in the late 2010s - Where do we stand, where do we go?}, series = {Theranostics}, volume = {8}, journal = {Theranostics}, number = {22}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170264}, pages = {6088-6100}, year = {2018}, abstract = {More than 25 years after the first peptide receptor radionuclide therapy (PRRT), the concept of somatostatin receptor (SSTR)-directed imaging and therapy for neuroendocrine tumors (NET) is seeing rapidly increasing use. To maximize the full potential of its theranostic promise, efforts in recent years have expanded recommendations in current guidelines and included the evaluation of novel theranostic radiotracers for imaging and treatment of NET. Moreover, the introduction of standardized reporting framework systems may harmonize PET reading, address pitfalls in interpreting SSTR-PET/CT scans and guide the treating physician in selecting PRRT candidates. Notably, the concept of PRRT has also been applied beyond oncology, e.g. for treatment of inflammatory conditions like sarcoidosis. Future perspectives may include the efficacy evaluation of PRRT compared to other common treatment options for NET, novel strategies for closer monitoring of potential side effects, the introduction of novel radiotracers with beneficial pharmacodynamic and kinetic properties or the use of supervised machine learning approaches for outcome prediction. This article reviews how the SSTR-directed theranostic concept is currently applied and also reflects on recent developments that hold promise for the future of theranostics in this context.}, subject = {Positronen-Emissions-Tomografie}, language = {en} }