@article{ColvillBoothNilletal.2016, author = {Colvill, Emma and Booth, Jeremy and Nill, Simeon and Fast, Martin and Bedford, James and Oelfke, Uwe and Nakamura, Mitsuhiro and Poulsen, Per and Worm, Esben and Hansen, Rune and Ravkilde, Thomas and Rydh{\"o}g, Jonas Scherman and Pommer, Tobias and af Rosenschold, Per Munck and Lang, Stephanie and Guckenberger, Matthias and Groh, Christian and Herrmann, Christian and Verellen, Dirk and Poels, Kenneth and Wang, Lei and Hadsell, Michael and Sothmann, Thilo and Blanck, Oliver and Keall, Paul}, title = {A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking}, series = {Radiotherapy and Oncology}, volume = {119}, journal = {Radiotherapy and Oncology}, number = {1}, doi = {10.1016/j.radonc.2016.03.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189605}, pages = {159-165}, year = {2016}, abstract = {Purpose: A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. Methods and materials: Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for gamma-tests recorded. Results: For all lung traces all measurement sets show improved dose accuracy with a mean 2\%/2 mm gamma-fail rate of 1.6\% with adaptation and 15.2\% without adaptation (p < 0.001). For all prostate the mean 2\%/2 mm gamma-fail rate was 1.4\% with adaptation and 17.3\% without adaptation (p < 0.001). The difference between the four systems was small with an average 2\%/2 mm gamma-fail rate of <3\% for all systems with adaptation for lung and prostate. Conclusions: The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.}, language = {en} } @article{VargasWagnerShaikhetal.2022, author = {Vargas, Juan Gamboa and Wagner, Jennifer and Shaikh, Haroon and Lang, Isabell and Medler, Juliane and Anany, Mohamed and Steinfatt, Tim and Mosca, Josefina Pe{\~n}a and Haack, Stephanie and Dahlhoff, Julia and B{\"u}ttner-Herold, Maike and Graf, Carolin and Viera, Estibaliz Arellano and Einsele, Hermann and Wajant, Harald and Beilhack, Andreas}, title = {A TNFR2-Specific TNF fusion protein with improved in vivo activity}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.888274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277436}, year = {2022}, abstract = {Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300\% in vivo 5 days after treatment. Treg numbers remained as high as 200\% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD.}, language = {en} }