@article{HudsonNewboldContuetal.2014, author = {Hudson, Lawrence N. and Newbold, Tim and Contu, Sara and Hill, Samantha L. L. and Lysenko, Igor and De Palma, Adriana and Phillips, Helen R. P. and Senior, Rebecca A. and Bennett, Dominic J. and Booth, Hollie and Choimes, Argyrios and Correia, David L. P. and Day, Julie and Echeverria-Londono, Susy and Garon, Morgan and Harrison, Michelle L. K. and Ingram, Daniel J. and Jung, Martin and Kemp, Victoria and Kirkpatrick, Lucinda and Martin, Callum D. and Pan, Yuan and White, Hannah J. and Aben, Job and Abrahamczyk, Stefan and Adum, Gilbert B. and Aguilar-Barquero, Virginia and Aizen, Marcelo and Ancrenaz, Marc and Arbelaez-Cortes, Enrique and Armbrecht, Inge and Azhar, Badrul and Azpiroz, Adrian B. and Baeten, Lander and B{\´a}ldi, Andr{\´a}s and Banks, John E. and Barlow, Jos and Bat{\´a}ry, P{\´e}ter and Bates, Adam J. and Bayne, Erin M. and Beja, Pedro and Berg, Ake and Berry, Nicholas J. and Bicknell, Jake E. and Bihn, Jochen H. and B{\"o}hning-Gaese, Katrin and Boekhout, Teun and Boutin, Celine and Bouyer, Jeremy and Brearley, Francis Q. and Brito, Isabel and Brunet, J{\"o}rg and Buczkowski, Grzegorz and Buscardo, Erika and Cabra-Garcia, Jimmy and Calvino-Cancela, Maria and Cameron, Sydney A. and Cancello, Eliana M. and Carrijo, Tiago F. and Carvalho, Anelena L. and Castro, Helena and Castro-Luna, Alejandro A. and Cerda, Rolando and Cerezo, Alexis and Chauvat, Matthieu and Clarke, Frank M. and Cleary, Daniel F. R. and Connop, Stuart P. and D'Aniello, Biagio and da Silva, Pedro Giovani and Darvill, Ben and Dauber, Jens and Dejean, Alain and Diek{\"o}tter, Tim and Dominguez-Haydar, Yamileth and Dormann, Carsten F. and Dumont, Bertrand and Dures, Simon G. and Dynesius, Mats and Edenius, Lars and Elek, Zolt{\´a}n and Entling, Martin H. and Farwig, Nina and Fayle, Tom M. and Felicioli, Antonio and Felton, Annika M. and Ficetola, Gentile F. and Filgueiras, Bruno K. C. and Fonte, Steve J. and Fraser, Lauchlan H. and Fukuda, Daisuke and Furlani, Dario and Ganzhorn, J{\"o}rg U. and Garden, Jenni G. and Gheler-Costa, Carla and Giordani, Paolo and Giordano, Simonetta and Gottschalk, Marco S. and Goulson, Dave and Gove, Aaron D. and Grogan, James and Hanley, Mick E. and Hanson, Thor and Hashim, Nor R. and Hawes, Joseph E. and H{\´e}bert, Christian and Helden, Alvin J. and Henden, John-Andr{\´e} and Hern{\´a}ndez, Lionel and Herzog, Felix and Higuera-Diaz, Diego and Hilje, Branko and Horgan, Finbarr G. and Horv{\´a}th, Roland and Hylander, Kristoffer and Horv{\´a}th, Roland and Isaacs-Cubides, Paola and Ishitani, Mashiro and Jacobs, Carmen T. and Jaramillo, Victor J. and Jauker, Birgit and Jonsell, Matts and Jung, Thomas S. and Kapoor, Vena and Kati, Vassiliki and Katovai, Eric and Kessler, Michael and Knop, Eva and Kolb, Annette and K{\"o}r{\"o}si, {\`A}d{\´a}m and Lachat, Thibault and Lantschner, Victoria and Le F{\´e}on, Violette and LeBuhn, Gretchen and L{\´e}gar{\´e}, Jean-Philippe and Letcher, Susan G. and Littlewood, Nick A. and L{\´o}pez-Quintero, Carlos A. and Louhaichi, Mounir and L{\"o}vei, Gabor L. and Lucas-Borja, Manuel Esteban and Luja, Victor H. and Maeto, Kaoru and Magura, Tibor and Mallari, Neil Aldrin and Marin-Spiotta, Erika and Marhall, E. J. P. and Mart{\´i}nez, Eliana and Mayfield, Margaret M. and Mikusinski, Gregorz and Milder, Jeffery C. and Miller, James R. and Morales, Carolina L. and Muchane, Mary N. and Muchane, Muchai and Naidoo, Robin and Nakamura, Akihiro and Naoe, Shoji and Nates-Parra, Guiomar and Navarerete Gutierrez, Dario A. and Neuschulz, Eike L. and Noreika, Norbertas and Norfolk, Olivia and Noriega, Jorge Ari and N{\"o}ske, Nicole M. and O'Dea, Niall and Oduro, William and Ofori-Boateng, Caleb and Oke, Chris O. and Osgathorpe, Lynne M. and Paritsis, Juan and Parrah, Alejandro and Pelegrin, Nicol{\´a}s and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Phalan, Ben and Philips, T. Keith and Poveda, Katja and Power, Eileen F. and Presley, Steven J. and Proen{\c{c}}a, V{\^a}nia and Quaranta, Marino and Quintero, Carolina and Redpath-Downing, Nicola A. and Reid, J. Leighton and Reis, Yana T. and Ribeiro, Danilo B. and Richardson, Barbara A. and Richardson, Michael J. and Robles, Carolina A. and R{\"o}mbke, J{\"o}rg and Romero-Duque, Luz Piedad and Rosselli, Loreta and Rossiter, Stephen J. and Roulston, T'ai H. and Rousseau, Laurent and Sadler, Jonathan P. and S{\´a}fi{\´a}n, Szbolcs and Salda{\~n}a-V{\´a}squez, Romeo A. and Samneg{\aa}rd, Ulrika and Sch{\"u}epp, Christof and Schweiger, Oliver and Sedlock, Jodi L. and Shahabuddin, Ghazala and Sheil, Douglas and Silva, Fernando A. B. and Slade, Eleanor and Smith-Pardo, Allan H. and Sodhi, Navjot S. and Somarriba, Eduardo J. and Sosa, Ram{\´o}n A. and Stout, Jane C. and Struebig, Matthew J. and Sung, Yik-Hei and Threlfall, Caragh G. and Tonietto, Rebecca and T{\´o}thm{\´e}r{\´e}sz, B{\´e}la and Tscharntke, Teja and Turner, Edgar C. and Tylianakis, Jason M. and Vanbergen, Adam J. and Vassilev, Kiril and Verboven, Hans A. F. and Vergara, Carlos H. and Vergara, Pablo M. and Verhulst, Jort and Walker, Tony R. and Wang, Yanping and Watling, James I. and Wells, Konstans and Williams, Christopher D. and Willig, Michael R. and Woinarski, John C. Z. and Wolf, Jan H. D. and Woodcock, Ben A. and Yu, Douglas W. and Zailsev, Andreys and Collen, Ben and Ewers, Rob M. and Mace, Georgina M. and Purves, Drew W. and Scharlemann, J{\"o}rn P. W. and Pervis, Andy}, title = {The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts}, series = {Ecology and Evolution}, volume = {4}, journal = {Ecology and Evolution}, number = {24}, doi = {10.1002/ece3.1303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114425}, pages = {4701 - 4735}, year = {2014}, abstract = {Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1\% of the total number of all species described, and more than 1\% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.}, language = {en} } @article{BousquetFarrellCrooksetal.2016, author = {Bousquet, J. and Farrell, J. and Crooks, G. and Hellings, P. and Bel, E. H. and Bewick, M. and Chavannes, N. H. and Correia de Sousa, J. and Cruz, A. A. and Haahtela, T. and Joos, G. and Khaltaev, N. and Malva, J. and Muraro, A. and Nogues, M. and Palkonen, S. and Pedersen, S. and Robalo-Cordeiro, C. and Samolinski, B. and Strandberg, T. and Valiulis, A. and Yorgancioglu, A. and Zuberbier, T. and Bedbrook, A. and Aberer, W. and Adachi, M. and Agusti, A. and Akdis, C. A. and Akdis, M. and Ankri, J. and Alonso, A. and Annesi-Maesano, I. and Ansotegui, I. J. and Anto, J. M. and Arnavielhe, S. and Arshad, H. and Bai, C. and Baiardini, I. and Bachert, C. and Baigenzhin, A. K. and Barbara, C. and Bateman, E. D. and Begh{\´e}, B. and Ben Kheder, A. and Bennoor, K. S. and Benson, M. and Bergmann, K. C. and Bieber, T. and Bindslev-Jensen, C. and Bjermer, L. and Blain, H. and Blasi, F. and Boner, A. L. and Bonini, M. and Bonini, S. and Bosnic-Anticevitch, S. and Boulet, L. P. and Bourret, R. and Bousquet, P. J. and Braido, F. and Briggs, A. H. and Brightling, C. E. and Brozek, J. and Buhl, R. and Burney, P. G. and Bush, A. and Caballero-Fonseca, F. and Caimmi, D. and Calderon, M. A. and Calverley, P. M. and Camargos, P. A. M. and Canonica, G. W. and Camuzat, T. and Carlsen, K. H. and Carr, W. and Carriazo, A. and Casale, T. and Cepeda Sarabia, A. M. and Chatzi, L. and Chen, Y. Z. and Chiron, R. and Chkhartishvili, E. and Chuchalin, A. G. and Chung, K. F. and Ciprandi, G. and Cirule, I. and Cox, L. and Costa, D. J. and Custovic, A. and Dahl, R. and Dahlen, S. E. and Darsow, U. and De Carlo, G. and De Blay, F. and Dedeu, T. and Deleanu, D. and De Manuel Keenoy, E. and Demoly, P. and Denburg, J. A. and Devillier, P. and Didier, A. and Dinh-Xuan, A. T. and Djukanovic, R. and Dokic, D. and Douagui, H. and Dray, G. and Dubakiene, R. and Durham, S. R. and Dykewicz, M. S. and El-Gamal, Y. and Emuzyte, R. and Fabbri, L. M. and Fletcher, M. and Fiocchi, A. and Fink Wagner, A. and Fonseca, J. and Fokkens, W. J. and Forastiere, F. and Frith, P. and Gaga, M. and Gamkrelidze, A. and Garces, J. and Garcia-Aymerich, J. and Gemicioğlu, B. and Gereda, J. E. and Gonz{\´a}lez Diaz, S. and Gotua, M. and Grisle, I. and Grouse, L. and Gutter, Z. and Guzm{\´a}n, M. A. and Heaney, L. G. and Hellquist-Dahl, B. and Henderson, D. and Hendry, A. and Heinrich, J. and Heve, D. and Horak, F. and Hourihane, J. O'. B. and Howarth, P. and Humbert, M. and Hyland, M. E. and Illario, M. and Ivancevich, J. C. and Jardim, J. R. and Jares, E. J. and Jeandel, C. and Jenkins, C. and Johnston, S. L. and Jonquet, O. and Julge, K. and Jung, K. S. and Just, J. and Kaidashev, I. and Kaitov, M. R. and Kalayci, O. and Kalyoncu, A. F. and Keil, T. and Keith, P. K. and Klimek, L. and Koffi N'Goran, B. and Kolek, V. and Koppelman, G. H. and Kowalski, M. L. and Kull, I. and Kuna, P. and Kvedariene, V. and Lambrecht, B. and Lau, S. and Larenas‑Linnemann, D. and Laune, D. and Le, L. T. T. and Lieberman, P. and Lipworth, B. and Li, J. and Lodrup Carlsen, K. and Louis, R. and MacNee, W. and Magard, Y. and Magnan, A. and Mahboub, B. and Mair, A. and Majer, I. and Makela, M. J. and Manning, P. and Mara, S. and Marshall, G. D. and Masjedi, M. R. and Matignon, P. and Maurer, M. and Mavale‑Manuel, S. and Mel{\´e}n, E. and Melo‑Gomes, E. and Meltzer, E. O. and Menzies‑Gow, A. and Merk, H. and Michel, J. P. and Miculinic, N. and Mihaltan, F. and Milenkovic, B. and Mohammad, G. M. Y. and Molimard, M. and Momas, I. and Montilla‑Santana, A. and Morais‑Almeida, M. and Morgan, M. and M{\"o}sges, R. and Mullol, J. and Nafti, S. and Namazova‑Baranova, L. and Naclerio, R. and Neou, A. and Neffen, H. and Nekam, K. and Niggemann, B. and Ninot, G. and Nyembue, T. D. and O'Hehir, R. E. and Ohta, K. and Okamoto, Y. and Okubo, K. and Ouedraogo, S. and Paggiaro, P. and Pali‑Sch{\"o}ll, I. and Panzner, P. and Papadopoulos, N. and Papi, A. and Park, H. S. and Passalacqua, G. and Pavord, I. and Pawankar, R. and Pengelly, R. and Pfaar, O. and Picard, R. and Pigearias, B. and Pin, I. and Plavec, D. and Poethig, D. and Pohl, W. and Popov, T. A. and Portejoie, F. and Potter, P. and Postma, D. and Price, D. and Rabe, K. F. and Raciborski, F. and Radier Pontal, F. and Repka‑Ramirez, S. and Reitamo, S. and Rennard, S. and Rodenas, F. and Roberts, J. and Roca, J. and Rodriguez Ma{\~n}as, L. and et al,}, title = {Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)}, series = {Clinical and Translational Allergy}, volume = {6}, journal = {Clinical and Translational Allergy}, number = {29}, doi = {10.1186/s13601-016-0116-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166874}, year = {2016}, abstract = {Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.}, language = {en} } @article{ZahoGhirlandoAlfonsoetal.2015, author = {Zaho, Huaying and Ghirlando, Rodolfo and Alfonso, Carlos and Arisaka, Fumio and Attali, Ilan and Bain, David L. and Bakhtina, Marina M. and Becker, Donald F. and Bedwell, Gregory J. and Bekdemir, Ahmet and Besong, Tabot M. D. and Birck, Catherine and Brautigam, Chad A. and Brennerman, William and Byron, Olwyn and Bzowska, Agnieszka and Chaires, Jonathan B. and Chaton, Catherine T. and Coelfen, Helmbut and Connaghan, Keith D. and Crowley, Kimberly A. and Curth, Ute and Daviter, Tina and Dean, William L. and Diez, Ana I. and Ebel, Christine and Eckert, Debra M. and Eisele, Leslie E. and Eisenstein, Edward and England, Patrick and Escalante, Carlos and Fagan, Jeffrey A. and Fairman, Robert and Finn, Ron M. and Fischle, Wolfgang and Garcia de la Torre, Jose and Gor, Jayesh and Gustafsson, Henning and Hall, Damien and Harding, Stephen E. and Hernandez Cifre, Jose G. and Herr, Andrew B. and Howell, Elizabeth E. and Isaac, Richard S. and Jao, Shu-Chuan and Jose, Davis and Kim, Soon-Jong and Kokona, Bashkim and Kornblatt, Jack A. and Kosek, Dalibor and Krayukhina, Elena and Krzizike, Daniel and Kusznir, Eric A. and Kwon, Hyewon and Larson, Adam and Laue, Thomas M. and Le Roy, Aline and Leech, Andrew P. and Lilie, Hauke and Luger, Karolin and Luque-Ortega, Juan R. and Ma, Jia and May, Carrie A. and Maynard, Ernest L. and Modrak-Wojcik, Anna and Mok, Yee-Foong and M{\"u}cke, Norbert and Nagel-Steger, Luitgard and Narlikar, Geeta J. and Noda, Masanori and Nourse, Amanda and Obsil, Thomas and Park, Chad K and Park, Jin-Ku and Pawelek, Peter D. and Perdue, Erby E. and Perkins, Stephen J. and Perugini, Matthew A. and Peterson, Craig L. and Peverelli, Martin G. and Piszczek, Grzegorz and Prag, Gali and Prevelige, Peter E. and Raynal, Bertrand D. E. and Rezabkova, Lenka and Richter, Klaus and Ringel, Alison E. and Rosenberg, Rose and Rowe, Arthur J. and Rufer, Arne C. and Scott, David J. and Seravalli, Javier G. and Solovyova, Alexandra S. and Song, Renjie and Staunton, David and Stoddard, Caitlin and Stott, Katherine and Strauss, Holder M. and Streicher, Werner W. and Sumida, John P. and Swygert, Sarah G. and Szczepanowski, Roman H. and Tessmer, Ingrid and Toth, Ronald T. and Tripathy, Ashutosh and Uchiyama, Susumu and Uebel, Stephan F. W. and Unzai, Satoru and Gruber, Anna Vitlin and von Hippel, Peter H. and Wandrey, Christine and Wang, Szu-Huan and Weitzel, Steven E and Wielgus-Kutrowska, Beata and Wolberger, Cynthia and Wolff, Martin and Wright, Edward and Wu, Yu-Sung and Wubben, Jacinta M. and Schuck, Peter}, title = {A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0126420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151903}, pages = {e0126420}, year = {2015}, abstract = {Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304\(\pm\)0.188) S (4.4\%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of \(\pm\)0.030 S (0.7\%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.}, language = {en} } @article{BleinBardelDanjeanetal.2015, author = {Blein, Sophie and Bardel, Claire and Danjean, Vincent and McGuffog, Lesley and Healay, Sue and Barrowdale, Daniel and Lee, Andrew and Dennis, Joe and Kuchenbaecker, Karoline B. and Soucy, Penny and Terry, Mary Beth and Chung, Wendy K. and Goldgar, David E. and Buys, Saundra S. and Janavicius, Ramunas and Tihomirova, Laima and Tung, Nadine and Dorfling, Cecilia M. and van Rensburg, Elizabeth J. and Neuhausen, Susan L. and Ding, Yuan Chun and Gerdes, Anne-Marie and Ejlertsen, Bent and Nielsen, Finn C. and Hansen, Thomas V. O. and Osorio, Ana and Benitez, Javier and Andreas Conejero, Raquel and Segota, Ena and Weitzel, Jeffrey N. and Thelander, Margo and Peterlongo, Paolo and Radice, Paolo and Pensotti, Valeria and Dolcetti, Riccardo and Bonanni, Bernardo and Peissel, Bernard and Zaffaroni, Daniela and Scuvera, Giulietta and Manoukian, Siranoush and Varesco, Liliana and Capone, Gabriele L. and Papi, Laura and Ottini, Laura and Yannoukakos, Drakoulis and Konstantopoulou, Irene and Garber, Judy and Hamann, Ute and Donaldson, Alan and Brady, Angela and Brewer, Carole and Foo, Claire and Evans, D. Gareth and Frost, Debra and Eccles, Diana and Douglas, Fiona and Cook, Jackie and Adlard, Julian and Barwell, Julian and Walker, Lisa and Izatt, Louise and Side, Lucy E. and Kennedy, M. John and Tischkowitz, Marc and Rogers, Mark T. and Porteous, Mary E. and Morrison, Patrick J. and Platte, Radka and Eeles, Ros and Davidson, Rosemarie and Hodgson, Shirley and Cole, Trevor and Godwin, Andrew K and Isaacs, Claudine and Claes, Kathleen and De Leeneer, Kim and Meindl, Alfons and Gehrig, Andrea and Wappenschmidt, Barbara and Sutter, Christian and Engel, Christoph and Niederacher, Dieter and Steinemann, Doris and Plendl, Hansjoerg and Kast, Karin and Rhiem, Kerstin and Ditsch, Nina and Arnold, Norbert and Varon-Mateeva, Raymonda and Schmutzler, Rita K. and Preisler-Adams, Sabine and Markov, Nadja Bogdanova and Wang-Gohrke, Shan and de Pauw, Antoine and Lefol, Cedrick and Lasset, Christine and Leroux, Dominique and Rouleau, Etienne and Damiola, Francesca and Dreyfus, Helene and Barjhoux, Laure and Golmard, Lisa and Uhrhammer, Nancy and Bonadona, Valerie and Sornin, Valerie and Bignon, Yves-Jean and Carter, Jonathan and Van Le, Linda and Piedmonte, Marion and DiSilvestro, Paul A. and de la Hoya, Miguel and Caldes, Trinidad and Nevanlinna, Heli and Aittom{\"a}ki, Kristiina and Jager, Agnes and van den Ouweland, Ans M. W. and Kets, Carolien M. and Aalfs, Cora M. and van Leeuwen, Flora E. and Hogervorst, Frans B. L. and Meijers-Heijboer, Hanne E. J. and Oosterwijk, Jan C. and van Roozendaal, Kees E. P. and Rookus, Matti A. and Devilee, Peter and van der Luijt, Rob B. and Olah, Edith and Diez, Orland and Teule, Alex and Lazaro, Conxi and Blanco, Ignacio and Del Valle, Jesus and Jakubowska, Anna and Sukiennicki, Grzegorz and Gronwald, Jacek and Spurdle, Amanda B. and Foulkes, William and Olswold, Curtis and Lindor, Noralene M. and Pankratz, Vernon S. and Szabo, Csilla I. and Lincoln, Anne and Jacobs, Lauren and Corines, Marina and Robson, Mark and Vijai, Joseph and Berger, Andreas and Fink-Retter, Anneliese and Singer, Christian F. and Rappaport, Christine and Geschwantler Kaulich, Daphne and Pfeiler, Georg and Tea, Muy-Kheng and Greene, Mark H. and Mai, Phuong L. and Rennert, Gad and Imyanitov, Evgeny N. and Mulligan, Anna Marie and Glendon, Gord and Andrulis, Irene L. and Tchatchou, Andrine and Toland, Amanda Ewart and Pedersen, Inge Sokilde and Thomassen, Mads and Kruse, Torben A. and Jensen, Uffe Birk and Caligo, Maria A. and Friedman, Eitan and Zidan, Jamal and Laitman, Yael and Lindblom, Annika and Melin, Beatrice and Arver, Brita and Loman, Niklas and Rosenquist, Richard and Olopade, Olufunmilayo I. and Nussbaum, Robert L. and Ramus, Susan J. and Nathanson, Katherine L. and Domchek, Susan M. and Rebbeck, Timothy R. and Arun, Banu K. and Mitchell, Gillian and Karlan, Bethy Y. and Lester, Jenny and Orsulic, Sandra and Stoppa-Lyonnet, Dominique and Thomas, Gilles and Simard, Jacques and Couch, Fergus J. and Offit, Kenenth and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C. and Mazoyer, Sylvie and Phelan, Catherine M. and Sinilnikova, Olga M. and Cox, David G.}, title = {An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers}, series = {Breast Cancer Research}, volume = {17}, journal = {Breast Cancer Research}, number = {61}, doi = {10.1186/s13058-015-0567-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145458}, year = {2015}, abstract = {Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95\% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95\% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.}, language = {en} } @article{DePalmaAbrahamczykAizenetal.2016, author = {De Palma, Adriana and Abrahamczyk, Stefan and Aizen, Marcelo A. and Albrecht, Matthias and Basset, Yves and Bates, Adam and Blake, Robin J. and Boutin, C{\´e}line and Bugter, Rob and Connop, Stuart and Cruz-L{\´o}pez, Leopoldo and Cunningham, Saul A. and Darvill, Ben and Diek{\"o}tter, Tim and Dorn, Silvia and Downing, Nicola and Entling, Martin H. and Farwig, Nina and Felicioli, Antonio and Fonte, Steven J. and Fowler, Robert and Franzen, Markus Franz{\´e}n and Goulson, Dave and Grass, Ingo and Hanley, Mick E. and Hendrix, Stephen D. and Herrmann, Farina and Herzog, Felix and Holzschuh, Andrea and Jauker, Birgit and Kessler, Michael and Knight, M. E. and Kruess, Andreas and Lavelle, Patrick and Le F{\´e}on, Violette and Lentini, Pia and Malone, Louise A. and Marshall, Jon and Mart{\´i}nez Pach{\´o}n, Eliana and McFrederick, Quinn S. and Morales, Carolina L. and Mudri-Stojnic, Sonja and Nates-Parra, Guiomar and Nilsson, Sven G. and {\"O}ckinger, Erik and Osgathorpe, Lynne and Parra-H, Alejandro and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Poveda, Katja and Power, Eileen F. and Quaranta, Marino and Quintero, Carolina and Rader, Romina and Richards, Miriam H. and Roulston, T'ai and Rousseau, Laurent and Sadler, Jonathan P. and Samneg{\aa}rd, Ulrika and Schellhorn, Nancy A. and Sch{\"u}epp, Christof and Schweiger, Oliver and Smith-Pardo, Allan H. and Steffan-Dewenter, Ingolf and Stout, Jane C. and Tonietto, Rebecca K. and Tscharntke, Teja and Tylianakis, Jason M. and Verboven, Hans A. F. and Vergara, Carlos H. and Verhulst, Jort and Westphal, Catrin and Yoon, Hyung Joo and Purvis, Andy}, title = {Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep31153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167642}, pages = {31153}, year = {2016}, abstract = {Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.}, language = {en} }