@article{LechermeierZimmerLueffeetal.2019, author = {Lechermeier, Carina G. and Zimmer, Frederic and L{\"u}ffe, Teresa M. and Lesch, Klaus-Peter and Romanos, Marcel and Lillesaar, Christina and Drepper, Carsten}, title = {Transcript analysis of zebrafish GLUT3 genes, slc2a3a and slc2a3b, define overlapping as well as distinct expression domains in the zebrafish (Danio rerio) central nervous system}, series = {Frontiers in Molecular Neuroscience}, volume = {12}, journal = {Frontiers in Molecular Neuroscience}, number = {199}, doi = {10.3389/fnmol.2019.00199}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201797}, year = {2019}, abstract = {The transport of glucose across the cell plasma membrane is vital to most mammalian cells. The glucose transporter (GLUT; also called SLC2A) family of transmembrane solute carriers is responsible for this function in vivo. GLUT proteins encompass 14 different isoforms in humans with different cell type-specific expression patterns and activities. Central to glucose utilization and delivery in the brain is the neuronally expressed GLUT3. Recent research has shown an involvement of GLUT3 genetic variation or altered expression in several different brain disorders, including Huntington's and Alzheimer's diseases. Furthermore, GLUT3 was identified as a potential risk gene for multiple psychiatric disorders. To study the role of GLUT3 in brain function and disease a more detailed knowledge of its expression in model organisms is needed. Zebrafish (Danio rerio) has in recent years gained popularity as a model organism for brain research and is now well-established for modeling psychiatric disorders. Here, we have analyzed the sequence of GLUT3 orthologs and identified two paralogous genes in the zebrafish, slc2a3a and slc2a3b. Interestingly, the Glut3b protein sequence contains a unique stretch of amino acids, which may be important for functional regulation. The slc2a3a transcript is detectable in the central nervous system including distinct cellular populations in telencephalon, diencephalon, mesencephalon and rhombencephalon at embryonic and larval stages. Conversely, the slc2a3b transcript shows a rather diffuse expression pattern at different embryonic stages and brain regions. Expression of slc2a3a is maintained in the adult brain and is found in the telencephalon, diencephalon, mesencephalon, cerebellum and medulla oblongata. The slc2a3b transcripts are present in overlapping as well as distinct regions compared to slc2a3a. Double in situ hybridizations were used to demonstrate that slc2a3a is expressed by some GABAergic neurons at embryonic stages. This detailed description of zebrafish slc2a3a and slc2a3b expression at developmental and adult stages paves the way for further investigations of normal GLUT3 function and its role in brain disorders.}, language = {en} } @phdthesis{Lechermeier2024, author = {Lechermeier, Carina}, title = {Neuroanatomical and functional evaluation of ADHD candidate genes in the model organism zebrafish (\(Danio\) \(rerio\))}, doi = {10.25972/OPUS-37108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-371084}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent developmental disorders, affecting 5.9\% children and adolescents and 2.5\% adults worldwide. The core characteristics are age-inappropriate levels of hyperactivity, impulsivity and inattention, often accompanied by co-morbidities such as mood and conduct disorders as wells as learning deficits. In the majority of cases, ADHD is caused by an interplay of accumulated genetic and environmental risk factors. Twin studies report a very high heritability of 70-80\%, however, common genetic variants in the population only explain a third of the heritability. The rest of the genetic predisposition is composed of rare copy number variations (CNVs) and gene x environment interactions including epigenetic alterations. Through genome wide association (GWAS) and linkage studies a number of likely candidate genes were identified. A handful of them play a role in dopamine or noradrenaline neurotransmitter systems, simultaneously those systems are the main targets of common drug treatment approaches. However, for the majority of candidates the biological function in relation to ADHD is unknown. It is crucial to identify those functions in order to gain a deeper understanding of the pathomechanism and genetic networks potentially responsible for the disorder. This work focuses on the three candidate genes GFOD1, SLC2A3 and LBX1 and their role in the healthy organism as well as in case of ADHD. The neuroanatomy was regarded through expression analysis and various behavioural assays of activity were performed to link alterations on the transcript level to phenotypes associated with the neurodevelopmental disorder. Zebrafish orthologues of the human risk genes were identified and extensive temporal and spacial expression characterisation performed via RNA in situ hybridisation. Through morpholino derived knock-down and mRNA overexpression zebrafish models with subsequent behavioural analysis, both hyper- and hypoactive phenotypes were discovered. Additional expression analysis through double in situ hybridisation revealed a co-localisation during zebrafish neurodevelopment of each gfod1 and slc2a3a together with gad1b, a marker for GABAergic neurons. Interestingly, both risk genes have previously been associated with glucose homeostasis and energy metabolism, which when disrupted could lead to alterations in signal transduction and neuron survival. Likewise, Lbx1 plays a pivotal role in GABAergic versus glutamatergic neuron specification during spinal cord and hindbrain development in mice and chicken. Preliminary results of this work suggest a similar role in zebrafish. Taken together, those findings on the one hand represent a sturdy basis to con- tinue studies of the function of the genes and on the other hand open up the opportunity to investigate novel aspects of ADHD research by exploring the role of the GABAergic neurotransmitter system or the connection between energy metabolism and psychiatric disorders.}, subject = {Aufmerksamkeitsdefizit-Syndrom}, language = {en} }