@article{FischerSchardtLilaoGarzonetal.2023, author = {Fischer, Sabine C. and Schardt, Simon and Lilao-Garz{\´o}n, Joaqu{\´i}n and Mu{\~n}oz-Descalzo, Silvia}, title = {The salt-and-pepper pattern in mouse blastocysts is compatible with signaling beyond the nearest neighbors}, series = {iScience}, volume = {26}, journal = {iScience}, number = {11}, doi = {10.1016/j.isci.2023.108106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350184}, year = {2023}, abstract = {Summary Embryos develop in a concerted sequence of spatiotemporal arrangements of cells. In the preimplantation mouse embryo, the distribution of the cells in the inner cell mass evolves from a salt-and-pepper pattern to spatial segregation of two distinct cell types. The exact properties of the salt-and-pepper pattern have not been analyzed so far. We investigate the spatiotemporal distribution of NANOG- and GATA6-expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single-cell-based neighborhood analyses. A combination of spatial statistics and agent-based modeling reveals that the cell fate distribution follows a local clustering pattern. Using ordinary differential equations modeling, we show that this pattern can be established by a distance-based signaling mechanism enabling cells to integrate information from the whole inner cell mass into their cell fate decision. Our work highlights the importance of longer-range signaling to ensure coordinated decisions in groups of cells to successfully build embryos. Highlights • The local cell neighborhood and global ICM population composition correlate • ICM cells show characteristics of local clustering in early and mid mouse blastocysts • ICM patterning requires integration of signals from cells beyond the first neighbors}, language = {en} }