@article{LiuWangSatoetal.2019, author = {Liu, Yuhai and Wang, Zhenjiu and Sato, Toshihiro and Hohenadler, Martin and Wang, Chong and Guo, Wenan and Assaad, Fakher F.}, title = {Superconductivity from the condensation of topological defects in a quantum spin-Hall insulator}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10372-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237024}, year = {2019}, abstract = {The discovery of quantum spin-Hall (QSH) insulators has brought topology to the forefront of condensed matter physics. While a QSH state from spin-orbit coupling can be fully understood in terms of band theory, fascinating many-body effects are expected if it instead results from spontaneous symmetry breaking. Here, we introduce a model of interacting Dirac fermions where a QSH state is dynamically generated. Our tuning parameter further allows us to destabilize the QSH state in favour of a superconducting state through proliferation of charge-2e topological defects. This route to superconductivity put forward by Grover and Senthil is an instance of a deconfined quantum critical point (DQCP). Our model offers the possibility to study DQCPs without a second length scale associated with the reduced symmetry between field theory and lattice realization and, by construction, is amenable to large-scale fermion quantum Monte Carlo simulations.}, language = {en} }