@article{RiquelmeHaarerKammleretal.2018, author = {Riquelme, Paloma and Haarer, Jan and Kammler, Anja and Walter, Lisa and Tomiuk, Stefan and Ahrens, Norbert and Wege, Anja K. and Goecze, Ivan and Zecher, Daniel and Banas, Bernhard and Spang, Rainer and F{\"a}ndrich, Fred and Lutz, Manfred B. and Sawitzki, Birgit and Schlitt, Hans J. and Ochando, Jordi and Geissler, Edward K. and Hutchinson, James A.}, title = {TIGIT\(^+\) iTregs elicited by human regulatory macrophages control T cell immunity}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, number = {9}, doi = {10.1038/s41467-018-05167-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226321}, pages = {2858, 1-18}, year = {2018}, abstract = {Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4(+) T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4(+) T cells to IL-10-producing, TIGIT(+) FoxP3(+)-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-beta, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT(+) Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs.}, language = {en} } @article{CyranSerflingKirschneretal.2022, author = {Cyran, Laura and Serfling, Julia and Kirschner, Luisa and Raifer, Hartmann and Lohoff, Michael and Hermanns, Heike M. and Kerstan, Andreas and Bodem, Jochen and Lutz, Manfred B.}, title = {Flt3L, LIF, and IL-10 combination promotes the selective in vitro development of ESAM\(^{low}\) cDC2B from murine bone marrow}, series = {European Journal of Immunology}, volume = {52}, journal = {European Journal of Immunology}, number = {12}, doi = {10.1002/eji.202149663}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312448}, pages = {1946 -- 1960}, year = {2022}, abstract = {The development of two conventional dendritic cells (DC) subsets (cDC1 and cDC2) and the plasmacytoid DC (pDC) in vivo and in cultures of bone marrow (BM) cells is mediated by the growth factor Flt3L. However, little is known about the factors that direct the development of the individual DC subsets. Here, we describe the selective in vitro generation of murine ESAM\(^{low}\) CD103\(^{-}\) XCR1\(^{-}\) CD172a\(^{+}\) CD11b\(^{+}\) cDC2 from BM by treatment with a combination of Flt3L, LIF, and IL-10 (collectively named as FL10). FL10 promotes common dendritic cell progenitors (CDP) proliferation in the cultures, similar to Flt3L and CDP sorted and cultured in FL10 generate exclusively cDC2. These cDC2 express the transcription factors Irf4, Klf4, and Notch2, and their growth is reduced using BM from Irf4\(^{-/-}\) mice, but the expression of Batf3 and Tcf4 is low. Functionally they respond to TLR3, TLR4, and TLR9 signals by upregulation of the surface maturation markers MHC II, CD80, CD86, and CD40, while they poorly secrete proinflammatory cytokines. Peptide presentation to TCR transgenic OT-II cells induced proliferation and IFN-γ production that was similar to GM-CSF-generated BM-DC and higher than Flt3L-generated DC. Together, our data support that FL10 culture of BM cells selectively promotes CDP-derived ESAM\(^{low}\) cDC2 (cDC2B) development and survival in vitro.}, language = {en} } @article{RibechiniEckertBeilhacketal.2019, author = {Ribechini, Eliana and Eckert, Ina and Beilhack, Andreas and Du Plessis, Nelita and Walzl, Gerhard and Schleicher, Ulrike and Ritter, Uwe and Lutz, Manfred B.}, title = {Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell-killing capability}, series = {JCI Insight}, volume = {13}, journal = {JCI Insight}, number = {4}, doi = {10.1172/jci.insight.128664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201973}, pages = {e128664}, year = {2019}, abstract = {Tuberculosis patients and mice infected with live Mycobacterium tuberculosis accumulate high numbers of myeloid-derived suppressor cells (MDSCs). Here, we hypothesized that dead M. tuberculosis vaccines also may induce MDSCs that could impair the efficacy of vaccination. We found that repeated injections of M. tuberculosis vaccines (heat-killed M. tuberculosis in incomplete Freund's adjuvant, such as Montanide) but not single or control vaccines without M. tuberculosis strongly expanded CD11b\(^+\) myeloid cells in the spleen, leading to T cell suppression of proliferation and killing ex vivo. Dead M. tuberculosis vaccination induced the generation of CD11b\(^+\)Ly6C\(^{hi}\)CD115\(^+\) iNOS/Nos2\(^+\) monocytic MDSCs (M-MDSCs) upon application of inflammatory or microbial activation signals. In vivo these M-MDSCs were positioned strategically in the splenic bridging channels and then positioned in the white pulp areas. Notably, within 6-24 hours, in a Nos2-dependent fashion, they produced NO to rapidly kill conventional and plasmacytoid DCs while, surprisingly, sparing T cells in vivo. Thus, we demonstrate that M. tuberculosis vaccine induced M-MDSCs do not directly suppress effector T cells in vivo but, instead, indirectly by killing DCs. Collectively, we demonstrate that M. tuberculosis booster vaccines induce M-MDSCs in the spleen that can be activated to kill DCs. Our data suggest that formation of MDSCs by M. tuberculosis vaccines should be investigated also in clinical trials.}, language = {en} } @article{HellmannLotherWursteretal.2017, author = {Hellmann, Anna-Maria and Lother, Jasmin and Wurster, Sebastian and Lutz, Manfred B. and Schmitt, Anna Lena and Morton, Charles Oliver and Eyrich, Matthias and Czakai, Kristin and Einsele, Hermann and Loeffler, Juergen}, title = {Human and Murine Innate Immune Cell Populations Display Common and Distinct Response Patterns during Their In Vitro Interaction with the Pathogenic Mold Aspergillus fumigatus}, series = {Frontiers in Immunology}, volume = {8}, journal = {Frontiers in Immunology}, number = {1716}, doi = {10.3389/fimmu.2017.01716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169926}, year = {2017}, abstract = {Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus. However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus. For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus. Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host-pathogen interaction studies.}, language = {en} } @article{EckertRibechiniJaricketal.2021, author = {Eckert, Ina N. and Ribechini, Eliana and Jarick, Katja J. and Strozniak, Sandra and Potter, Sarah J. and Beilhack, Andreas and Lutz, Manfred B.}, title = {VLA-1 Binding to Collagen IV Controls Effector T Cell Suppression by Myeloid-Derived Suppressor Cells in the Splenic Red Pulp}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.616531}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222671}, year = {2021}, abstract = {Myeloid-derived suppressor cells (MDSCs) represent a major population controlling T cell immune responses. However, little is known about their molecular requirements for homing and T cell interaction to mediate suppression. Here, we investigated the functional role of the homing and collagen IV receptor VLA-1 (α1β1-integrin) on in vitro GM-CSF generated murine MDSCs from wild-type (WT) and CD49a/α1-integrin (Itga1\(^{-/-}\)) gene-deficient mice. Here, we found that effector (Teff) but not naive (Tn) CD4\(^+\) T cells express VLA-1 and monocytes further up-regulated their expression after culture in GM-CSF when they differentiated into the monocytic subset of resting MDSCs (R-MDSCs). Subsequent activation of R-MDSCs by LPS+IFN-γ (A-MDSCs) showed increased in vitro suppressor potential, which was independent of VLA-1. Surprisingly, VLA-1 deficiency did not influence A-MDSC motility or migration on collagen IV in vitro. However, interaction times of Itga1\(^{-/-}\) A-MDSCs with Teff were shorter than with WT A-MDSCs on collagen IV but not on fibronectin substrate in vitro. After injection, A-MDSCs homed to the splenic red pulp where they co-localized with Teff and showed immediate suppression already after 6 h as shown by inhibition of T cell proliferation and induction of apoptosis. Injection of A-MDSCs from Itga1\(^{-/-}\) mice showed equivalent homing into the spleen but a reduced suppressive effect. Interaction studies of A-MDSCs with Teff in the subcapsular red pulp with intravital two-photon microscopy revealed also here that MDSC motility and migration parameters were not altered by VLA-1 deficiency, but the interaction times with Teff were reduced. Together, our data point to a new role of VLA-1 adhesion to collagen IV as a prerequisite for extended contact times with Teff required for suppression.}, language = {en} } @article{DahlhoffManzSteinfattetal.2022, author = {Dahlhoff, Julia and Manz, Hannah and Steinfatt, Tim and Delgado-Tascon, Julia and Seebacher, Elena and Schneider, Theresa and Wilnit, Amy and Mokhtari, Zeinab and Tabares, Paula and B{\"o}ckle, David and Rasche, Leo and Martin Kort{\"u}m, K. and Lutz, Manfred B. and Einsele, Hermann and Brandl, Andreas and Beilhack, Andreas}, title = {Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression}, series = {Leukemia}, volume = {36}, journal = {Leukemia}, number = {3}, issn = {1476-5551}, doi = {10.1038/s41375-021-01422-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271787}, pages = {790-800}, year = {2022}, abstract = {Multiple myeloma remains a largely incurable disease of clonally expanding malignant plasma cells. The bone marrow microenvironment harbors treatment-resistant myeloma cells, which eventually lead to disease relapse in patients. In the bone marrow, CD4\(^{+}\)FoxP3\(^{+}\) regulatory T cells (Tregs) are highly abundant amongst CD4\(^{+}\) T cells providing an immune protective niche for different long-living cell populations, e.g., hematopoietic stem cells. Here, we addressed the functional role of Tregs in multiple myeloma dissemination to bone marrow compartments and disease progression. To investigate the immune regulation of multiple myeloma, we utilized syngeneic immunocompetent murine multiple myeloma models in two different genetic backgrounds. Analyzing the spatial immune architecture of multiple myeloma revealed that the bone marrow Tregs accumulated in the vicinity of malignant plasma cells and displayed an activated phenotype. In vivo Treg depletion prevented multiple myeloma dissemination in both models. Importantly, short-term in vivo depletion of Tregs in mice with established multiple myeloma evoked a potent CD8 T cell- and NK cell-mediated immune response resulting in complete and stable remission. Conclusively, this preclinical in-vivo study suggests that Tregs are an attractive target for the treatment of multiple myeloma.}, language = {en} }