@article{MuellerHummersHillermannetal.2020, author = {M{\"u}ller, Frank and Hummers, Eva and Hillermann, Nele and Dopfer, Christian and Jablonka, Alexandra and Friede, Tim and Simmenroth, Anne and Wetzke, Martin}, title = {Factors influencing the frequency of airway infections in underage refugees: a retrospective, cross sectional study}, series = {International Journal of Environmental Research and Public Health}, volume = {17}, journal = {International Journal of Environmental Research and Public Health}, number = {18}, issn = {1660-4601}, doi = {10.3390/ijerph17186823}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213134}, year = {2020}, abstract = {Background: Infections are a leading cause of refugee morbidity. Recent data on the rate of airway infections and factors influencing their spread in refugee reception centers is scarce. Methods: A retrospective, cross-sectional study of de-identified medical records with a focus on respiratory infections in underage refugees was conducted at two large German refugee reception centers. Results: In total, medical data from n = 10,431 refugees over an observational period of n = 819 days was analyzed. Among pediatric patients (n = 4289), 55.3\% presented at least once to the on-site medical ward with an acute respiratory infection or signs thereof. In 38.4\% of pediatric consultations, acute airway infections or signs thereof were present. Airway infections spiked during colder months and were significantly more prevalent amongst preschool and resettled children. Their frequency displayed a positive correlation with the number of refugees housed at the reception centers. Conclusions: We show that respiratory infections are a leading cause for morbidity in young refugees and that their rate is influenced age, season, status, and residential density. This illustrates the need to protect refugee children from contracting airway infections which may also reduce the spread of coronavirus disease 2019 (COVID-19) during the current pandemic.}, language = {en} } @article{HeinemannSiegmannThonfeldetal.2020, author = {Heinemann, Sascha and Siegmann, Bastian and Thonfeld, Frank and Muro, Javier and Jedmowski, Christoph and Kemna, Andreas and Kraska, Thorsten and Muller, Onno and Schultz, Johannes and Udelhoven, Thomas and Wilke, Norman and Rascher, Uwe}, title = {Land surface temperature retrieval for agricultural areas using a novel UAV platform equipped with a thermal infrared and multispectral sensor}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs12071075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203557}, year = {2020}, abstract = {Land surface temperature (LST) is a fundamental parameter within the system of the Earth's surface and atmosphere, which can be used to describe the inherent physical processes of energy and water exchange. The need for LST has been increasingly recognised in agriculture, as it affects the growth phases of crops and crop yields. However, challenges in overcoming the large discrepancies between the retrieved LST and ground truth data still exist. Precise LST measurement depends mainly on accurately deriving the surface emissivity, which is very dynamic due to changing states of land cover and plant development. In this study, we present an LST retrieval algorithm for the combined use of multispectral optical and thermal UAV images, which has been optimised for operational applications in agriculture to map the heterogeneous and diverse agricultural crop systems of a research campus in Germany (April 2018). We constrain the emissivity using certain NDVI thresholds to distinguish different land surface types. The algorithm includes atmospheric corrections and environmental thermal emissions to minimise the uncertainties. In the analysis, we emphasise that the omission of crucial meteorological parameters and inaccurately determined emissivities can lead to a considerably underestimated LST; however, if the emissivity is underestimated, the LST can be overestimated. The retrieved LST is validated by reference temperatures from nearby ponds and weather stations. The validation of the thermal measurements indicates a mean absolute error of about 0.5 K. The novelty of the dual sensor system is that it simultaneously captures highly spatially resolved optical and thermal images, in order to construct the precise LST ortho-mosaics required to monitor plant diseases and drought stress and validate airborne and satellite data.}, language = {en} } @article{MuellerChandraFuraijatetal.2020, author = {M{\"u}ller, Frank and Chandra, Shivani and Furaijat, Ghefar and Kruse, Stefan and Waligorski, Alexandra and Simmenroth, Anne and Kleinert, Evelyn}, title = {A digital communication assistance tool (DCAT) to obtain medical history from foreign-language patients: development and pilot testing in a primary health care center for refugees}, series = {International Journal of Environmental Research and Public Health}, volume = {17}, journal = {International Journal of Environmental Research and Public Health}, number = {4}, issn = {1660-4601}, doi = {10.3390/ijerph17041368}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200640}, year = {2020}, abstract = {Background: Language barriers play a critical role in the treatment of migrant and refugee patients. In Germany, primary care interpreters are often not available especially in rural areas or if patients demand spontaneous or urgent consultations. Methods: In order to enable patients and their physicians to communicate effectively about the current illness history, we developed a digital communication assistance tool (DCAT) for 19 different languages and dialects. This paper reports the multidisciplinary process of the conceptual design and the iterative development of this cross-cultural user-centered application in an action-oriented approach. Results: We piloted our app with 36 refugee patients prior to a clinical study and used the results for further development. The acceptance and usability of the app by patients was high. Conclusion: Using digital tools for overcoming language barriers can be a feasible approach when providing health care to foreign-language patients.}, language = {en} } @article{McLaughlinSchmulensonTeplytskaetal.2021, author = {Mc Laughlin, Anna M. and Schmulenson, Eduard and Teplytska, Olga and Zimmermann, Sebastian and Opitz, Patrick and Groenland, Stefanie L. and Huitema, Alwin D. R. and Steeghs, Neeltje and M{\"u}ller, Lothar and Fuxius, Stefan and Illerhaus, Gerald and Joerger, Markus and Mayer, Frank and Fuhr, Uwe and Holdenrieder, Stefan and Hempel, Georg and Scherf-Clavel, Oliver and Jaehde, Ulrich and Kloft, Charlotte}, title = {Developing a nationwide infrastructure for therapeutic drug monitoring of targeted oral anticancer drugs: the ON-TARGET study protocol}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {24}, issn = {2072-6694}, doi = {10.3390/cancers13246281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252196}, year = {2021}, abstract = {Exposure-efficacy and/or exposure-toxicity relationships have been identified for up to 80\% of oral anticancer drugs (OADs). Usually, OADs are administered at fixed doses despite their high interindividual pharmacokinetic variability resulting in large differences in drug exposure. Consequently, a substantial proportion of patients receive a suboptimal dose. Therapeutic Drug Monitoring (TDM), i.e., dosing based on measured drug concentrations, may be used to improve treatment outcomes. The prospective, multicenter, non-interventional ON-TARGET study (DRKS00025325) aims to investigate the potential of routine TDM to reduce adverse drug reactions in renal cell carcinoma patients receiving axitinib or cabozantinib. Furthermore, the feasibility of using volumetric absorptive microsampling (VAMS), a minimally invasive and easy to handle blood sampling technique, for sample collection is examined. During routine visits, blood samples are collected and sent to bioanalytical laboratories. Venous and VAMS blood samples are collected in the first study phase to facilitate home-based capillary blood sampling in the second study phase. Within one week, the drug plasma concentrations are measured, interpreted, and reported back to the physician. Patients report their drug intake and toxicity using PRO-CTCAE-based questionnaires in dedicated diaries. Ultimately, the ON-TARGET study aims to develop a nationwide infrastructure for TDM for oral anticancer drugs.}, language = {en} } @article{FisselerMuellerWeichert2017, author = {Fisseler, Denis and M{\"u}ller, Gerfrid G. W. and Weichert, Frank}, title = {Web-Based scientific exploration and analysis of 3D scanned cuneiform datasets for collaborative research}, series = {Informatics}, volume = {4}, journal = {Informatics}, number = {4}, issn = {2227-9709}, doi = {10.3390/informatics4040044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197958}, pages = {44}, year = {2017}, abstract = {The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability.}, language = {en} } @article{BecherAndresPonsRomanovetal.2018, author = {Becher, Isabelle and Andr{\´e}s-Pons, Amparo and Romanov, Natalie and Stein, Frank and Schramm, Maike and Baudin, Florence and Helm, Dominic and Kurzawa, Nils and Mateus, Andr{\´e} and Mackmull, Marie-Therese and Typas, Athanasios and M{\"u}ller, Christoph W. and Bork, Peer and Beck, Martin and Savitski, Mikhail M.}, title = {Pervasive Protein Thermal Stability Variation during the Cell Cycle}, series = {Cell}, volume = {173}, journal = {Cell}, doi = {10.1016/j.cell.2018.03.053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221565}, pages = {1495-1507}, year = {2018}, abstract = {Quantitative mass spectrometry has established proteome-wide regulation of protein abundance and post-translational modifications in various biological processes. Here, we used quantitative mass spectrometry to systematically analyze the thermal stability and solubility of proteins on a proteome-wide scale during the eukaryotic cell cycle. We demonstrate pervasive variation of these biophysical parameters with most changes occurring in mitosis and G1. Various cellular pathways and components vary in thermal stability, such as cell-cycle factors, polymerases, and chromatin remodelers. We demonstrate that protein thermal stability serves as a proxy for enzyme activity, DNA binding, and complex formation in situ. Strikingly, a large cohort of intrinsically disordered and mitotically phosphorylated proteins is stabilized and solubilized in mitosis, suggesting a fundamental remodeling of the biophysical environment of the mitotic cell. Our data represent a rich resource for cell, structural, and systems biologists interested in proteome regulation during biological transitions.}, language = {en} }