@article{vanKoolwijkRamdasIkrametal.2012, author = {van Koolwijk, Leonieke M. E. and Ramdas, Wishal D. and Ikram, M. Kamran and Jansonius, Nomdo M. and Pasutto, Francesca and Hys, Pirro G. and Macgregor, Stuart and Janssen, Sarah F. and Hewitt, Alex W. and Viswanathan, Ananth C. and ten Brink, Jacoline B. and Hosseini, S. Mohsen and Amin, Najaf and Despriet, Dominiek D. G. and Willemse-Assink, Jacqueline J. M. and Kramer, Rogier and Rivadeneira, Fernando and Struchalin, Maksim and Aulchenko, Yurii S. and Weisschuh, Nicole and Zenkel, Matthias and Mardin, Christian Y. and Gramer, Eugen and Welge-L{\"u}ssen, Ulrich and Montgomery, Grant W. and Carbonaro, Francis and Young, Terri L. and Bellenguez, C{\´e}line and McGuffin, Peter and Foster, Paul J. and Topouzis, Fotis and Mitchell, Paul and Wang, Jie Jin and Wong, Tien Y. and Czudowska, Monika A. and Hofman, Albert and Uitterlinden, Andre G. and Wolfs, Roger C. W. and de Jong, Paulus T. V. M. and Oostra, Ben A. and Paterson, Andrew D. and Mackey, David A. and Bergen, Arthur A. B. and Reis, Andre and Hammond, Christopher J. and Vingerling, Johannes R. and Lemij, Hans G. and Klaver, Caroline C. W. and van Duijn, Cornelia M.}, title = {Common Genetic Determinants of Intraocular Pressure and Primary Open-Angle Glaucoma}, series = {PLoS Genetics}, volume = {8}, journal = {PLoS Genetics}, number = {5}, doi = {10.1371/journal.pgen.1002611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131378}, pages = {e1002611}, year = {2012}, abstract = {Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p = 1.4 x 10\(^{-8}\)), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.6 x 10\(^{-8}\)). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p = 2.4 x 10\(^{-2}\) for rs11656696 and p = 9.1 x 10\(^{-4}\) for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.}, language = {en} } @article{AdrianMartinezAgeronAharonianetal.2016, author = {Adri{\´a}n-Mart{\´i}nez, S. and Ageron, M. and Aharonian, F. and Aiello, S. and Albert, A. and Ameli, F. and Annasontzis, E. and Andre, M. and Androulakis, G. and Anghinolfi, M. and Anton, G. and Ardid, M. and Avgitas, T. and Barbarino, G. and Baret, B. and Barrios-Mart{\´i}, J. and Belhorma, B. and Belias, A. and Berbee, A. and van den Berg, A. and Bertin, V. and Beurthey, S. and van Beeveren, V. and Beverini, N. and Biagi, S. and Biagioni, A. and Billault, M. and Bond{\`i}, M. and Bormuth, R. and Bouhadef, B. and Bourlis, G. and Bourret, S. and Boutonnet, C. and Bouwhuis, M. and Bozza, C. and Bruijn, R. and Brunner, J. and Buis, E. and Busto, J. and Cacopardo, G. and Caillat, L. and Calmai, M. and Calvo, D. and Capone, A. and Caramete, L. and Cecchini, S. and Celli, S. and Champion, C. and Cherkaoui El Moursli, R. and Cherubini, S. and Chiarusi, T. and Circella, M. and Classen, L. and Cocimano, R. and Coelho, J. A. B. and Coleiro, A. and Colonges, S. and Coniglione, R. and Cordelli, M. and Cosquer, A. and Coyle, P. and Creusot, A. and Cuttone, G. and D'Amico, A. and De Bonis, G. and De Rosa, G. and De Sio, C. and Di Capua, F. and Di Palma, I. and D{\´i}az Garc{\´i}a, A. F. and Distefano, C. and Donzaud, C. and Dornic, D. and Dorosti-Hasankiadeh, Q. and Drakopoulou, E. and Drouhin, D. and Drury, L. and Durocher, M. and Eberl, T. and Eichie, S. and van Eijk, D. and El Bojaddaini, I. and El Khayati, N. and Elsaesser, D. and Enzenh{\"o}fer, A. and Fassi, F. and Favali, P. and Fermani, P. and Ferrara, G. and Filippidis, C. and Frascadore, G. and Fusco, L. A. and Gal, T. and Galat{\`a}, S. and Garufi, F. and Gay, P. and Gebyehu, M. and Giordano, V. and Gizani, N. and Gracia, R. and Graf, K. and Gr{\´e}goire, T. and Grella, G. and Habel, R. and Hallmann, S. and van Haren, H. and Harissopulos, S. and Heid, T. and Heijboer, A. and Heine, E. and Henry, S. and Hern{\´a}ndez-Rey, J. J. and Hevinga, M. and Hofest{\"a}dt, J. and Hugon, C. M. F. and Illuminati, G. and James, C. W. and Jansweijer, P. and Jongen, M. and de Jong, M. and Kadler, M. and Kalekin, O. and Kappes, A. and Katz, U. F. and Keller, P. and Kieft, G. and Kießling, D. and Koffeman, E. N. and Kooijman, P. and Kouchner, A. and Kulikovskiy, V. and Lahmann, R. and Lamare, P. and Leisos, A. and Leonora, E. and Lindsey Clark, M. and Liolios, A. and Llorenz Alvarez, C. D. and Lo Presti, D. and L{\"o}hner, H. and Lonardo, A. and Lotze, M. and Loucatos, S. and Maccioni, E. and Mannheim, K. and Margiotta, A. and Marinelli, A. and Mari{\c{s}}, O. and Markou, C. and Mart{\´i}nez-Mora, J. A. and Martini, A. and Mele, R. and Melis, K. W. and Michael, T. and Migliozzi, P. and Migneco, E. and Mijakowski, P. and Miraglia, A. and Mollo, C. M. and Mongelli, M. and Morganti, M. and Moussa, A. and Musico, P. and Musumeci, M. and Navas, S. and Nicoleau, C. A. and Olcina, I. and Olivetto, C. and Orlando, A. and Papaikonomou, A. and Papaleo, R. and Păvăla{\c{s}}, G. E. and Peek, H. and Pellegrino, C. and Perrina, C. and Pfutzner, M. and Piattelli, P. and Pikounis, K. and Poma, G. E. and Popa, V. and Pradier, T. and Pratolongo, F. and P{\"u}hlhofer, G. and Pulvirenti, S. and Quinn, L. and Racca, C. and Raffaelli, F. and Randazzo, N. and Rapidis, P. and Razis, P. and Real, D. and Resvanis, L. and Reubelt, J. and Riccobene, G. and Rossi, C. and Rovelli, A. and Salda{\~n}a, M. and Salvadori, I. and Samtleben, D. F. E. and S{\´a}nchez Garc{\´i}a, A. and S{\´a}nchez Losa, A. and Sanguineti, M. and Santangelo, A. and Santonocito, D. and Sapienza, P. and Schimmel, F. and Schmelling, J. and Sciacca, V. and Sedita, M. and Seitz, T. and Sgura, I. and Simeone, F. and Siotis, I. and Sipala, V. and Spisso, B. and Spurio, M. and Stavropoulos, G. and Steijger, J. and Stellacci, S. M. and Stransky, D. and Taiuti, M. and Tayalati, Y. and T{\´e}zier, D. and Theraube, S. and Thompson, L. and Timmer, P. and T{\"o}nnis, C. and Trasatti, L. and Trovato, A. and Tsirigotis, A. and Tzamarias, S. and Tzamariudaki, E. and Vallage, B. and Van Elewyk, V. and Vermeulen, J. and Vicini, P. and Viola, S. and Vivolo, D. and Volkert, M. and Voulgaris, G. and Wiggers, L. and Wilms, J. and de Wolf, E. and Zachariadou, K. and Zornoza, J. D. and Z{\´u}{\~n}iga, J.}, title = {Letter of intent for KM3NeT 2.0}, series = {Journal of Physics G-Nuclear and Particle Physics}, volume = {43}, journal = {Journal of Physics G-Nuclear and Particle Physics}, number = {8}, doi = {10.1088/0954-3899/43/8/084001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188050}, pages = {84001}, year = {2016}, abstract = {The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and}, language = {en} } @article{AlbertAndreAnghinolfietal.2019, author = {Albert, A. and Andr{\´e}, M. and Anghinolfi, M. and Anton, G. and Ardid, M. and Aubert, J.-J. and Aublin, J. and Avgitas, T. and Baret, B. and Barrios-Mart{\´i}t, J. and Basa, S. and Belhorma, B. and Bertin, V. and Biagi, S. and Bormuth, R. and Boumaaza, J and Bourret, S. and Bouwhuis, M. C. and Br{\^a}nzas, H. and Bruijn, R. and Brunner, J. and Busto, J. and Capone, A. and Caramete, L. and Carr, J. and Celli, S. and Chabab, M. and Cherkaoui El Moursli, R. and Chiarusi, T. and Circella, M. and Coelho, J. A. B. and Coleiro, A. and Colomer, M and Coniglione, R. and Costantini, H. and Coyle, P. and Creusot, A. and D{\´i}az, A. F. and Deschamps, A. and Distefano, C. and Di Palma, I. and Domi, A. and Donzaud, C. and Dornic, D. and Drouhin, D. and Eberl, T. and El Bojaddaini, I. and El Khayati, N. and Els{\"a}sser, D. and Enzenh{\"o}fer, A. and Ettahiri, A. and Fassi, F. and Felis, I. and Fermani, P. and Ferrara, G. and Fusco, L. A. and Gay, P. and Glotin, H. and Gr{\´e}goire, T. and Gracia Ruiz, R. and Graf, K. and Hallmann, S. and van Haren, H. and Heijboer, A. J. and Hello, Y. and Hern{\´a}ndez-Rey, J. J. and H{\"o}ßl, J. and Hofest{\"a}dt, J. and Illuminati, G. and de Jong, M. and Jongen, M. and Kadler, M. and Kalekin, O. and Katz, U. and Khan-Chowdhury, N. R. and Kouchner, A. and Kreter, M. and Kreykenbohm, I. and Kulikovskiy, V. and Lachaud, C. and Lahmann, R. and Lef{\`e}vre, D. and Leonora, E. and Levi, G. and Lotze, M. and Loucatos, S. and Marcelin, M. and Margiotta, A. and Marinelli, A. and Mart{\´i}nez-Mora, J. A. and Mele, R. and Melis, K. and Migliozzi, P. and Moussa, A. and Navas, S. and Nezri, E. and Nu{\~n}ez, A. and Organokov, M. and Pavalas, G. E. and Pellegrino, C. and Piattelli, P. and Popa, V. and Pradier, T. and Quinn, L. and Racca, C. and Randazzo, N. and Riccobene, G. and S{\´a}nchez-Losa, A. and Salda{\~n}a, M. and Salvadori, I. and Samtleben, D. F. E. and Sanguineti, M. and Sapienza, P. and Sch{\"u}ssler, F. and Spurio, M. and Stolarczyk, Th. and Taiuti, M. and Tayalati, Y. and Trovato, A. and Vallage, B. and Van Elewyck, V. and Versari, F. and Vivolo, D. and Wilms, J. and Zaborov, D. and Zornoza, J. D. and Z{\´u}{\~n}iga, J.}, title = {The cosmic ray shadow of the Moon observed with the ANTARES neutrino telescope}, series = {European Physical Journal C}, volume = {78}, journal = {European Physical Journal C}, doi = {10.1140/epjc/s10052-018-6451-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227802}, pages = {1-9}, year = {2019}, abstract = {One of the main objectives of the ANTARES telescope is the search for point- like neutrino sources. Both the pointing accuracy and the angular resolution of the detector are important in this context and a reliableway to evaluate this performance is needed. In order to measure the pointing accuracy of the detector, one possibility is to study the shadow of the Moon, i. e. the deficit of the atmospheric muon flux from the direction of the Moon induced by the absorption of cosmic rays. Analysing the data taken between 2007 and 2016, theMoon shadow is observed with 3.5s statistical significance. The detector angular resolution for downwardgoing muons is 0.73. +/- 0.14.. The resulting pointing performance is consistent with the expectations. An independent check of the telescope pointing accuracy is realised with the data collected by a shower array detector onboard of a ship temporarily moving around the ANTARES location.}, language = {en} } @article{AdrianMartinezAlbertAndreetal.2016, author = {Adri{\´a}n-Mart{\´i}nez, S. and Albert, A. and Andr{\´e}, M. and Anton, G. and Ardid, M. and Aubert, J.-J. and Avgitas, T. and Baret, B. and Barrios-Mart{\´i}, J. and Basa, S. and Bertin, V. and Biagi, S. and Bormuth, R. and Bou-Cabo, M. and Bouwhuis, M.C. and Bruijn, R. and Brunner, J. and Busto, J. and Capone, A. and Caramete, L. and Carr, J. and Celli, S. and Chiarusi, T. and Circella, M. and Coleiro, A. and Coniglione, R. and Costantini, H. and Coyle, P. and Creusot, A. and Deschamps, A. and De Bonis, G. and Distefano, C. and Donzaud, C. and Dornic, D. and Drouhin, D. and Eberl, T. and El Bojaddaini, I. and Els{\"a}sser, D. and Enzenh{\"o}fer, A. and Fehn, K. and Felis, I. and Fusco, L.A. and Galat{\`a}, S. and Gay, P. and Geißels{\"o}der, S. and Geyer, K. and Giordano, V. and Gleixner, A. and Glotin, H. and Gracia-Ruiz, R. and Graf, K. and Hallmann, S. and van Haren, H. and Heijboer, A.J. and Hello, Y. and Hern{\´a}ndez-Rey, J.-J. and H{\"o}ßl, J. and Hofest{\"a}dt, J. and Hugon, C. and Illuminati, G. and James, C.W. and de Jong, M. and Kadler, M. and Kalekin, O. and Katz, U. and Kießling, D. and Kouchner, A. and Kreter, M. and Kreykenbohm, I. and Kulikovskiy, V. and Lachaud, C. and Lahmann, R. and Lef{\`e}vre, D. and Leonora, E. and Loucatos, S. and Marcelin, M. and Margiotta, A. and Marinelli, A. and Mart{\´i}nez-Mora, J.A. and Mathieu, A. and Michael, T. and Migliozzi, P. and Moussa, A. and Mueller, C. and Nezri, E. and Păvălaș, G.E. and Pellegrino, C. and Perrina, C. and Piattelli, P. and Popa, V. and Pradier, T. and Racca, C. and Riccobene, G. and Roensch, K. and Salda{\~n}a, M. and Samtleben, D.F.E. and Sanguineti, M. and Sapienza, P. and Schnabel, J. and Sch{\"u}ssler, F. and Seitz, T. and Sieger, C. and Spurio, M. and Stolarczyk, Th. and S{\´a}nchez-Losa, A. and Taiuti, M. and Trovato, A. and Tselengidou, M. and Turpin, D. and T{\"o}nnis, C. and Vallage, B. and Vall{\´e}e, C. and Van Elewyck, V. and Vivolo, D. and Wagner, S. and Wilms, J. and Zornoza, J.D. and Z{\´u}{\~n}iga, J.}, title = {A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope}, series = {Journal of Cosmology and Astroparticle Physics}, volume = {2016}, journal = {Journal of Cosmology and Astroparticle Physics}, number = {5}, organization = {The ANTARES collaboration}, doi = {10.1088/1475-7516/2016/05/016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189035}, pages = {12}, year = {2016}, abstract = {A search for Secluded Dark Matter annihilation in the Sun using 2007-2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detection from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator.}, language = {en} } @article{AdrianMartinezAlbertAndreetal.2016, author = {Adri{\´a}n-Mart{\´i}nez, S. and Albert, A. and Andr{\´e}, M. and Anton, G. and Ardid, M. and Aubert, J.-J. and Avgitas, T. and Baret, B. and Barrios-Mart{\´i}, J. and Basa, S. and Bertin, V. and Biagi, S. and Bormuth, R. and Bouwhuis, M.C. and Bruijn, R. and Brunner, J. and Busto, J. and Capone, A. and Caramete, L. and Carr, J. and Celli, S. and Chiarusi, T. and Circella, M. and Coleiro, A. and Coniglione, R. and Costantini, H. and Coyle, P. and Creusot, A. and Deschamps, A. and De Bonis, G. and Distefano, C. and Donzaud, C. and Dornic, D. and Drouhin, D. and Eberl, T. and El Bojaddaini, I. and Els{\"a}sser, D. and Enzenh{\"o}fer, A. and Fehn, K. and Felis, I. and Fusco, L.A. and Galat{\`a}, S. and Gay, P. and Geißels{\"o}der, S. and Geyer, K. and Giordano, V. and Gleixner, A. and Glotin, H. and Gracia-Ruiz, R. and Graf, K. and Hallmann, S. and van Haren, H. and Heijboer, A.J. and Hello, Y. and Hern{\´a}ndez-Rey, J.J. and H{\"o}ßl, J. and Hofest{\"a}dt, J. and Hugon, C. and Illuminati, G. and James, C.W. and de Jong, M. and Jongen, M. and Kadler, M. and Kalekin, O. and Katz, U. and Kießling, D. and Kouchner, A. and Kreter, M. and Kreykenbohm, I. and Kulikovskiy, V. and Lachaud, C. and Lahmann, R. and Lef{\`e}vre, D. and Leonora, E. and Loucatos, S. and Marcelin, M. and Margiotta, A. and Marinelli, A. and Mart{\´i}nez-Mora, J.A. and Mathieu, A. and Melis, K. and Michael, T. and Migliozzi, P. and Moussa, A. and Mueller, C. and Nezri, E. and Pavalas, G.E. and Pellegrino, C. and Perrina, C. and Piattelli, P. and Popa, V. and Pradier, T. and Racca, C. and Riccobene, G. and Roensch, K. and Salda{\~n}a, M. and Samtleben, D.F.E. and S{\´a}nchez-Losa, A. and Sanguineti, M. and Sapienza, P. and Schnabel, J. and Sch{\"u}ssler, F. and Seitz, T. and Sieger, C. and Spurio, M. and Stolarczyk, Th. and Taiuti, M. and T{\"o}nnis, C. and Trovato, A. and Tselengidou, M. and Turpin, D. and Vallage, B. and Vall{\´e}e, C. and Van Elewyck, V. and Vivolo, D. and Wagner, S. and Wilms, J. and Zornoza, J.D. and Z{\´u}{\~n}iga, J.}, title = {Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope}, series = {Physics Letters B}, volume = {759}, journal = {Physics Letters B}, doi = {10.1016/j.physletb.2016.05.019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166642}, pages = {69-74}, year = {2016}, abstract = {A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90\% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP + WIMP→ b\(\overline{b}\), W\(^{+}\)W\(^{-}\) and τ\(^{+}\)τ\(^{-}\).}, language = {en} } @article{AdrianMartinezAlbertAndreetal.2016, author = {Adri{\´a}n-Mart{\´i}nez, S. and Albert, A. and Andr{\´e}, M. and Anghinolfi, M. and Anton, G. and Ardid, M. and Aubert, J.-J. and Avgitas, T. and Baret, B. and Barrios-Mart{\´i}, J. and Basa, S. and Bertin, V. and Biagi, S. and Bormuth, R. and Bouwhuis, M.C. and Bruijn, R. and Brunner, J. and Busto, J. and Capone, A. and Caramete, L. and Carr, J. and Celli, S. and Chiarusi, T. and Circella, M. and Coleiro, A. and Coniglione, R. and Constantini, H. and Coyle, P. and Creusot, A. and Deschamps, A. and De Bonis, G. and Distefano, C. and Donzaud, C. and Dornic, D. and Drouhin, D. and Eberl, T. and El Bojaddaini, I. and Els{\"a}sser, D. and Enzenh{\"o}fer, A. and Fehn, K. and Felis, I. and Fusco, L.A. and Galat{\`a}, S. and Gay, P. and Geißels{\"o}der, S. and Geyer, K. and Giordano, V. and Gleixner, A. and Glotin, H. and Gracia-Ruiz, R. and Graf, K. and Hallmann, S. and van Haren, H. and Heijboer, A.J. and Hello, Y. and Hern{\´a}ndez-Rey, J.J. and H{\"o}ßl, J. and Hofest{\"a}dt, J. and Hugon, C. and Illuminati, G. and James, C.W. and de Jong, M. and Kadler, M. and Kalekin, O. and Katz, U. and Kießling, D. and Kouchner, A. and Kreter, M. and Kreykenbohm, I. and Kulikovskiy, V. and Lachaud, C. and Lahmann, R. and Lef{\`e}vre, D. and Leonora, E. and Loucatos, S. and Marcelin, M. and Margiotta, A. and Marinelli, A. and Mart{\´i}nez-Mora, J.A. and Mathieu, A. and Michael, T. and Migliozzi, P. and Moussa, A. and Mueller, C. and Nezri, E. and Pavalas, G.E. and Pellegrino, C. and Perrina, C. and Piattelli, P. and Popa, V. and Pradier, T. and Racca, C. and Riccobene, G. and Roensch, K. and Salda{\~n}a, M. and Samtleben, D.F.E. and S{\´a}nchez-Losa, A. and Sanguineti, M. and Sapienza, P. and Schnabel, J. and Sch{\"u}ssler, F. and Seitz, T. and Sieger, C. and Spurio, M. and Stolarczyk, Th. and Taiuti, M. and Trovato, A. and Tselengidou, M. and Turpin, D. and T{\"o}nnis, C. and Vallage, B. and Vall{\´e}e, C. and Van Elewyck, V. and Visser, E. and Vivolo, D. and Wagner, S. and Wilms, J. and Zornoza, J.D. and Z{\´u}{\~n}iga, J.}, title = {Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope}, series = {Physics Letters B}, volume = {760}, journal = {Physics Letters B}, doi = {10.1016/j.physletb.2016.06.051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166608}, pages = {143-148}, year = {2016}, abstract = {A highly significant excess of high-energy astrophysical neutrinos has been reported by the IceCube Collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices Γ are set. For Γ=2.4 the 90\% confidence level flux upper limit at 100 TeV for one neutrino flavour corresponds to Φ\(^{1f}_{0}\) (100 TeV) = 2.0 · 10\(^{-17}\) GeV\(^{-1}\) cm\(^{-2}\)s\(^{-1}\)sr\(^{-1}\). Under this assumption, at most two events of the IceCube cosmic candidates can originate from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to account for IceCube High Energy Starting Events is excluded at 90\% confidence level.}, language = {en} } @article{HudsonNewboldContuetal.2014, author = {Hudson, Lawrence N. and Newbold, Tim and Contu, Sara and Hill, Samantha L. L. and Lysenko, Igor and De Palma, Adriana and Phillips, Helen R. P. and Senior, Rebecca A. and Bennett, Dominic J. and Booth, Hollie and Choimes, Argyrios and Correia, David L. P. and Day, Julie and Echeverria-Londono, Susy and Garon, Morgan and Harrison, Michelle L. K. and Ingram, Daniel J. and Jung, Martin and Kemp, Victoria and Kirkpatrick, Lucinda and Martin, Callum D. and Pan, Yuan and White, Hannah J. and Aben, Job and Abrahamczyk, Stefan and Adum, Gilbert B. and Aguilar-Barquero, Virginia and Aizen, Marcelo and Ancrenaz, Marc and Arbelaez-Cortes, Enrique and Armbrecht, Inge and Azhar, Badrul and Azpiroz, Adrian B. and Baeten, Lander and B{\´a}ldi, Andr{\´a}s and Banks, John E. and Barlow, Jos and Bat{\´a}ry, P{\´e}ter and Bates, Adam J. and Bayne, Erin M. and Beja, Pedro and Berg, Ake and Berry, Nicholas J. and Bicknell, Jake E. and Bihn, Jochen H. and B{\"o}hning-Gaese, Katrin and Boekhout, Teun and Boutin, Celine and Bouyer, Jeremy and Brearley, Francis Q. and Brito, Isabel and Brunet, J{\"o}rg and Buczkowski, Grzegorz and Buscardo, Erika and Cabra-Garcia, Jimmy and Calvino-Cancela, Maria and Cameron, Sydney A. and Cancello, Eliana M. and Carrijo, Tiago F. and Carvalho, Anelena L. and Castro, Helena and Castro-Luna, Alejandro A. and Cerda, Rolando and Cerezo, Alexis and Chauvat, Matthieu and Clarke, Frank M. and Cleary, Daniel F. R. and Connop, Stuart P. and D'Aniello, Biagio and da Silva, Pedro Giovani and Darvill, Ben and Dauber, Jens and Dejean, Alain and Diek{\"o}tter, Tim and Dominguez-Haydar, Yamileth and Dormann, Carsten F. and Dumont, Bertrand and Dures, Simon G. and Dynesius, Mats and Edenius, Lars and Elek, Zolt{\´a}n and Entling, Martin H. and Farwig, Nina and Fayle, Tom M. and Felicioli, Antonio and Felton, Annika M. and Ficetola, Gentile F. and Filgueiras, Bruno K. C. and Fonte, Steve J. and Fraser, Lauchlan H. and Fukuda, Daisuke and Furlani, Dario and Ganzhorn, J{\"o}rg U. and Garden, Jenni G. and Gheler-Costa, Carla and Giordani, Paolo and Giordano, Simonetta and Gottschalk, Marco S. and Goulson, Dave and Gove, Aaron D. and Grogan, James and Hanley, Mick E. and Hanson, Thor and Hashim, Nor R. and Hawes, Joseph E. and H{\´e}bert, Christian and Helden, Alvin J. and Henden, John-Andr{\´e} and Hern{\´a}ndez, Lionel and Herzog, Felix and Higuera-Diaz, Diego and Hilje, Branko and Horgan, Finbarr G. and Horv{\´a}th, Roland and Hylander, Kristoffer and Horv{\´a}th, Roland and Isaacs-Cubides, Paola and Ishitani, Mashiro and Jacobs, Carmen T. and Jaramillo, Victor J. and Jauker, Birgit and Jonsell, Matts and Jung, Thomas S. and Kapoor, Vena and Kati, Vassiliki and Katovai, Eric and Kessler, Michael and Knop, Eva and Kolb, Annette and K{\"o}r{\"o}si, {\`A}d{\´a}m and Lachat, Thibault and Lantschner, Victoria and Le F{\´e}on, Violette and LeBuhn, Gretchen and L{\´e}gar{\´e}, Jean-Philippe and Letcher, Susan G. and Littlewood, Nick A. and L{\´o}pez-Quintero, Carlos A. and Louhaichi, Mounir and L{\"o}vei, Gabor L. and Lucas-Borja, Manuel Esteban and Luja, Victor H. and Maeto, Kaoru and Magura, Tibor and Mallari, Neil Aldrin and Marin-Spiotta, Erika and Marhall, E. J. P. and Mart{\´i}nez, Eliana and Mayfield, Margaret M. and Mikusinski, Gregorz and Milder, Jeffery C. and Miller, James R. and Morales, Carolina L. and Muchane, Mary N. and Muchane, Muchai and Naidoo, Robin and Nakamura, Akihiro and Naoe, Shoji and Nates-Parra, Guiomar and Navarerete Gutierrez, Dario A. and Neuschulz, Eike L. and Noreika, Norbertas and Norfolk, Olivia and Noriega, Jorge Ari and N{\"o}ske, Nicole M. and O'Dea, Niall and Oduro, William and Ofori-Boateng, Caleb and Oke, Chris O. and Osgathorpe, Lynne M. and Paritsis, Juan and Parrah, Alejandro and Pelegrin, Nicol{\´a}s and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Phalan, Ben and Philips, T. Keith and Poveda, Katja and Power, Eileen F. and Presley, Steven J. and Proen{\c{c}}a, V{\^a}nia and Quaranta, Marino and Quintero, Carolina and Redpath-Downing, Nicola A. and Reid, J. Leighton and Reis, Yana T. and Ribeiro, Danilo B. and Richardson, Barbara A. and Richardson, Michael J. and Robles, Carolina A. and R{\"o}mbke, J{\"o}rg and Romero-Duque, Luz Piedad and Rosselli, Loreta and Rossiter, Stephen J. and Roulston, T'ai H. and Rousseau, Laurent and Sadler, Jonathan P. and S{\´a}fi{\´a}n, Szbolcs and Salda{\~n}a-V{\´a}squez, Romeo A. and Samneg{\aa}rd, Ulrika and Sch{\"u}epp, Christof and Schweiger, Oliver and Sedlock, Jodi L. and Shahabuddin, Ghazala and Sheil, Douglas and Silva, Fernando A. B. and Slade, Eleanor and Smith-Pardo, Allan H. and Sodhi, Navjot S. and Somarriba, Eduardo J. and Sosa, Ram{\´o}n A. and Stout, Jane C. and Struebig, Matthew J. and Sung, Yik-Hei and Threlfall, Caragh G. and Tonietto, Rebecca and T{\´o}thm{\´e}r{\´e}sz, B{\´e}la and Tscharntke, Teja and Turner, Edgar C. and Tylianakis, Jason M. and Vanbergen, Adam J. and Vassilev, Kiril and Verboven, Hans A. F. and Vergara, Carlos H. and Vergara, Pablo M. and Verhulst, Jort and Walker, Tony R. and Wang, Yanping and Watling, James I. and Wells, Konstans and Williams, Christopher D. and Willig, Michael R. and Woinarski, John C. Z. and Wolf, Jan H. D. and Woodcock, Ben A. and Yu, Douglas W. and Zailsev, Andreys and Collen, Ben and Ewers, Rob M. and Mace, Georgina M. and Purves, Drew W. and Scharlemann, J{\"o}rn P. W. and Pervis, Andy}, title = {The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts}, series = {Ecology and Evolution}, volume = {4}, journal = {Ecology and Evolution}, number = {24}, doi = {10.1002/ece3.1303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114425}, pages = {4701 - 4735}, year = {2014}, abstract = {Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1\% of the total number of all species described, and more than 1\% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.}, language = {en} } @article{AkshatAaboudAadetal.2019, author = {Akshat, Puri and Aaboud, M. and Aad, G. and Abbott, B. and Abdinov, O. and Abeloos, B. and Abhayasinghe, D. K. and Abidi, S. H. and Abou Zeid, O. S. and Abraham, N. L. and Abramowicz, H. and Abreu, H. and Abulaiti, Y. and Acharya, B. S. and Adachi, S. and Adam, L. and Adamczyk, L. and Adelman, J. and Adersberger, M. and Adiguzel, A. and Adye, T. and Affolder, A. A. and Afik, Y. and Agheorghiesei, C. and Aguilar-Saavedra, J. A. and Ahmadov, F. and Aiellil, G. and Akatsuka, S. and Akesson, T. P. A. and Akilli, E. and Akimov, A. V. and Alberghi, G. L. and Albert, J. and Albicocco, P. and Alconada Verzini, M. J. and Alderweireld, S. and Aleksa, M. and Aleksandrov, I. N. and Alexa, C. and Alexopoulos, T. and Alhroob, M. and Ali, B. and Alimonti, G. and Alison, J. and Andre, S. P. and Allaire, C. and Allbrooke, B. M. M. and Allen, B. W. and Allport, P. P. and Aloisio, A. and Alonso, A. and Alonso, F. and Alpigiani, C. and Alshehri, A. A. and Alstaty, M. I. and Alvarez, Gonzalez B. and Alvarez Piqueras, D. and Alviggi, M. G. and Amadio, B. T. and Amaral, Coutinho, Y. and Ambler, A. and Ambroz, L. and Amelung, C. and Amidei, D. and Amor Dos Santos, S. P. and Amoroso, S. and Amrouche, C. S. and Anastopoulos, C. and Ancu, L. S. and Andari, N. and Andeen, T. and Anders, C. F. and Anders, J. K. and Anderson, K. J. and Andreazza, A. and Andrei, V. and et al,}, title = {Measurement of angular and momentum distributions of charged particles within and around jets in Pb plus Pb and pp collisions at root s(NN)=5.02 TeV with ATLAS at the LHC : XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018)}, series = {Nuclear Physics A}, volume = {982}, journal = {Nuclear Physics A}, number = {2}, doi = {10.1016/j.nuclphysa.2018.09.021}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224703}, pages = {177-179}, year = {2019}, abstract = {Studies of the fragmentation of jets into charged particles in heavy-ion collisions can help in understanding the mechanism of jet quenching by the hot and dense QCD matter created in such collisions, the quark-gluon plasma. These proceedings present a measurement of the angular distribution of charged particles around the jet axis in root s(NN) = 5.02 TeV Pb+Pb and pp collisions, done using the ATLAS detector at the LHC. The measurement is performed inside jets reconstructed with the anti-k(t) algorithm with radius parameter R = 0.4, and is extended to regions outside the jet cone. Results are presented as a function of Pb+Pb collision centrality, and both jet and charged-particle transverse momenta.}, language = {en} } @article{AdrianMartinezAlbertAndreetal.2017, author = {Adri{\´a}n-Mart{\´i}nez, S. and Albert, A. and Andr{\´e}, M. and Anghinolfi, M. and Anton, G. and Ardid, M. and Aubert, J.-J. and Baret, B. and Barrios-Marti, J. and Basa, S. and Bertin, V. and Biagi, S. and Bormuth, R. and Bouwhuis, M.C. and Bruijn, R. and Brunner, J. and Buto, J. and Capone, A. and Caramete, L. and Carr, J. and Chiarusi, T. and Circella, M. and Coniglione, R. and Costantini, H. and Coyle, P. and Creusot, A. and Dekeyser, I. and Deschamps, A. and De Bonis, G. and Distefano, C.}, title = {Stacked search for time shifted high energy neutrinos from gamma ray bursts with the ANTARES neutrino telescope}, series = {European Physical Journal C}, volume = {77}, journal = {European Physical Journal C}, number = {1}, doi = {10.1140/epjc/s10052-016-4496-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181251}, pages = {10}, year = {2017}, abstract = {A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90\% confidence level.}, language = {en} } @article{HavikDegenhardtJohanssonetal.2012, author = {Havik, Bjarte and Degenhardt, Franziska A. and Johansson, Stefan and Fernandes, Carla P. D. and Hinney, Anke and Scherag, Andr{\´e} and Lybaek, Helle and Djurovic, Srdjan and Christoforou, Andrea and Ersland, Kari M. and Giddaluru, Sudheer and O'Donovan, Michael C. and Owen, Michael J. and Craddock, Nick and M{\"u}hleisen, Thomas W. and Mattheisen, Manuel and Schimmelmann, Benno G. and Renner, Tobias and Warnke, Andreas and Herpertz-Dahlmann, Beate and Sinzig, Judith and Albayrak, {\"O}zg{\"u}r and Rietschel, Marcella and N{\"o}then, Markus M. and Bramham, Clive R. and Werge, Thomas and Hebebrand, Johannes and Haavik, Jan and Andreassen, Ole A. and Cichon, Sven and Steen, Vidar M. and Le Hellard, Stephanie}, title = {DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0035424}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135285}, pages = {e35424}, year = {2012}, abstract = {Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also genotyped the DCLK1 region in additional samples of cases with SCZ, BP or ADHD and controls that had not been whole-genome typed. In total, 9895 subjects were analysed, including 5308 normal controls and 4,587 patients (1,125 with SCZ, 2,496 with BP and 966 with ADHD). Several DCLK1 variants were associated with disease phenotypes in the different samples. The main effect was observed for rs7989807 in intron 3, which was strongly associated with SCZ alone and even more so when cases with SCZ and ADHD were combined (P-value = 4x10\(^{-5}\) and 4x10\(^{-6}\), respectively). Associations were also observed with additional markers in intron 3 (combination of SCZ, ADHD and BP), intron 19 (SCZ+BP) and the 3'UTR (SCZ+BP). Our results suggest that genetic variants in DCLK1 are associated with SCZ and, to a lesser extent, with ADHD and BP. Interestingly the association is strongest when SCZ and ADHD are considered together, suggesting common genetic susceptibility. Given that DCLK1 variants were previously found to be associated with cognitive traits, these results are consistent with the role of DCLK1 in neurodevelopment and synaptic plasticity.}, language = {en} }