@article{RobindeWreedeWolschkeetal.2019, author = {Robin, Marie and de Wreede, Liesbeth C. and Wolschke, Christine and Schetelig, Johannes and Eikema, Diderik-Jan and Van Lint, Maria Teresa and Knelange, Nina Simone and Beelen, Dietrich and Brecht, Arne and Niederwieser, Dietger and Vitek, Antonin and Bethge, Wolfgang and Arnold, Renate and Finke, J{\"u}rgen and Volin, Liisa and Yakoub-Agha, Ibrahim and Nagler, Arnon and Poir{\´e}, Xavier and Einsele, Hermann and Chevallier, Patrice and Holler, Ernst and Ljungman, Per and Robinson, Stephen and Radujkovic, Alekxandar and McLornan, Donal and Chalandon, Yves and Kr{\"o}ger, Nicolaus}, title = {Long-term outcome after allogeneic hematopoietic cell transplantation for myelofibrosis}, series = {Haematologica}, volume = {104}, journal = {Haematologica}, number = {9}, doi = {10.3324/haematol.2018.205211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226386}, pages = {1782-1788}, year = {2019}, abstract = {Allogeneic hematopoietic stem cell transplant remains the only curative treatment for myelofibrosis. Most post-transplantation events Aoccur during the first two years and hence we aimed to analyze the outcome of 2-year disease-free survivors. A total of 1055 patients with myelofibrosis transplanted between 1995 and 2014 and registered in the registry of the European Society for Blood and Marrow Transplantation were included. Survival was compared to the matched general population to determine excess mortality and the risk factors that are associated. In the 2-year survivors, disease-free survival was 64\% (60-68\%) and overall survival was 74\% (71-78\%) at ten years; results were better in younger individuals and in women. Excess mortality was 14\% (8-21\%) in patients aged <45 years and 33\% (13-53\%) in patients aged >= 65 years. The main cause of death was relapse of the primary disease. Graft-versus-host disease (GvHD) before two years decreased the risk of relapse. Multivariable analysis of excess mortality showed that age, male sex recipient, secondary myelofibrosis and no GvHD disease prior to the 2-year landmark increased the risk of excess mortality. This is the largest study to date analyzing long-term outcome in patients with myelofibrosis undergoing transplant. Overall it shows a good survival in patients alive and in remission at two years. However, the occurrence of late complications, including late relapses, infectious complications and secondary malignancies, highlights the importance of screening and monitoring of long-term survivors.}, subject = {Midollo-Osseo}, language = {en} } @article{GruschwitzHartungKleefeldtetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Kleefeldt, Florian and Erg{\"u}n, S{\"u}leyman and Lichthardt, Sven and Huflage, Henner and Hendel, Robin and Kunz, Andreas Steven and Pannenbecker, Pauline and Kuhl, Philipp Josef and Augustin, Anne Marie and Bley, Thorsten Alexander and Petritsch, Bernhard and Grunz, Jan-Peter}, title = {Standardized assessment of vascular reconstruction kernels in photon-counting CT angiographies of the leg using a continuous extracorporeal perfusion model}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-39063-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357912}, year = {2023}, abstract = {This study evaluated the influence of different vascular reconstruction kernels on the image quality of CT angiographies of the lower extremity runoff using a 1st-generation photon-counting-detector CT (PCD-CT) compared with dose-matched examinations on a 3rd-generation energy-integrating-detector CT (EID-CT). Inducing continuous extracorporeal perfusion in a human cadaveric model, we performed CT angiographies of eight upper leg arterial runoffs with radiation dose-equivalent 120 kVp acquisition protocols (CTDIvol 5 mGy). Reconstructions were executed with different vascular kernels, matching the individual modulation transfer functions between scanners. Signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were computed to assess objective image quality. Six radiologists evaluated image quality subjectively using a forced-choice pairwise comparison tool. Interrater agreement was determined by calculating Kendall's concordance coefficient (W). The intraluminal attenuation of PCD-CT images was significantly higher than of EID-CT (414.7 ± 27.3 HU vs. 329.3 ± 24.5 HU; p < 0.001). Using comparable kernels, image noise with PCD-CT was significantly lower than with EID-CT (p ≤ 0.044). Correspondingly, SNR and CNR were approximately twofold higher for PCD-CT (p < 0.001). Increasing the spatial frequency for PCD-CT reconstructions by one level resulted in similar metrics compared to EID-CT (CNRfat; EID-CT Bv49: 21.7 ± 3.7 versus PCD-CT Bv60: 21.4 ± 3.5). Overall image quality of PCD-CTA achieved ratings superior to EID-CTA irrespective of the used reconstruction kernels (best: PCD-CT Bv60; worst: EID-CT Bv40; p < 0.001). Interrater agreement was good (W = 0.78). Concluding, PCD-CT offers superior intraluminal attenuation, SNR, and CNR compared to EID-CT in angiographies of the upper leg arterial runoff. Combined with improved subjective image quality, PCD-CT facilitates the use of sharper convolution kernels and ultimately bears the potential of improved vascular structure assessability.}, language = {en} } @article{GruschwitzHartungErguenetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Erg{\"u}n, S{\"u}leyman and Peter, Dominik and Lichthardt, Sven and Huflage, Henner and Hendel, Robin and Pannenbecker, Pauline and Augustin, Anne Marie and Kunz, Andreas Steven and Feldle, Philipp and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Comparison of ultrahigh and standard resolution photon-counting CT angiography of the femoral arteries in a continuously perfused in vitro model}, series = {European Radiology Experimental}, volume = {7}, journal = {European Radiology Experimental}, doi = {10.1186/s41747-023-00398-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357905}, year = {2023}, abstract = {Background With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies. Methods After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall's concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR). Results UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935). Conclusions Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries. Relevance statement The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen. Key points • UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels. • UHR datasets display lower image noise compared with identically reconstructed standard resolution scans. • Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging.}, language = {en} }