@article{VedderLensMartinetal.2022, author = {Vedder, Daniel and Lens, Luc and Martin, Claudia A. and Pellikka, Petri and Adhikari, Hari and Heiskanen, Janne and Engler, Jan O. and Sarmento Cabral, Juliano}, title = {Hybridization may aid evolutionary rescue of an endangered East African passerine}, series = {Evolutionary Applications}, volume = {15}, journal = {Evolutionary Applications}, number = {7}, doi = {10.1111/eva.13440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287264}, pages = {1177-1188}, year = {2022}, abstract = {Abstract Introgressive hybridization is a process that enables gene flow across species barriers through the backcrossing of hybrids into a parent population. This may make genetic material, potentially including relevant environmental adaptations, rapidly available in a gene pool. Consequently, it has been postulated to be an important mechanism for enabling evolutionary rescue, that is the recovery of threatened populations through rapid evolutionary adaptation to novel environments. However, predicting the likelihood of such evolutionary rescue for individual species remains challenging. Here, we use the example of Zosterops silvanus, an endangered East African highland bird species suffering from severe habitat loss and fragmentation, to investigate whether hybridization with its congener Zosterops flavilateralis might enable evolutionary rescue of its Taita Hills population. To do so, we employ an empirically parameterized individual-based model to simulate the species' behaviour, physiology and genetics. We test the population's response to different assumptions of mating behaviour and multiple scenarios of habitat change. We show that as long as hybridization does take place, evolutionary rescue of Z. silvanus is likely. Intermediate hybridization rates enable the greatest long-term population growth, due to trade-offs between adaptive and maladaptive introgressed alleles. Habitat change did not have a strong effect on population growth rates, as Z. silvanus is a strong disperser and landscape configuration is therefore not the limiting factor for hybridization. Our results show that targeted gene flow may be a promising avenue to help accelerate the adaptation of endangered species to novel environments, and demonstrate how to combine empirical research and mechanistic modelling to deliver species-specific predictions for conservation planning.}, language = {en} } @article{LopezKleinheinzAukemaetal.2019, author = {L{\´o}pez, Cristina and Kleinheinz, Kortine and Aukema, Sietse M. and Rohde, Marius and Bernhart, Stephan H. and H{\"u}bschmann, Daniel and Wagener, Rabea and Toprak, Umut H. and Raimondi, Francesco and Kreuz, Markus and Waszak, Sebastian M. and Huang, Zhiqin and Sieverling, Lina and Paramasivam, Nagarajan and Seufert, Julian and Sungalee, Stephanie and Russell, Robert B. and Bausinger, Julia and Kretzmer, Helene and Ammerpohl, Ole and Bergmann, Anke K. and Binder, Hans and Borkhardt, Arndt and Brors, Benedikt and Claviez, Alexander and Doose, Gero and Feuerbach, Lars and Haake, Andrea and Hansmann, Martin-Leo and Hoell, Jessica and Hummel, Michael and Korbel, Jan O. and Lawerenz, Chris and Lenze, Dido and Radlwimmer, Bernhard and Richter, Julia and Rosenstiel, Philip and Rosenwald, Andreas and Schilhabel, Markus B. and Stein, Harald and Stilgenbauer, Stephan and Stadler, Peter F. and Szczepanowski, Monika and Weniger, Marc A. and Zapatka, Marc and Eils, Roland and Lichter, Peter and Loeffler, Markus and M{\"o}ller, Peter and Tr{\"u}mper, Lorenz and Klapper, Wolfram and Hoffmann, Steve and K{\"u}ppers, Ralf and Burkhardt, Birgit and Schlesner, Matthias and Siebert, Reiner}, title = {Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, organization = {ICGC MMML-Seq Consortium}, doi = {10.1038/s41467-019-08578-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237281}, year = {2019}, abstract = {Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing.}, language = {en} } @article{GodelPhamKeleetal.2019, author = {Godel, Tim and Pham, Mirko and Kele, Henrich and Kronlage, Moritz and Schwarz, Daniel and Brun{\´e}e, Merle and Heiland, Sabine and Bendszus, Martin and B{\"a}umer, Philipp}, title = {Diffusion tensor imaging in anterior interosseous nerve syndrome - functional MR Neurography on a fascicular level}, series = {NeuroImage: Clinical}, volume = {21}, journal = {NeuroImage: Clinical}, doi = {10.1016/j.nicl.2019.101659}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233061}, year = {2019}, abstract = {Purpose By applying diffusor tensor imaging (DTI) in patients with anterior interosseous nerve syndrome (AINS), this proof of principle study aims to quantify the extent of structural damage of a peripheral nerve at the anatomical level of individual fascicles. Methods In this institutional review board approved prospective study 13 patients with spontaneous AINS were examined at 3 Tesla including a transversal T2-weighted turbo-spin-echo and a spin-echo echo-planar-imaging pulse sequence of the upper arm level. Calculations of quantitative DTI parameters including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) for median nerve lesion and non-lesion fascicles as well as ulnar and radial nerve were obtained. DTI values were compared to each other and to a previously published dataset of 58 healthy controls using one-way Analysis of Variance with Bonferroni correction and p-values <.05 were considered significant. Receiver operating characteristic (ROC) curves were performed to assess diagnostic accuracy. Results FA of median nerve lesion fascicles was decreased compared to median nerve non-lesion fascicles, ulnar nerve and radial nerve while MD, RD, and AD was increased (p < .001 for all parameters). Compared to median nerve values of healthy controls, lesion fascicles showed a significant decrease in FA while MD, RD, and AD was increased (p < .001 for all parameters). FA of median nerve non-lesion fascicles showed a weak significant decrease compared to healthy controls (p < .01) while there was no difference in MD, RD, and AD. ROC analyses revealed an excellent diagnostic accuracy of FA, MD and RD in the discrimination of median nerve lesion and non-lesion fascicles in AINS patients as well as in the discrimination of lesion fascicles and normative median nerve values of healthy controls. Conclusion By applying this functional MR Neurography technique in patients with AINS, this proof of principle study demonstrates that diffusion tensor imaging is feasible to quantify structural nerve injury at the anatomical level of individual fascicles.}, language = {en} } @article{LevitisGouldvan PraagGauetal.2021, author = {Levitis, Elizabeth and Gould van Praag, Cassandra D and Gau, R{\´e}mi and Heunis, Stephan and DuPre, Elizabeth and Kiar, Gregory and Bottenhorn, Katherine L and Glatard, Tristan and Nikolaidis, Aki and Whitaker, Kirstie Jane and Mancini, Matteo and Niso, Guiomar and Afyouni, Soroosh and Alonso-Ortiz, Eva and Appelhoff, Stefan and Arnatkeviciute, Aurina and Atay, Selim Melvin and Auer, Tibor and Baracchini, Giulia and Bayer, Johanna M M and Beauvais, Michael J S and Bijsterbosch, Janine D and Bilgin, Isil P and Bollmann, Saskia and Bollmann, Steffen and Botvinik-Nezer, Rotem and Bright, Molly G and Calhoun, Vince D and Chen, Xiao and Chopra, Sidhant and Chuan-Peng, Hu and Close, Thomas G and Cookson, Savannah L and Craddock, R Cameron and De La Vega, Alejandro and De Leener, Benjamin and Demeter, Damion V and Di Maio, Paola and Dickie, Erin W and Eickhoff, Simon B and Esteban, Oscar and Finc, Karolina and Frigo, Matteo and Ganesan, Saampras and Ganz, Melanie and Garner, Kelly G and Garza-Villarreal, Eduardo A and Gonzalez-Escamilla, Gabriel and Goswami, Rohit and Griffiths, John D and Grootswagers, Tijl and Guay, Samuel and Guest, Olivia and Handwerker, Daniel A and Herholz, Peer and Heuer, Katja and Huijser, Dorien C and Iacovella, Vittorio and Joseph, Michael J E and Karakuzu, Agah and Keator, David B and Kobeleva, Xenia and Kumar, Manoj and Laird, Angela R and Larson-Prior, Linda J and Lautarescu, Alexandra and Lazari, Alberto and Legarreta, Jon Haitz and Li, Xue-Ying and Lv, Jinglei and Mansour L., Sina and Meunier, David and Moraczewski, Dustin and Nandi, Tulika and Nastase, Samuel A and Nau, Matthias and Noble, Stephanie and Norgaard, Martin and Obungoloch, Johnes and Oostenveld, Robert and Orchard, Edwina R and Pinho, Ana Lu{\´i}sa and Poldrack, Russell A and Qiu, Anqi and Raamana, Pradeep Reddy and Rokem, Ariel and Rutherford, Saige and Sharan, Malvika and Shaw, Thomas B and Syeda, Warda T and Testerman, Meghan M and Toro, Roberto and Valk, Sofie L and Van Den Bossche, Sofie and Varoquaux, Ga{\"e}l and V{\´a}ša, František and Veldsman, Michele and Vohryzek, Jakub and Wagner, Adina S and Walsh, Reubs J and White, Tonya and Wong, Fu-Te and Xie, Xihe and Yan, Chao-Gan and Yang, Yu-Fang and Yee, Yohan and Zanitti, Gaston E and Van Gulick, Ana E and Duff, Eugene and Maumet, Camille}, title = {Centering inclusivity in the design of online conferences—An OHBM-Open Science perspective}, series = {GigaScience}, volume = {10}, journal = {GigaScience}, doi = {10.1093/gigascience/giab051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-371574}, pages = {1-14}, year = {2021}, abstract = {As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume.}, language = {en} } @article{LiangCostanzaPrutschetal.2021, author = {Liang, Huan-Chang and Costanza, Mariantonia and Prutsch, Nicole and Zimmerman, Mark W. and Gurnhofer, Elisabeth and Montes-Mojarro, Ivonne A. and Abraham, Brian J. and Prokoph, Nina and Stoiber, Stefan and Tangermann, Simone and Lobello, Cosimo and Oppelt, Jan and Anagnostopoulos, Ioannis and Hielscher, Thomas and Pervez, Shahid and Klapper, Wolfram and Zammarchi, Francesca and Silva, Daniel-Adriano and Garcia, K. Christopher and Baker, David and Janz, Martin and Schleussner, Nikolai and Fend, Falko and Posp{\´i}šilov{\´a}, Š{\´a}rka and Janikov{\´a}, Andrea and Wallwitz, Jacqueline and Stoiber, Dagmar and Simonitsch-Klupp, Ingrid and Cerroni, Lorenzo and Pileri, Stefano and de Leval, Laurence and Sibon, David and Fataccioli, Virginie and Gaulard, Philippe and Assaf, Chalid and Kn{\"o}rr, Fabian and Damm-Welk, Christine and Woessmann, Wilhelm and Turner, Suzanne D. and Look, A. Thomas and Mathas, Stephan and Kenner, Lukas and Merkel, Olaf}, title = {Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-25379-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-371581}, year = {2021}, abstract = {Anaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL.}, language = {en} } @article{LeProvostThieleWestphaletal.2021, author = {Le Provost, Ga{\"e}tane and Thiele, Jan and Westphal, Catrin and Penone, Caterina and Allan, Eric and Neyret, Margot and van der Plas, Fons and Ayasse, Manfred and Bardgett, Richard D. and Birkhofer, Klaus and Boch, Steffen and Bonkowski, Michael and Buscot, Francois and Feldhaar, Heike and Gaulton, Rachel and Goldmann, Kezia and Gossner, Martin M. and Klaus, Valentin H. and Kleinebecker, Till and Krauss, Jochen and Renner, Swen and Scherreiks, Pascal and Sikorski, Johannes and Baulechner, Dennis and Bl{\"u}thgen, Nico and Bolliger, Ralph and B{\"o}rschig, Carmen and Busch, Verena and Chist{\´e}, Melanie and Fiore-Donno, Anna Maria and Fischer, Markus and Arndt, Hartmut and Hoelzel, Norbert and John, Katharina and Jung, Kirsten and Lange, Markus and Marzini, Carlo and Overmann, J{\"o}rg and Paŝalić, Esther and Perović, David J. and Prati, Daniel and Sch{\"a}fer, Deborah and Sch{\"o}ning, Ingo and Schrumpf, Marion and Sonnemann, Ilja and Steffan-Dewenter, Ingolf and Tschapka, Marco and T{\"u}rke, Manfred and Vogt, Juliane and Wehner, Katja and Weiner, Christiane and Weisser, Wolfgang and Wells, Konstans and Werner, Michael and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Zaitsev, Andrey S. and Manning, Peter}, title = {Contrasting responses of above- and belowground diversity to multiple components of land-use intensity}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-23931-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-371552}, year = {2021}, abstract = {Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.}, language = {en} } @article{MarcuBichmannKuchenbeckeretal.2021, author = {Marcu, Ana and Bichmann, Leon and Kuchenbecker, Leon and Kowalewski, Daniel Johannes and Freudenmann, Lena Katharina and Backert, Linus and M{\"u}hlenbruch, Lena and Szolek, Andr{\´a}s and L{\"u}bke, Maren and Wagner, Philipp and Engler, Tobias and Matovina, Sabine and Wang, Jian and Hauri-Hohl, Mathias and Martin, Roland and Kapolou, Konstantina and Walz, Juliane Sarah and Velz, Julia and Moch, Holger and Regli, Luca and Silginer, Manuela and Weller, Michael and L{\"o}ffler, Markus W. and Erhard, Florian and Schlosser, Andreas and Kohlbacher, Oliver and Stevanović, Stefan and Rammensee, Hans-Georg and Neidert, Marian Christoph}, title = {HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy}, series = {Journal for ImmunoTherapy of Cancer}, volume = {9}, journal = {Journal for ImmunoTherapy of Cancer}, doi = {10.1136/jitc-2020-002071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-370160}, year = {2021}, abstract = {Background The human leucocyte antigen (HLA) complex controls adaptive immunity by presenting defined fractions of the intracellular and extracellular protein content to immune cells. Understanding the benign HLA ligand repertoire is a prerequisite to define safe T-cell-based immunotherapies against cancer. Due to the poor availability of benign tissues, if available, normal tissue adjacent to the tumor has been used as a benign surrogate when defining tumor-associated antigens. However, this comparison has proven to be insufficient and even resulted in lethal outcomes. In order to match the tumor immunopeptidome with an equivalent counterpart, we created the HLA Ligand Atlas, the first extensive collection of paired HLA-I and HLA-II immunopeptidomes from 227 benign human tissue samples. This dataset facilitates a balanced comparison between tumor and benign tissues on HLA ligand level. Methods Human tissue samples were obtained from 16 subjects at autopsy, five thymus samples and two ovary samples originating from living donors. HLA ligands were isolated via immunoaffinity purification and analyzed in over 1200 liquid chromatography mass spectrometry runs. Experimentally and computationally reproducible protocols were employed for data acquisition and processing. Results The initial release covers 51 HLA-I and 86 HLA-II allotypes presenting 90,428 HLA-I- and 142,625 HLA-II ligands. The HLA allotypes are representative for the world population. We observe that immunopeptidomes differ considerably between tissues and individuals on source protein and HLA-ligand level. Moreover, we discover 1407 HLA-I ligands from non-canonical genomic regions. Such peptides were previously described in tumors, peripheral blood mononuclear cells (PBMCs), healthy lung tissues and cell lines. In a case study in glioblastoma, we show that potential on-target off-tumor adverse events in immunotherapy can be avoided by comparing tumor immunopeptidomes to the provided multi-tissue reference. Conclusion Given that T-cell-based immunotherapies, such as CAR-T cells, affinity-enhanced T cell transfer, cancer vaccines and immune checkpoint inhibition, have significant side effects, the HLA Ligand Atlas is the first step toward defining tumor-associated targets with an improved safety profile. The resource provides insights into basic and applied immune-associated questions in the context of cancer immunotherapy, infection, transplantation, allergy and autoimmunity. It is publicly available and can be browsed in an easy-to-use web interface at https://hla-ligand-atlas.org .}, language = {en} }